MAT 203 : Multivariable Calculus

now define the line in legral We Straight segment $\frac{1}{A_{n-1}}B=A_{n-1}$ e A Az A o f(x,y,z) continuous function $\int f(x,y,z) ds$ length of Straight segment blas Ao and Ai $S_{N} = f(A_{o}) |A_{o}A_{j}|$ $+ f(A_1) |A_1A_2| + ... + f(A_{n-1}) |A_{n-1}A_n|$ number of points n-200, then If Max |ArAral->0 and SN-> Stds. KSN

To find it analytically, we introduce a parametrization: C: $\vec{r} = \vec{r}(t)$, $a \le t \le b$. $A_{k} = r(t_{k})$ for some tr Then $S_{N} = \#(\vec{r}(t_{0})) | \vec{r}(t_{1}) - \vec{r}(t_{0})|$ $+f(\vec{r}(t_{1}))|\vec{r}(t_{2})-\vec{r}(t_{1})|+...$ when n - 7 20,

 $\|\vec{r}[t_{k+1}) - \vec{r}[t_k]\| \approx \|\vec{r}'(t_k)\| (t_{k+1} - t_k)$

$$\int_{N} - \int_{a} f(\vec{r}(t)) \|\vec{r}(t)\| dt$$
$$= \int_{C} f ds$$

Thus

$$\int_{C} f ds = \int_{a}^{b} f(\vec{r}(t)) \|\vec{r}'(t)\| dt.$$
Rore that integral can be found explicitly.
Example: $x = \cos t$
 $y = \sin t$ $o \pm t \leq \pi$

$$\int_{V} f ds = \int_{a}^{T} \int_{C} \int_{V(Y)} f(y) = y^{2}$$

$$\int_{V(Y)} f(y) = y^{2}$$

$$\int_{V} f(y) = \int_{a}^{T} \int_{C} \int_{V(Y)} f(y) = \int_{a}^{T} \int_{V(Y)} f(y) = \int_{V(Y)} f(y) = \int_{a}^{T} \int_{V(Y)} f(y) = \int_{V(Y)$$

A much mone important inlegral is...

S

(V

Consider the sum:

$$\begin{split} S_{N} &= \vec{F}(\vec{r}_{0}) \cdot (\vec{r}_{1} - \vec{r}_{0}) + \vec{F}(\vec{r}_{1}) \cdot (\vec{r}_{2} - \vec{r}_{1}) \\ &+ \cdots + \vec{F}(\vec{r}_{N-1}) \cdot (\vec{r}_{N} - \vec{r}_{N-1}) \cdot \end{split}$$

$$\begin{aligned} \text{Consider } N \Rightarrow \infty, &\text{ so distances blue points go to zery} \\ \text{Max } ||\vec{r}_{N-1} \vec{r}_{N}|| \Rightarrow 0 \\ \text{Max } ||\vec{r}_{N-1} \vec{r}_{N}|| \Rightarrow 0 \\ \text{If the curve and vector field are regular,} \\ \text{the (imit exists and is devoted} \\ \text{If (mit exists and is devoted} \\ \text{C: } \vec{r} = \vec{r}(n) \quad a \leq t \leq b \\ S_{N} &= \vec{F}(\vec{r}(t_{N}))(\vec{r}(t_{N}) - \vec{r}(t_{N})) + \dots + \vec{F}(\vec{r}(t_{N}))(\vec{r}(t_{N} - \vec{r}(t_{N}))) \\ &\approx \vec{F}(\vec{r}(t_{N})) \cdot \vec{r}'(t_{N})(t_{1} - t_{N}) \\ &\approx \vec{F}(\vec{r}(t_{N})) \cdot \vec{r}'(t_{N})(t_{1} - t_{N}) \\ &+ \dots + \vec{F}(\vec{r}(t_{N})) \cdot \vec{r}'(t_{N-1}) \quad \text{Itp-ton}); \end{aligned}$$

Thus $\lim_{N \to \infty} S_N = \int_{0}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$

Thus

$$\int \vec{F} \cdot d\vec{r} = \int \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

$$C \qquad a$$

Note, again, that since the sums Su were defined without any parametrization, the limit also is independent of parametrization However orientation does enter. If you go from B to A instead of A > B,

the factors r'(tru-i) ltp-tru-i) change direction, so the integral changes sign.

sign with the of orientation of C. S F.dr chauges change C t/-B C A -/+ B C A independent of parametrization, 7(t2) instead of FlH. But l'ig- $A = (-1, -2) \quad \vec{F} (F_{xy}) = (Y_{xy})$ B = (2, -1) Example: $o = \int (-1+3t^{-3}+t^{-3})(3,1) dt$ $= \int ([-1+3] + (-2+1)] dL$ $= \int_{-1}^{2} [-5 + 10t] dt = 5-5$ = (-1,-2) + t (3,1) = (-1,-2) + t (3,1) F (4) = Fb + + AB $\vec{F}(0) = A_1 \vec{V}(1) = B$ $\overline{AB} = (2 - (-1), -(-(-2)) = (3,1))$

What is the meaning of this integral?

Work done by the JF-dr 1 Force, F, upon a Dudy moving along came C in direction corresponding to orientation.

For example \vec{F} could be gravitational force. In general $\vec{F}(\vec{r})$ is the force applied to the body if it is positioned at \vec{r} .

Ovientation: If you lift a body in a granitational field, you perform work opposite in sign to the work done by the field if the body falls down.

