(1) Consider the vector field F(x, y) = (2x/y, (1 - x²)/y²) for y > 0.
Check that F is potential (conservative) and find a potential function

• Let C be the curve $(x-3)^5 + y^2 = 3$, from (2,-2) to (2,2). Compute $\int_C \vec{F} \cdot d\vec{r}$.

(2) Evaluate $\int_C F \cdot dr$ where

$$F(x,y) = \left(\frac{1}{y^2+1}, -\frac{2xy}{(y^2+1)^2} + ze^{yz}, ye^{yz} + 2z\right)$$

where C is part of the helix $r(t) = \langle \cos(t), \sin(t), t \rangle$ from (1, 0, 0) to $(1, 0, 2\pi)$.

(3) Find the integral of $f(x, y) = x^2 + y^2$ on the domain $D := \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, x^2 \le y \le x\}.$

Sketch the region of integration.

(4) Find the limits of integration of $\iint_D f(x,y) dx dy$ if

$$D := \{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \le 1 \}$$

when D is considered first as a type I and then as a type II domain.

(5) Sketch the region bounded by the curves $y = \log(x)$, $y = 2\log(x)$ and x = e in the first quadrant. Then express the region's area as an iterated double integral and evaluate.

(6) Consider $\iint_D f dA = \int_0^3 \int_{-2\sqrt{1-(x/3)^2}}^{2(1-x/3)} f(x,y) dy dx.$

• Sketch the region of integration.

• Switch the order of integration in the above integral.

• Compute the integral $\iint_D f dA$ if f(x, y) = xy.