**Instructors:**Olga Plamenevskaya, office 2-112 Math Tower, e-mail:`olga@math.stonybrook.edu`; Marco Martens, office 4-113 Math Tower, e-mail:`marco@math.stonybrook.edu`**Office hours:**Olga Plamenevskaya: Tuesday 10:00-11:30am in P-143, Thursday 10:00-11:30am in 2-112 Math;

Marco Martens Tuesday, Thursday 1-2pm in 4-113 Math.**Class meetings:**lectures TuTh, 11:30am-1:00pm, Library W4525; recitations MW 10:00-10:53am, Library W4540.**Teaching Assistants:**El Mehdi Ainasse, D107 Physics, email:`elmehdi.ainasse@stonybrook.edu`, office hours: Wed 4:00-5:00pm, Fr 11:30-12:30am (in MLC, S240A Math) and Fr 2:30-3:30pm (in Physics D107);

Matthew Lam, MLC, email:`matthew.lam@stonybrook.edu`, office hours: Mon 1:00-3:00PM, Tu 6:00-7:00pm in MLC (S240A Math))

The purpose of this course is to build rigorous mathematical theory for the fundamental calculus concepts, sequences and limits, continuous functions, and derivatives. We will rely on our intuition from calculus, but (unlike calculus) the emphasis will be not on calculations but on detailed understanding of concepts and on proofs of mathematical statements. MAT 319 and MAT 320 are taught as one class for 6 weeks and then split. Here is a detailed syllabus.

- Kenneth Ross,
*Elementary Analysis: The Theory of Calculus*, 2nd edition.

The final exam covers all material of the semester. A checklist of exam topics can be obtained by combining the midterm checklists (for the first and second exams) with the differentiation checklist for the material covered after Midterm II.

Please pay special attention to all definitions and theorems; you will be asked to state several definitions and theorems and to reproduce the proofs on the exam.

Midterm I was held on Tuesday, March 1, in class. The exam covered all material discussed in class until then (including the lecture on 2/15 and HW 5). A checklist of exam topics (along with some practice questions from textbook) is here. Here are solutions to Midterm I.

Midterm II was held on Tuesday, April 19, in class.
The exam covered all material discussed in class between midterm I and Midterm II (and also included series).

A checklist of exam topics (along with some practice questions from textbook) is here.

Solutions to midterm 2.

** Writing requirement: ** as part of math major requirements for graduation,
every math major must submit 3 pieces of writing (2 expository and 1 proof). You can satisfy the *proof* part of the writing
requirement in MAT 319. **(Doing so will not affect your grade for MAT 319 and is not required for the completion of the course.
The writing requirement can be completed through other 300-level courses, any time before you graduate. The proof writing is only required of math majors
and not necessary for students in other majors/academic programs.)**

** Here's how to satisfy the proof requirement: ** you need to bring me a proof,
typically for a homework or exam question; you can take any question with a fairly substantial proof (not two lines please;
you need a math argument, not a quick calculation). Choose a question you understand well (so that your proof is mathematically
correct) and try to rewrite your proof nicely, in complete sentences with a lot of details. The goal is to produce and easily
readable, textbook-worthy proof that could be understood by someone familiar with previous course material but not this particular
question. **After you submit the proof, I will read it and return it to you with my comments. Usually the writing is less
than perfect at the first attempt, so you will have to rewrite your proof (sometimes more than once), following my comments.
Once I am satified with the quality of writing, you get the proof credit.** Please submit your own work, not posted solutions or
excerpts from the book.

** Week 12 ** (04/25 – 04/29)
The mean value theorem and related results (section 29).

** Homework 12, due Wednesday, May 4: **
29.2, 29.7 (read corollaries 29.4, 29.5 first), 29.8, 29.10, 29.13, 29.14, and one additional
question:

In class, we showed that if f attains maximum at x_{0}, then f'(x_{0})=0,
provided that f is differentiable at x_{0} and is defined on some interval containing x_{0}.
Prove the analogous statement for minimum, arguing in two ways: (a) Mimic the proof for maximum,
(b) use a quick trick to relate min of f to max of some other function, as in previous homeworks.

