- (1) Find the tangent plane to the surface defined by $f(x,y) = x^3 xy + y^2$ at (2,1).
- (2) Find the unit normal to the graph (namely, the two-dimensional surface sitting in threedimensional space defined by z = f(x, y)) for $f(x, y) = e^x y$ at the point (-1, 1).
- (3) Captain Buzz is in trouble near the sunny side of Mars, at coordinate (1,1,1). His ship's hull is melting. He measures the temperature in his vicinity to be $T(x,y,z) = e^{-x} + e^{-2y} + e^{3z}$. In what direction should he proceed in order to cool the fastest?
- (4) Compute:
 - f_{xyzxz} if $f(x, y, z) = x \exp(yz^2 \sin(y+z))$,
 - $f_{tt} f_{xx}$ if $f(x,t) = \sin(x)\cos(t)$,
 - all second order partial derivatives if $f(x, y) = x \log y$.

- (5) Describe what $\operatorname{div} \vec{v}(\vec{r})$ and $\operatorname{curl} \vec{v}(\vec{r})$ means and compute them for the vector fields: • $\vec{v}(\vec{r}) = \|\vec{r}\| \vec{r}$ where $\vec{r} = (x, y, z)$,
 - $\vec{v}(r) = \frac{\vec{r}}{\|\vec{r}\|^3}$ where $\vec{r} = (x, y, z)$,
 - $\vec{v}(x, y, z) = (A\sin z + C\cos y, B\sin x + A\cos z, C\sin y + B\cos x),$
- (6) Let ∇^2 be the Laplacian operator defined by

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

- If f is a twice-differentiable function, show that div(f∇f) = ||∇f||² + f∇²f
 Suppose F is a C² vector field, show that curl(curlF) = ∇(divF) ∇²F

- (7) Consider the function $f(x, y) = \ln(\sqrt{x^2 + y^2} + y)$.
 - Determine the domain of f and sketch it in the xy-plane.
 - What is the linearization of f at (3, -4)?