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Question 1
(a) The sequence is given by 1, 1/2, 1, 1, 1/2, 1/3, .... Although it is no use to
write an explicit formula for sn for general n ∈ N, one can notice that all of its
terms have the form 1/m for m > 0. Clearly, in that case, the set {1/n}n∈N∪{0}
is included in the set of subsequential limits. To see this, for any integer n > 0,
pick the subsequence (snk

) to be given by: snk
∈ {sn} for all nk < Nk for a

given fixed Nk ∈ N and snk
= 1/m where m is any integer. Basically, you pick

the first few (first Nk) elements to be any of the terms in the original sequence,
and then pick the rest (the infinitely many terms after the Nk-th one) to be
1/m for various integers m. As you can do that for any m (since any terms of
the form 1/m for m > 0 is in (sn)), that tells you that any 1/n, n ∈ N will be a
subsequential limit. For 0, simply pick the subsequence given by (snk

) = (1/k)
for all k ∈ N. The claim is that these actually exhaust the set S of subsequen-
tial limits. All that remains to show is that for any n ∈ N, there is no real
number x such that x 6= 0 and x 6= 1/n can be a (subsequential) limit. Since
0 < sn = 1/n ≤ 1 in general, for any limit ` we will have that 0 ≤ ` ≤ 1 and
so 0 < x ≤ 1 (as we assume that x differs from 0). Now suppose that x 6= 1/n
for any n ∈ N. Then we can pick two numbers of the form 1/n closest to x.
More precisely, x will be between 1/m and 1/(m+1) for appropriate m. Hence,
given ε < min{|a− 1/m|, |a− 1/(m+ 1)|} for this m, ε will be smaller than the
distance from x to any of the terms of the sequence (sn). Thus (x − ε, x + ε)
will contain no terms of the sequence whatsoever, and so no subsequence can
converge to x. So S is indeed just {1/n}n∈N ∪ {0}.

Question 2
Let (xn) and (yn) be two sequences converging to the same number a and define
(zn) by z2n−1 = xn and z2n = yn for all n ∈ N.
By the definition of the limit:

∀ε > 0,∃N1 ∈ N,∀n > N1 : |xn − a| < ε

∀ε > 0,∃N2N,∀n > N2 : |yn − a| < ε

Let ε > 0 and set N = max{2N1 − 1, 2N2}. Now let n > N be arbitrary.
If n is odd, i.e. n = 2k − 1 for some positive integer k, then k > N1 since
n > N ≥ 2N1 − 1 and so: |zn − a| = |z2k−1 − a| = |xk − a| < ε. If n is even,
i.e. n = 2k for some positive integer k, then k > N2 as n > N ≥ 2N2 and so:
|zn − a| = |z2k − a| = |yk − a| < ε.
Therefore |zn − a| < ε for all n > N and this completes the proof.
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Alternative solution:
Since (xn) and (yn) both converge to a, all but finitely many terms xn and yn
satisfy |xn− a| < ε and |yn− a| < ε for any given ε > 0. Now as (zn) is defined
by z2n−1 = xn and z2n = yn, then the condition |zn − a| < ε (for any given
ε > 0) will either be equivalent to |xn−a| < ε or |yn−a| < ε, depending on the
parity of n and is therefore satisfied for all but finitely many terms zn since that
is the case for both xn and yn upon which the terms of (zn) are constructed.
Therefore, the condition |zn − a| < ε holds for all but finitely many terms zn
for any given ε > 0 and thus lim zn = a.

Question 3
Let (sn) and (tn) be two sequences such that they differ in only finitely many
terms, let N0 ∈ N be the biggest index for which they differ so that sn = tn for
all n > N0. Case (i): Assuming (sn) converges to L <∞, then by the definition
of the limit:

∀ε > 0,∃N1 ∈ N,∀n > N1 : |sn − L| < ε

Now letting ε > 0 and picking N = max{N0, N1}, then for any n > N , n > N0

as well, since N ≥ N0 and so sn = tn for all n > N . Additionally as n > N1 for
the same reason (by construction), then it follows that |tn − L| = |sn − L| < ε.
Therefore (tn) also converges to L by the definition of the limit.
(The basic trick here is to pick N sufficiently large so that both the inequality
for the limit holds and sn = tn for any n > N .)
Case (ii): Now if (sn) diverges to +∞, then for all M > 0, there is an N1 ∈ N
such that for all n > N1, sn > M – by definition. Again, just pick N to be
the maximum of N1 and N0 and the result follows immediately. The last case
in which (sn) diverges to −∞ is quasi-identical: simply be cautious to reckon
that the definition states that for all M < 0, there is an N1 ∈ N such that for
all n > N1, sn < M , and then again pick N to be the largest of N0 and N1.

Remark: The conditions |sn − L| < ε and |tn − L| < ε, for any given ε > 0,
are equivalent for all but finitely many terms sn and tn since sn = tn for all
but finitely many terms. Then the result follows again immediately. Note that
similar equivalent conditions can be stated for the case in which (sn) diverges.

Question 4
A proof quite similar to that found in the notes posted online. We will con-
struct a subsequence (snk

) so that snk
< −k while the sequence is strictly

decreasing. Since (sn) is assumed to be unbounded below in part (iii) of The-
orem 11.2, then we can find a term sn1

of the sequence which is lesser than
−1; i.e. sn1

< −1. Now let M2 = min{s1, s2, ..., sn1
,−2}. As M2 is not an

lower bound, there is a term sn2 of (sn) which is lesser than M2. Therefore,
sn2 < sn1 , sn2 < −2 and n2 > n1 since sn2 is none of the terms encountered
before (including sn1

). Proceeding in a similar fashion, we can always set Mk to
be min{s1, ..., sn1

, sn1+1, ..., sn2
, sn2+1, ..., snk−1

,−k} where snk−1
is constructed

in the same fashion as sn2
, and again pick snk

to be a term less than Mk not
encountered before. This sets up an inductive process insuring that nk > nk−1,
snk−1

< snk
and snk

< −k for all k. Therefore (snk
) is strictly decreasing and

unbounded below, thus diverging to ∞.
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Question 5
(a)

∑
n−1
n2 =

∑
1
n +

∑ −1
n2 . Now

∑
1
n diverges while

∑ −1
n2 converges and so

their sum as a series diverges.
(b)

∑
(−1)n. Assume it converges. Then lim(−1)n = 0 by Corollary 14.5.

Clearly not the case, and so the series diverges.
(c)

∑
3n/n3 =

∑
3/n2 = 3

∑
1/n2 and

∑
1/n2 converges. So our given series

converges.

(d)
∑

n3

3n . Ratio Test: let an = n3/3n and consider an+1/an = (n + 1)3/3n3

whose limit is 1/3. So the series converges.
(e)

∑
n2/n!. Again, Ratio Test: let an = n2/n! and consider an+1/an =

(n + 1)/n2. Its limit is 0 < 1 and so the series converges.
(f)

∑
1
nn . Root Test: let an = 1

nn . Then: |an|1/n = 1/n whose limit is 0.
Therefore the series converges absolutely.
(g)

∑
n
2n . Ratio Test: let an = n

2n . Then: an+1/an = 1/2 + 1/2n whose limit
is 1/2 < 1. Therefore the series converges.

Question 6
Let an, bn > 0 for all n. Assume that

∑
an converges and that the sequence

(bn) is bounded above. Since (bn) is bounded above, there exists an M > 0 such
that |bn| < M . Therefore, for all n we have:

anbn ≤ an|bn| ≤Man

Now since an > 0 and
∑

an converges, then
∑

Man converges as well, and so∑
anbn must converge by the Comparison Test.
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