Solutions

** Week 11 ** (04/18 – 04/22)
Differentiability (section 28).

** Homework 11, due Wednesday, Apr 27: **
pdf Solutions

** Week 10 ** (04/4 – 04/8)
Continue continuity (section 18). Begin limits of functions (section 20).

** Homework 10, due Wednesday, Apr 13: **
pdf
Solutions

** Week 9 ** (03/28 – 04/1)
Important theorems about continuous functions on closed interval (section 18).
Read p.133-136. (We did a different proof of the intermediate value theorem,
see
notes.)

** Homework 9, due Wednesday, Apr 6: **
pdf Homework 9 Solutions

** Week 8 ** (03/21 – 03/25)
Continuous functions (section 17).

** Homework 8, due Wednesday, Mar 30: ** 17.4, 17.7 (please give a direct proof in (a)),
17.9, 17.10, 17.12. Homework 8 Solutions

** Week 7 ** (03/07 – 03/11)
Integral test, alternating series test (section 15).

** Homework 7, due Wednesday, Mar 23: **
15.2, 15.4, 15.6(c) (note that 15.6(a,b) were assigned in previous homework).
Homework 7 Solutions

** Week 6 ** (02/29 – 03/4)
Midterm on March 1. More on series: Ratio Test (see notes in Week 5).

** Homework 6, due Wednesday, Mar 9: **
pdf Homework 6 Solutions

** Week 5 ** (02/22 – 02/26)
Subsequences (section 11, p.66-73 only). Series (sections 14-15). We will focus on series
with positive terms only (this simplifies many of the proofs); here are some notes on series.

We will follow these notes to take shortcuts for section 14.
(The notes are from 2012; I might make some updates later on).

Some notes from this week: More on limits; Proof of Thm 11.2(ii) (the book doesn't offer a lot of details).

** Homework 5, due Feb 29: **
pdf Homework 5 Solutions

** Week 4 ** (02/15 – 02/19)
Monotone sequences and their convergence (section 10, p.56-60 only,
skip Definition 10.6); subsequences (section 11, p.66-73 only).

** Homework 4, due Feb 22: **
10.2, 10.5, 10.10, 11.4 (a,b,d,e only), 11.11.

For 11.11, a solution is included at the end of the book, but that solution has a lot of unnecessary
steps. You should be able to come up with a much easier and more direct proof. (Hint: just
think what supremum means; see proof of Theorem 10.2 for inspiration. The question does not require any of the section 11 material.)

** Please also do this additional question**: suppose
that the sequence (a_{n}) converges to 5, the sequence (b_{n})
converges to 2. Prove from definition that the sequence (c_{n}),
c_{n}= 2 a_{n} - b_{n}, converges to 8.

Homework 4 Solutions

Solutions for the quiz given on Monday

** Week 3 ** (02/08 – 02/12) Sequences and their limits:
neighborhoods and tails, epsilon-definition. Arithmetics
of limits (limit laws). Proof of limit laws, their applications.

** Supplementary notes on limits.**

** Homework 3, due Feb 15: ** 8.2, 8.4, 8.6,
9.2, 9.4, 9.6 Solutions

** Week 2 ** (02/1 – 02/02)
Sup and Inf, Completeness Axiom, idea of limits (sections 4, 5, 7).

** Homework 2, due Feb 8 ** 4.2, 4.6, 4.10, 4.12, 4.14, 5.6, 7.2 Solutions

** Week 1 ** (01/25 – 01/29)
Natural, rational, real numbers (sections 1, 2, 3).

** Homework 1, due Feb 1: ** 1.2, 1.4, 1.7, 1.10, 2.2, 2.4, 3.4, 3.6 Solutions

**Read them.** Please also read ** sections 7 and 8 ** of the textbook.

**Students with Disabilities: **If you have a physical,
psychological, medical, or learning disability that may impact on your
ability to carry out assigned course work, you are strongly urged to
contact the staff in the Disabled Student Services (DSS) office: Room
133 in the Humanities Building; 632-6748v/TDD. The DSS office will
review your concerns and determine, with you, what accommodations are
necessary and appropriate. A written DSS recommendation should be
brought to your lecturer who will make a decision on what special
arrangements will be made. All information and documentation of
disability is confidential. Arrangements should be made early in the
semester so that your needs can be accommodated.