(1) (M&T, §1.3: #2(a)) Find the determinant $\begin{vmatrix} 2 & -1 & 0 \\ 4 & 3 & 2 \\ 3 & 0 & 1 \end{vmatrix}$.

- (2) (M&T, §1.3: #14) Compute $\vec{u} + \vec{v}$, $\vec{u} \cdot \vec{v}$, $\|\vec{u}\|$, $\|\vec{v}\|$ and $\vec{u} \times \vec{v}$ where $\vec{u} = 3\vec{i} + \vec{j} \vec{k}$ and $\vec{v} = -6\vec{i} 2\vec{j} 2\vec{k}$.
- (3) (M&T, §1.3: #15(c)) Find an equation for the plane that is perpendicular to the line $\ell(t) = (5, 0, 2)t + (3, -1, 1)$ and passes through the point (5, -1, 0).
- (4) (M&T, §1.3: # 38) Give vectors $\vec{a}, \vec{b} \in \mathbb{R}^3$, do the equations $\vec{u} \times \vec{a} = \vec{b}$ and $\vec{u} \cdot \vec{a} = \|\vec{a}\|$ determine a unique vector \vec{u} ? Argue *both* geometrically and analytically.
- (5) Let $\vec{u}, \vec{v}, \vec{w}$ be three vectors that are not co-planar, namely

 $\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0} \qquad \text{if and only if} \qquad \alpha = \beta = \gamma = 0.$

- (a) Show that $\vec{u} \times \vec{v}, \vec{v} \times \vec{w}, \vec{w} \times \vec{u}$ are not co-planar.
- (b) Suppose $a, b, c \in \mathbb{R}$, find the point of intersections of the three planes

 $ec{u}\cdot(x,y,z)=a,\qquad ec{v}\cdot(x,y,z)=b,\qquad ec{w}\cdot(x,y,z)=c$

Express the solution (x, y, z) as

$$(x, y, z) = \alpha \vec{v} \times \vec{w} + \beta \vec{w} \times \vec{u} + \gamma \vec{u} \times \vec{v}$$