- (1) (M& T, # 4.1.12) The acceleration of a particle is $\vec{r}''(t) = (0,0,6)$. Its initial velocity is $\vec{r}'(0) = (1,1,-2)$ and initial position is $\vec{r}(0) = (3,4,0)$. Find $\vec{r}'(t)$ and $\vec{r}(t)$. $\vec{r}'(t) = (0,0,6)t + (1,1,-2)$. $\vec{r}(t) = (0,0,3)t^2 + (1,1,-2)t + (3,4,0)$.
- (2) (M& T, # 4.1.14) The acceleration of a particle is $\vec{r}''(t) = (-6, 2, 4)$. Its initial velocity is $\vec{r}'(0) = (2, -5, 1)$ and initial position is $\vec{r}(0) = (-3, 6, 2)$. The particle's trajectory intersects the xz plane exactly twice. Find these two intersection points. $\vec{r}'(t) = (-6, 2, 4)t + (2, -5, 1)$. $\vec{r}(t) = (-3, 1, 2)t^2 + (2, -5, 1)t + (-3, 6, 2)$. We have $0 = y(t) = t^2 5t + 6$. The two roots are t = 2, 3. The points are found by plugging in.
- (3) (M& T, # 4.1.20) Let $\vec{r}(t)$ be a differentiable vector valued function of t. Show that, at a local maximum or minimum of $||\vec{r}(t)||$, the vector $\vec{r}'(t)$ is perpendicular to $\vec{r}(t)$. $0 = \frac{1}{2} \frac{d}{dt} ||\vec{r}(t)||^2 = \vec{r}'(t) \cdot \vec{r}(t)$.
- (4) Consider a particle with position $\vec{r}(t)$ given by

$$\vec{r}(t) = (a\cos\omega t, a\sin\omega t, b\omega t), \qquad a \neq 0.$$

- (a) Show the speed of the particle is constant. $\vec{r}'(t) = \vec{v}(t) = (-a\omega \sin \omega t, a\omega \cos \omega t, b\omega), ||\vec{r}'|| = \sqrt{a^2 + b^2}\omega.$
- (b) Show that the acceleration vector is always parallel to the xy plane. $\vec{r}''(t) = \vec{a}(t) = (-a^2\omega\cos\omega t, -a^2\omega\sin\omega t, 0), \ \vec{r}'' \cdot \hat{k} = 0.$
- (c) Show the velocity of the particle makes a constant non-zero angle with the z-axis. $\vec{v} \cdot \hat{k} = b\omega$ is constant so the angle $\cos \theta = \frac{b\omega}{\sqrt{a^2 + b^2}\omega} = \frac{b}{\sqrt{a^2 + b^2}}$ is constant. (d) Note $P = \vec{r}(0) = (a, 0, 0)$ and $Q = \vec{r}(\frac{2\pi}{\omega}) = (a, 0, 2\pi b)$. So \overrightarrow{PQ} is vertical. Show that
- (d) Note $P = \vec{r}(0) = (a, 0, 0)$ and $Q = \vec{r}(\frac{2\pi}{\omega}) = (a, 0, 2\pi b)$. So \overrightarrow{PQ} is vertical. Show that $\vec{r}(\frac{2\pi}{\omega}) \vec{r}(0) = \frac{2\pi}{\omega} \vec{r}'(s)$

cannot hold for any $s \in (0, \frac{2\pi}{\omega})$. Therefore, the Mean Value Theorem does not hold for vector valued functions.

Since \overrightarrow{PQ} is vertical, and \overrightarrow{v} is never vertical, \overrightarrow{PQ} can not be $\frac{2\pi}{\omega}\overrightarrow{v}(s)$ for any s.