MAT 319 - Spring 2016 Homework 5 Solutions

TA: El Mehdi Ainasse - R01

February 29, 2016

Question 1

(a) The sequence is given by 1, 1/2, 1, 1, 1/2, 1/3, ... Although it is no use to write an explicit formula for s_n for general $n \in \mathbb{N}$, one can notice that all of its terms have the form 1/m for m > 0. Clearly, in that case, the set $\{1/n\}_{n \in \mathbb{N}} \cup \{0\}$ is included in the set of subsequential limits. To see this, for any integer n > 0, pick the subsequence (s_{n_k}) to be given by: $s_{n_k} \in \{s_n\}$ for all $n_k < N_k$ for a given fixed $N_k \in \mathbb{N}$ and $s_{n_k} = 1/m$ where m is any integer. Basically, you pick the first few (first N_k) elements to be any of the terms in the original sequence, and then pick the rest (the infinitely many terms after the N_k -th one) to be 1/m for various integers m. As you can do that for any m (since any terms of the form 1/m for m > 0 is in (s_n) , that tells you that any $1/n, n \in \mathbb{N}$ will be a subsequential limit. For 0, simply pick the subsequence given by $(s_{n_k}) = (1/k)$ for all $k \in \mathbb{N}$. The claim is that these actually exhaust the set S of subsequential limits. All that remains to show is that for any $n \in \mathbb{N}$, there is no real number x such that $x \neq 0$ and $x \neq 1/n$ can be a (subsequential) limit. Since $0 < s_n = 1/n \leq 1$ in general, for any limit ℓ we will have that $0 \leq \ell \leq 1$ and so $0 < x \leq 1$ (as we assume that x differs from 0). Now suppose that $x \neq 1/n$ for any $n \in \mathbb{N}$. Then we can pick two numbers of the form 1/n closest to x. More precisely, x will be between 1/m and 1/(m+1) for appropriate m. Hence, given $\varepsilon < \min\{|a-1/m|, |a-1/(m+1)|\}$ for this m, ε will be smaller than the distance from x to any of the terms of the sequence (s_n) . Thus $(x - \varepsilon, x + \varepsilon)$ will contain no terms of the sequence whatsoever, and so no subsequence can converge to x. So S is indeed just $\{1/n\}_{n \in \mathbb{N}} \cup \{0\}$.

Question 2

Let (x_n) and (y_n) be two sequences converging to the same number a and define (z_n) by $z_{2n-1} = x_n$ and $z_{2n} = y_n$ for all $n \in \mathbb{N}$. By the definition of the limit:

$$\begin{aligned} \forall \varepsilon > 0, \exists N_1 \in \mathbb{N}, \forall n > N_1 : |x_n - a| < \varepsilon \\ \forall \varepsilon > 0, \exists N_2 \mathbb{N}, \forall n > N_2 : |y_n - a| < \varepsilon \end{aligned}$$

Let $\varepsilon > 0$ and set $N = \max\{2N_1 - 1, 2N_2\}$. Now let n > N be arbitrary. If n is odd, i.e. n = 2k - 1 for some positive integer k, then $k > N_1$ since $n > N \ge 2N_1 - 1$ and so: $|z_n - a| = |z_{2k-1} - a| = |x_k - a| < \varepsilon$. If n is even, i.e. n = 2k for some positive integer k, then $k > N_2$ as $n > N \ge 2N_2$ and so: $|z_n - a| = |z_{2k} - a| < \varepsilon$.

Therefore $|z_n - a| < \varepsilon$ for all n > N and this completes the proof.

Alternative solution:

Since (x_n) and (y_n) both converge to a, all but finitely many terms x_n and y_n satisfy $|x_n - a| < \varepsilon$ and $|y_n - a| < \varepsilon$ for any given $\varepsilon > 0$. Now as (z_n) is defined by $z_{2n-1} = x_n$ and $z_{2n} = y_n$, then the condition $|z_n - a| < \varepsilon$ (for any given $\varepsilon > 0$) will either be equivalent to $|x_n - a| < \varepsilon$ or $|y_n - a| < \varepsilon$, depending on the parity of n and is therefore satisfied for all but finitely many terms z_n since that is the case for both x_n and y_n upon which the terms of (z_n) are constructed. Therefore, the condition $|z_n - a| < \varepsilon$ holds for all but finitely many terms z_n for any given $\varepsilon > 0$ and thus $\lim z_n = a$.

Question 3

Let (s_n) and (t_n) be two sequences such that they differ in only finitely many terms, let $N_0 \in \mathbb{N}$ be the biggest index for which they differ so that $s_n = t_n$ for all $n > N_0$. Case (i): Assuming (s_n) converges to $L < \infty$, then by the definition of the limit:

$$\forall \varepsilon > 0, \exists N_1 \in \mathbb{N}, \forall n > N_1 : |s_n - L| < \varepsilon$$

Now letting $\varepsilon > 0$ and picking $N = \max\{N_0, N_1\}$, then for any n > N, $n > N_0$ as well, since $N \ge N_0$ and so $s_n = t_n$ for all n > N. Additionally as $n > N_1$ for the same reason (by construction), then it follows that $|t_n - L| = |s_n - L| < \varepsilon$. Therefore (t_n) also converges to L by the definition of the limit.

