MAT 203 : Multivariable Calculus

Plane curves
$$\vec{r}(t) = (x_1(t), y_1(t), 0)$$

Let us restrict further to some objects
consider our curve to be the are viscolated
graph of a function m_{3D} .
 $\vec{y} = f(x)$
 $\vec{r}(t) = \vec{r}'(t) = (1, f'(t), 0)$
 $\vec{r}(t) = \vec{r}'(t) = (0, f''(t), 0)$
 $\vec{r}(t) = \|\vec{v}(t)\| = (1 + (f'(t), 0))$
 $\vec{v}(t) = \|\vec{v}(t)\| = (1 + (f'(t))^2$

Unit tangcht vector: $\frac{-3}{T(t)} = \frac{\sqrt[3]{t}(t)}{V(t)} = \frac{-1}{\sqrt{(t)}(t)} \left(1, \frac{1}{t}, 0\right)$ Chrvafune $= \frac{|f''(+)|}{(1+(f^{1})^{2})^{3/2}}$ 11 V x q 11 V3 Since -7 x 9 = vector Binormal $\frac{dv}{dt} \vec{T} + kv^2 \vec{N}$ venember $= B^{2} = \frac{\sqrt{xa}}{\sqrt{xa}}$ Thus $\vec{v} \times \vec{a} = k \sqrt{3} \vec{B}$ Thus $\vec{B} = \frac{\vec{v} \times \vec{a}}{\|\vec{v} \times \vec{a}'\|} = \frac{\vec{f}''(t)}{|\vec{f}''(t)|} \vec{k}$

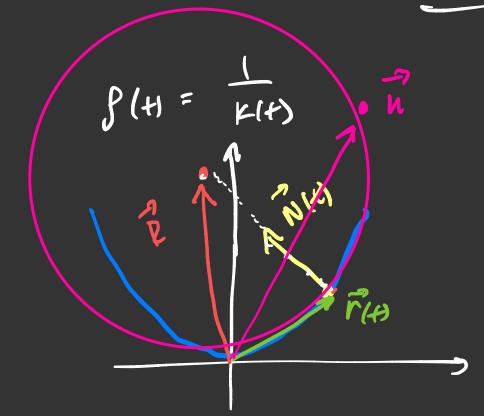
(2)

Numal vector

$$\overline{N} = \overline{B} \times \overline{T} = \frac{\pi^{41}}{|\overline{F}'|} \widehat{E}_{X} \overline{T} = sgn(\overline{T}') \overline{E} \times \frac{(1, \overline{F}', 0)}{\sqrt{1 + (\overline{F}')^{2}}} = \frac{\pi^{41}}{|\overline{F}'|} \widehat{E}_{X} \overline{T} = sgn(\overline{T}') \overline{E} \times \frac{(1, \overline{F}', 0)}{\sqrt{1 + (\overline{F}')^{2}}} = \frac{sgn(\overline{T}'')}{\sqrt{1 + (\overline{F}')^{2}}} | (\overline{F}' \circ 0) - (\overline{F}' \circ$$

Thus we found: r(+) = (+, \$(+), 0) k(t) = |f''(t)| $(1 + (f'(x))^2)^{3/2}$ $N(t) = \underline{Sgn}(f'(t))(-f'(t), 0)$ $\sqrt{|+(p')^2}$ $f(t) = t^2$ Example : $k(t) = \frac{2}{(1 + 1 + 2)^{3/2}}$ $\vec{N}(t) = (-2t, 1, 0)$ $\sqrt{1+44^2}$ NKI

Oscular circle



Oscular circle: circle whom realer \vec{R} t) is on the 1ihe through \vec{r} le) in the dimension of \vec{N} (H, i.e. \vec{R} (H) = \vec{r} (H) + \vec{p} \vec{N} (H) The equation

 $\|\vec{u} - \vec{p}\| = f(t)$ $\int \vec{u} - \vec{p} [t] = f(t)$ for osculating circle.

Vadius = exactly rodius of curvature fangent clist between parapola and circle, decneases like squae of dist. catively above parabola. Osculating circle: on one side, it is over parabola. On other, it is under. distance to parabolo behaves as the cube of the distance