MAT 203, Calculus Il with Applications, Fall 2023 Homework 11

M&T Sections:

(1) Find the surface area of the portion of the paraboloid z = 9 — 22 — 32 that lies over the
z = 0 plane.
We parametrize the surface as z = f(z,y), f(z,y) = 9 — 22 — y? over the zy-plane.
The region D over which this graph resides is bounded by the intersection of the surface
z = f(x,y) and z = 0. In other words, the set of (x,7) such that 9 — 22 —y%? =0, or a
circle of radius 3. Then
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To evaluate this integral, we use polar coordinates. It is
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(2) (a) Let f : [1,00) — [0,00) be a continuously differentiable function. Let S be the
surface of revolution obtained by revolving the graph of y = f(x) around the x—
axis. Recall that the volume enclosed and surface area are:

Vol = W/OO f(z)?de, Area = 27 /oof(:v)\/l + f'(z)?dx.
1 1

Suppose that f(x) < M for some finite M > 0. Show that, if the surface area is
finite, then so is the volume enclosed.

Let A be the surface area of the graph.
o M [ M [ M
Vol = / f(x)(nf(x))dx < 2/ 2r f(z)dx < 2/ 2 f(x)\/1+ f'(z)?dx = EArCa.
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(b) (Torricelli’s trumpet) Let f(xz) = 1/z on [1,00), revolve the graph of f(z) around
the z—axis, we get a trumpet—shaped surface. Find the volume and surface area.

The volume is

Vol/ f(%)(ﬂf(l))dlﬁ/ —:; = .
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On the other hand, the surface area is
o *1 1 * dx oo
Area = 27 f(@)\/1+ f'(z)?de =27 - 1+ gda} > 27 = 27 log(z) | =
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Torricelli’s trumpet is a surface of finite volume and infinite area! You can fill the
trumpet with a finite amount of paint, but it requires infinite amount of paint to
cover the surface!

(3) Evaluate the integral | fsﬁ - dS where F = (z,y,1) and S is the upper hemisphere
22+y?+22=1,2>0.
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The surface is a graph: z = f(z,y), f(z,y) = /1 — 22 — y? sitting above the unit disc
D in the zy plane. Note f, = —z(1 — 2% — 3?)~1/2, fy=-y(1l—2?— y?)~1/2. Thus
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since 7 is the area of the unit disc. We compute the other integral in polar coordinates.
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Thus the flux is %’r +m= %’r
(4) Let B be the solid ball of radius 1 given by
2?42+ 22 <1

Evaluate the following integrals.

Hint: You can compute each integral independently and in any order. The principle of
symmetry may play an important role in each part!
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Each term is an odd function on B, by symmetry,
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Note that by symmetry, the integral of the terms zy,yz, xz are all 0.

) J [ [5(z®" + y*" + 22")dV where n is a positive integer.
Use symmetry of z,y, z:
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Alternatively,
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(5) Use Stoke’s theorem to evaluate the integral §. F-di where F = (—zy, —xz, —yz) and C

is the triangle with vertices (0,1,0), (0,1,5) and (3,1, 0) oriented by taking the vertices
in that order.
Let S be the solid triangle bounded by C. Since it is oriented by the order of the
points, this gives a normal vector that points along the positive y-axis (draw figure, use
right hand rule). Thus 7 = (0,1,0). Since F is differentiable, Stokes theorem tells that
the line integral in equation equals the jfs cwrlF - AdS. The curl is computed to be
curlF = (z — 2,0,z — ). Thus curlF -7 = 0 so fcﬁ-df’: 0.

(6) (Challenge) Find the probability that three random numbers chosen uniformly from [0, 1]
represent the side lengths of some triangle. (Yes, this is a Calc III question).

Hint: If the three numbers are x,y and z, they are sides of a triangle if and only if
z+y >z, x4z >y, or y+z>u.

Find the probability that 0 <z <y <z <1 and x +y > z first. Note that when x > %,
x+y >1; and when x < %, r4+y<lify<l—zandax+y>1ify>1—x. Then
consider the other 5 possibilities similarly: x <z <y,y<z <z, y<z<z,z<z <y,

and z <y < x.
The probability that 0 <z <y <z<land x+y > z is
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Consider the other 5 possibilities similarly: * <z <y, y<zx <z, y<z<z, z<x <y,
and z < y < x, we have that the three numbers form the three sides of a triangle with

probability % = %



