Gradescope. Please register for Gradescope (assignments and grading platform for the course) on gradescope.com. Use the entry code "**PXDZ5E**" when registering.

- (1) (M&T, §1.1: #22) Let $\vec{u} = (1, 2)$, $\vec{v} = (-3, 4)$, and $\vec{w} = (5, 0)$.
 - Draw these vectors in \mathbb{R}^2 .
 - Find scalars λ_1 and λ_2 so that $\vec{w} = \lambda_1 \vec{u} + \lambda_2 \vec{v}$.
- (2) (M&T, §1.2: #15) What is the geometric relation between the vectors \vec{u} and \vec{v} if one has that $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \|\vec{v}\|$? What is a formula for $\operatorname{Proj}_{\vec{u}} \vec{v}$?
- (3) Suppose A, B and C are collinear, and

$$\frac{\|\overrightarrow{AB}\|}{\|\overrightarrow{BC}\|} = \frac{\lambda}{1-\lambda}, \qquad \lambda \in (0,1).$$

$$\lambda A + \lambda C.$$

Show that $B = (1 - \lambda)A + \lambda C$.

$$\overrightarrow{AB} = \lambda \overrightarrow{AC}, \qquad B - A = \lambda (C - A)$$

- (4) (M&T, §1.2: #6) Compute $\|\vec{u}\|, \|\vec{v}\|, \vec{u} \cdot \vec{v}$ for $\vec{u} = 15\vec{i} 2\vec{j} + 5\vec{k}$ and $\vec{v} = \pi\vec{i} + 3\vec{j} \vec{k}$.
 - (M&T, §1.2: #20) Find the projection of $\vec{u} = -\vec{i} + \vec{j} + \vec{k}$ onto $\vec{v} = 2\vec{i} + \vec{j} 3\vec{k}$.