If
$$\vec{F}(\vec{r}) = (P, Q, P)$$
, then

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} (P, Q, P) \cdot d\vec{r}$$

$$= \int_{C} (P(P) \cdot dr + Q(P) \cdot dr) + P(P) \cdot dr$$

$$= \int_{C} (P(P) \cdot dr + Q(P) \cdot dr) + P(P) \cdot dr)$$

$$C$$

$$E_{\text{Kample}} \cdot A_{\text{T}} = (0, -1) \quad B = (1, 0) \quad D = (0, 1)$$

$$= \int_{C} (y \cdot dr + r^{2} \cdot dy)$$

$$C$$

$$= \left(\int_{C} + \int_{C} (1, -1) + C \cdot dr\right)$$

Introduce	porametriza har	:	
С,:	x(t) = t $y(t) = t - 1$	05451	
C ₇ :	x(t) = 1-t y(t) = t	0 <u>C</u> t C (
∫(y dx c, =	$f x^{2} dy = \frac{1}{2}$	$\int_{0}^{t} (t-1) dt + t$ $= -\frac{1}{6}.$	2 dt)
S(y dx + Cz	$x^2 dy = \int_0^1$	+ (-1)d+ + (1-t	$j^2 dt$
$=-\frac{1}{2}$	+ [-]	$+\frac{1}{3} = -\frac{1}{6}$	•
S(ydx -	$(x^2 dy) = -$	$\frac{1}{6}-\frac{1}{6}=-\frac{1}{3}.$	

$$E_{E}: C: \begin{array}{c} y = \cosh \\ y = \sin t \end{array} \quad 0 \leq t \leq 2\pi \end{array}$$

$$He lin \qquad 2 = t$$

$$F(x,y,z) = (2,x,y)$$

$$\int_{C} F \cdot dr^{2} = \int_{T}^{2\pi} (t_{1} \cosh t \sin t) \cdot (\sin t_{1} \cosh t) dt$$

$$C \qquad 0 \qquad F(r(t_{1})) \quad dr$$

$$= \int_{C}^{2\pi} (-t_{2} \sin t + c_{2} c_{2} t + \sin t) dt$$

$$= T \quad r \quad T \quad t \quad T$$

$$I = \int_{C}^{2\pi} -t_{2} \sin t dt = \int_{0}^{2\pi} t \quad d_{1} \cosh t dt$$

$$= -\int_{C}^{2\pi} (c_{2} t + dt) + t_{1} \left(c_{2} t + c_{2} c_{2} t + dt \right) dt$$

$$T = \int_{0}^{2\pi} t_{1} dt = \int_{0}^{2\pi} t \quad d_{1} \cosh t dt$$

$$= \int_{0}^{2\pi} (c_{2} t + dt) + t_{1} \left(c_{2} t + c_{2} c_{2} t + dt \right) dt$$

$$T = \int_{0}^{2\pi} c_{2} t dt = \int_{0}^{2\pi} (1 + c_{2} (c_{2} t)) dt = \pi.$$

$$T = \int_{0}^{2\pi} \sin t dt = 0. \qquad Then s \qquad \int_{C}^{T} F dr = 2\pi$$

MAT 203 : Multivariable Calculus

Integral of a vector field along a closed rune no objective first or last points Pick point A/B arbitrarily and cull it the first and last. AB C We may define $e^{nctahan} fir integral$ $<math>\int \vec{F} \cdot d\vec{r} = \oint \vec{F} \cdot d\vec{r}$ curve / contour CAgain, this definition does not depend on any parametrization, but it depends on the direction of orientation (must choose proper parametrization cohevent with the given orientation of the curve).

()

$$\vec{F}(\vec{r}(t)) \cdot \vec{r}'(t)$$

$$= -6 \sin^{2} t - 9 \sin t \cot t + 6 \cot t$$

$$+ 12 \cos^{2} t - 4 \sin t \cot t$$

$$= 12 \cos^{2} t - 6 \sin^{2} t - 13 \sin t \cot t + 6 \cot t$$

$$\oint \vec{F} \cdot d\vec{r} = \int \left(12 \cos^2 t - 6 \sin^2 t - 13 \sin t \cos^2 t \right) dt$$

Note

$$\int_{0}^{2\pi} \cos^{2}t \, dt = \int_{0}^{2\pi} \sin^{2}t \, dt = \pi.$$

$$\int_{0}^{2\pi} \cos^{2}t \, dt = \int_{0}^{2\pi} \int_{0}^{2\pi} \sin^{2}t \, dt = \int_{0}^{2\pi} \int_{z}^{z} \sin^{2}t \, dt = G$$

$$\int_{0}^{2\pi} \cosh^{2}t \, dt = \int_{0}^{z} \int_{z}^{z} \sin^{2}t \, dt = G$$

$$\oint \vec{F} \cdot d\vec{r} = (12 - 6)\pi = 6\pi.$$

Thus

Note that the area does not change if the curve is shifted. Suppose

$$E_{F}: \quad \text{Anea inside an ellipse}$$

$$X = [+ 3 \cos t \qquad 0 \le t \le 2\pi \text{ } y = -1 + 2 \sin t \qquad 0 \le t \le 2\pi \text{ } z = 5\pi \text$$

 $\overline{\mathcal{T}}$

We could consider more interesting domains

Claim:

Sxdy = Anen inside C.

Not so obvious, since now we must break up curve in different regions to find pieces of the area, but it works.

