
MAT203 : Multivariable Calculus Lecture 25
-

Divergence Theorem (Gauss-Ostrogradsky
-

Consider a body B bounded by a surfaces .
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What is a flux ? Given a closed surface
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Theorem : Let S be a regular surface,
-

which is the boundary of a 3d domain

B
.

Let # (x,y ,z) be a regular rector

field in B
.

ThenWSE . nds = [S) divdU
S B

B : x2+y+z R2 /Ball ot radius R)

Example :
S: y + y2+z = R (sphere)
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#(
,y ,z)

= () pinz+cosy

CSF. &S looke complicated
S

but ...

divE=0 ! So Ends=0.

This situation is typical in applications andey
useful.
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Thus, for B, Bz,By are domains of type I

and Theorem is proved

Dnds=[di
P

Since Es is tangent to vertical
boundaries

Adding up

() Ends = () Ends
+ 1) n ds +1) Ends
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(l)E · ids = (1) E3 · nds + (1) E3 · nds+ (1) E · id
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Thus
,
in this case the theorem is proved.
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Could have Sz

B
namely Sz doesnt

: contain Si
.

⑮
Introduce Sz ..

By before,

SSF -rds = &Ends
53

but also

IEdS=SE
Thus

Ends = [SEndsSi

D





Thus, if you
take any surface S aroundO

ins
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E = SSE . rds 5. : x+y+z= 1

S On S
,

E(F) = (x,y ,z)

= 4π also -
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,% ,z)

= (x ,y ,z)U

Thus
for any

surface S. F(E). = x+y+z
= 1

or scated
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= 4π

For instance
,
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