MAT 203 : Multivariable Calculus

7-

Vector $\frac{y}{11}$ $\frac{1}{11}$ $\frac{1}{11}$	fields f_{ields} f_{irry} (x_{ry}) (x_{ry}) f_{irry} f_{irry	A field is of the pl at every something Hene, nec grown. E of a fluid Q(x,y)j	a piece ane which point grows (wheat, corn, etc). toos are !: at every point grene is a velocity.
Erample: Pn	$= Pi + \frac{1}{2}$	Q_{j} (· c:g: P = ce Q = c	for short)
	R R R R R	other P - elea - nagy - grav	hisical examples tric field netic field itutional force field

In 3D, some concept.

$$\overline{u}(\overline{r}) = \overline{u}(x_{r}q_{1}z)$$

$$= P(r_{r}q_{r}z)\overline{i} + Q(x_{r}q_{r}z)\overline{j} + P(x_{r}q_{r}z)\overline{r}$$
Example:
volating solid ball
around Z-axis \overline{r}
- rotates with unit
augular velocity;
e.g. in 1 second, it
thurns 1 radian.
plane containing 2 axis and \overline{r} .
The velocity of that point \overline{r} is arthogonal
to \overline{r} and orthogonal to \overline{k} .
Thus, it is proportional to $\overline{k} \times \overline{r}$
If the angular velocity is 1_{1} then
 $\overline{u}(\overline{r}) = \overline{k} \times \overline{r}$
We can imagine a rotation around any other axis.

Consider the vector

$$\overline{w} = (w_1, w_2, w_2)$$
, a vector directed
 $\overline{w} = (w_1, w_2, w_2)$, a long axis of
votation, so if
you last darm tip,
the rotation is ccw.
The length of \overline{w}
is equal to angular
velocity of rotation.
The velocity is then
 $\overline{u}(\overline{r}) = \overline{w} \times \overline{r}$
In particular, if $\overline{w} = \overline{E} = (0,0,1)$, then
 $\overline{u}(\overline{r}) = ||_{X} \times \overline{r}$
In particular, if $\overline{w} = \overline{E} = (0,0,1)$, then
 $\overline{u}(\overline{r}) = ||_{X} \times \overline{r}$
Note it doest depend on Z (as it is velocity above
 Z axis)

Juit x X rotating disk in the plane.

Operations on vector fields

Gradient
$$\nabla$$
:
 $\nabla \mathcal{F}(x_{i}q_{i}z) = (a_{x}f_{i} \ b_{y}f_{i} \ b_{z}f_{i}) \leftarrow \text{vector field.}$
Divergence $(d_{1}u)$:
 $\vec{u}(x_{i}q_{i}z) = (P(x_{i}q_{i}z), Q(x_{i}q_{i}z), P(x_{i}q_{i}z))$
 $d_{1}v \vec{u} := \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial P}{\partial z}$
Takes a vector field and results in a
scalar.
 $E_{x}: \vec{u}(\vec{r}) = \vec{r} = (r_{i}q_{i}z)$
 $d_{1}v \vec{u} = \frac{\partial r}{\partial y} + \frac{\partial Q}{\partial y} = 3$
 $E_{x}: (solid rotation) \vec{u}(r_{i}q_{i}z) = (-y_{i}r_{i}o)$ $P=-y$

 $div \hat{u} = -\frac{\partial y}{\partial x} + \frac{\partial x}{\partial y} = 0$ R = 0 R = 0 R = 0 R = 0 R = 0

5

Similarly, PCGP, Flux through ABB, A, and & Qy drdydz Flux Through ABCD and $\approx R_2 \, dx \, dy \, dz$ In Fotal, the flux through the surface T $\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = div \vec{u}$ the fluid is somehow generated inside TT (esg. from nothing, or sources) If divh 70, Recall $\vec{u} = \vec{r}$ For any T, the amount of fluid that leaves T is thid that leaves T is Nor e than amount that ealers Not in contradiction with cons law (us much earlies, is each four) (7)