Lecture 1 (vectors, dot product, projection) 8/29
Lecture 2 (signed area) 8/31
Lecture 3 (signed volume, cross product) 9/5
Lecture 4 (lines and planes) 9/7
Lecture 5 (vector functions) 9/12
Lecture 6 (problems in dynamics) 9/14
Lecture 7 (curvature part I) 9/19
Lecture 8 (curvature part II) 9/21
Lecture 9 (geometry of functions, partials) 9/26
Lecture 10 (partials, gradients) 9/28
Lecture 11 (Tangent lines & planes) 10/3
Lecture 12 (Vector fields, Divergence) 10/5
Lecture 13 (Curl) 10/12
Lecture 14 (Line integral) 10/17
Lecture 15 (closed curves and path independence) 10/19
Lecture 16 (Irrotational vector fields) 10/24
Lecture 17 (Double integral) 10/26
Lecture 18 (Volume of bodies, polar coordinates) 10/31
Lecture 19 (Green's theorem and applications) 11/2
Lecture (Review Session) 11/7
MIDTERM (Solns) 11/9
Lecture 20 (Surface area and integral) 11/14
Lecture 21 (Flux of a vector field) 11/16
Lecture 22 (Stokes formula) 11/21
Lecture 23 (Triple integral, Cylindrical coordinates) 11/28
Lecture 24 (Triple integral, Spherical coordinates) 11/30
Lecture 25 (Divergence Theorem) 12/5
Lecture 26 (Applications of Divergence Theorem) 12/7
FINAL December 13th, 2:15-4:45 PM