(The basic trick here is to pick N sufficiently large so that both the inequality for the limit holds and $s_n = t_n$ for any n > N.)

Case (ii): Now if (s_n) diverges to $+\infty$, then for all M > 0, there is an $N_1 \in \mathbb{N}$ such that for all $n > N_1$, $s_n > M$ – by definition. Again, just pick N to be the maximum of N_1 and N_0 and the result follows immediately. The last case in which (s_n) diverges to $-\infty$ is quasi-identical: simply be cautious to reckon that the definition states that for all M < 0, there is an $N_1 \in \mathbb{N}$ such that for all $n > N_1$, $s_n < M$, and then again pick N to be the largest of N_0 and N_1 .

<u>Remark</u>: The conditions $|s_n - L| < \varepsilon$ and $|t_n - L| < \varepsilon$, for any given $\varepsilon > 0$, are equivalent for all but finitely many terms s_n and t_n since $s_n = t_n$ for all but finitely many terms. Then the result follows again immediately. Note that similar equivalent conditions can be stated for the case in which (s_n) diverges.

Question 4

A proof quite similar to that found in the notes posted online. We will construct a subsequence (s_{n_k}) so that $s_{n_k} < -k$ while the sequence is strictly decreasing. Since (s_n) is assumed to be unbounded below in part (iii) of Theorem 11.2, then we can find a term s_{n_1} of the sequence which is lesser than -1; i.e. $s_{n_1} < -1$. Now let $M_2 = \min\{s_1, s_2, ..., s_{n_1}, -2\}$. As M_2 is not an lower bound, there is a term s_{n_2} of (s_n) which is lesser than M_2 . Therefore, $s_{n_2} < s_{n_1}, s_{n_2} < -2$ and $n_2 > n_1$ since s_{n_2} is none of the terms encountered before (including s_{n_1}). Proceeding in a similar fashion, we can always set M_k to be $\min\{s_1, ..., s_{n_1}, s_{n_1+1}, ..., s_{n_2}, s_{n_2+1}, ..., s_{n_{k-1}}, -k\}$ where $s_{n_{k-1}}$ is constructed in the same fashion as s_{n_2} , and again pick s_{n_k} to be a term less than M_k not encountered before. This sets up an inductive process insuring that $n_k > n_{k-1}$, $s_{n_{k-1}} < s_{n_k}$ and $s_{n_k} < -k$ for all k. Therefore (s_{n_k}) is strictly decreasing and unbounded below, thus diverging to ∞ .

Question 5

(a) $\sum \frac{n-1}{n^2} = \sum \frac{1}{n} + \sum \frac{-1}{n^2}$. Now $\sum \frac{1}{n}$ diverges while $\sum \frac{-1}{n^2}$ converges and so their sum as a series diverges.

(b) $\sum (-1)^n$. Assume it converges. Then $\lim (-1)^n = 0$ by Corollary 14.5. Clearly not the case, and so the series diverges. (c) $\sum 3n/n^3 = \sum 3/n^2 = 3 \sum 1/n^2$ and $\sum 1/n^2$ converges. So our given series

converges.

(d) $\sum_{n=1}^{n=3} \frac{n^3}{3^n}$. Ratio Test: let $a_n = n^3/3^n$ and consider $a_{n+1}/a_n = (n+1)^3/3n^3$ whose limit is 1/3. So the series converges.

(e) $\sum n^2/n!$. Again, Ratio Test: let $a_n = n^2/n!$ and consider $a_{n+1}/a_n =$

 $(n+1)/n^2$. Its limit is 0 < 1 and so the series converges. (f) $\sum \frac{1}{n^n}$. Root Test: let $a_n = \frac{1}{n^n}$. Then: $|a_n|^{1/n} = 1/n$ whose limit is 0. Therefore the series converges absolutely.

(g) $\sum \frac{n}{2^n}$. Ratio Test: let $a_n = \frac{n}{2^n}$. Then: $a_{n+1}/a_n = 1/2 + 1/2n$ whose limit is 1/2 < 1. Therefore the series converges.

Question 6

Let $a_n, b_n > 0$ for all n. Assume that $\sum a_n$ converges and that the sequence (b_n) is bounded above. Since (b_n) is bounded above, there exists an M > 0 such that $|b_n| < M$. Therefore, for all n we have:

$$a_n b_n \le a_n |b_n| \le M a_n$$

Now since $a_n > 0$ and $\sum a_n$ converges, then $\sum Ma_n$ converges as well, and so $\sum a_n b_n$ must converge by the Comparison Test.