- (1) (M&T, # 2.1.10) Describe the behavior, as c varies, of the level curves f(x, y) = c for each of these functions
 - $f(x, y) = x^2 + y^2 + 1$, $f(x, y) = 1 x^2 y^2$, $f(x, y) = x^3 x$.
- (2) (M&T, # 2.3.1) Find $\partial f / \partial x$, $\partial f / \partial y$ if
 - f(x,y) = xy
 - $f(x,y) = e^{xy}$
 - $f(x,y) = x \cos x \cos y$
 - $f(x,y) = (x^2 + y^2) \log(x^2 + y^2)$.
- (3) (M&T, # 2.5.10) Suppose that the temperature at the point (x, y, z) in space is T(x, y, z) = $x^2 + y^2 + z^2$. Let a particle follow the helix $\vec{r}(t) = (\cos t, \sin t, t)$ and let T(t) be its temperature at time t.
 - What is T'(t)?
 - Find an approximate value for the temperature at $t = \frac{\pi}{2} + 0.01$.
- (4) (M&T, # 2.5.18, modified) Compute the directional derivative of f in the given directions \vec{v} at the given points P.
 - $f(x, y, z) = xy^2 + y^2 z^3 + z^3 x, P = (4, -2, 1), \vec{v} = \frac{1}{\sqrt{14}}(\vec{i} + 3\vec{j} + 2\vec{k})$
 - $f(x, y, z) = e^{-z} \sin(x) \sin(y), P = (\pi, \frac{\pi}{2}, 0), \vec{v} = \frac{12}{13}\vec{i} + \frac{3}{13}\vec{j} + \frac{4}{13}\vec{k}.$
- (5) (M&T, # 2.5.28) In electrostatics, the force \vec{P} of attraction between two particles of opposite charge is given by $\vec{P} = k \frac{\vec{r}}{\|\vec{r}\|^3}$ (Coulomb's law), where k is a constant and $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. Show that \vec{P} is the gradient of $f = -\frac{k}{\|\vec{r}\|}$.