MAT 203, Calculus Il with Applications, Fall 2023 Homework 9

M&T Sections: 5.3, 6.2, 8.1

(1) Find the volume of the region boundary by 22 + y?> = 1, x = z and z = 0. This region
is known as the hoof of Archimedes.
The floor of hoof is the half disk D with 2 4+ y? < 1 and 2 > 0 and roof is z = z. Then
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(2) Evaluate the following integrals using polar coordinates
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(3) Use Green’s theorem to compute ¢, F . di if F = (arctan(y/z),log(z2 + y2)) along the
curve C' given by the boundary of the region defined by the polar inequalities 1 < r < 2
and 0 < 0 < 7/2, oriented counterclockwise.
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Note that 9, log(z? 4+ y?) = -2, and 9, arctan(y/x) = Thus
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(4) Find the work done by the force F= (4x — 2y, 2z — 4y) on a particle going counterclock-
wise around the circle C: (x —2)2 + (y — 2)? = 4.

Let P(z,y) = 4z — 2y and Q(z,y) = 22 — 4y. Then 9,P = —2 and 0,Q = 2. Thus

% F.dr = // (2 — (—2))dA = 4Area(circle of radius 2) = 167.

(5) Show that the value of ¢, xy?dx + (v?y + 2z)dy around any square C' depends only on
the area enclosed and not on its location in the plane.

Let D be the interior of any given square C. Let P(z,y) = 2y? and Q(z,y) = 2%y + 2z.
Then 9y P = 2zy and 0,Q = 2xy + 2. Thus we find the integral is proportional to the
area enclosed only:

7{ F.di = // (2zy + 2 — 2xy)dA = 4Area(square).
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