
MIDTERM I SOLUTIONS

1.

(a) We construct a polynomial that has a as a root. Since

a =
√

3 + 3
√

5

a2 = 3 +
3
√

5

a2 − 3 =
3
√

5

(a2 − 3)3 = 5

(a2 − 3)3 − 5 = 0,

the polynomial p(x) = (x2 − 3)3 − 5 has a as a root, so a is algebraic.

(b) The above polynomial expands as p(x) = x6 − 9x4 + 27x2 − 32. Since the
leading coefficient is 1, the rational roots theorem implies that any rational
root of p must in fact be an integer. Now observe that

a =
√

3 + 3
√

5 <
√

3 + 3
√

8 =
√

5 < 3,

and similarly

a =
√

3 + 3
√

5 >
√

3 + 3
√

1 =
√

4 = 2.

There is no integer strictly between 2 and 3, so a cannot be rational.
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2.

(a) The leading coefficients suggest that sn → 5/4. To prove this, let ε > 0 be
given. In order to find the required index N , we set |5/4 − sn| < ε. Note
that we can immediately remove the absolute value, since sn < 5/4 for all
n. Then

5

4
− sn < ε

5

4
− 5n− 7

4n+ 1
< ε

33

16n+ 4
< ε

33 < 16nε+ 4ε

33− 4ε < 16nε

33

16ε
− 1

4
< n.

It suffices to take n > 33/16ε. (This inequality implies the last line in the
above calculation.) Since the above steps are invertible, we conclude that
|5/4− sn| < ε for all n > 33/16ε. This proves that sn → 5/4.

(b) Recall that a sequence converges iff every subsequence converges to the
same value. Thus, it will suffice to construct 2 subsequences that converge
to different values. Observe that

t6n = cos(2πn) ≡ 1,

but
t6n+3 = cos(2π(n+ 1)) ≡ −1.

Therefore we have t6n → 1 while t6n+3 → −1, so tn does not converge.
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3.

(a) Let M > 0 be given. Since xn converges to +∞, there exists some index N1

such that xn > M for all n > N1. Similarly, since yn converges to 7, there
exists some index N2 such that |yn − 7| < 1 for all n > N2. In particular,
this implies that yn > 6 for all n > N2. Put N = max{N1, N2}. Then for
all n > N , we have

xn + yn > M + 6 > M.

Since M was arbitrary, we conclude that xn + yn diverges to +∞.

(b) Suppose for the sake of a contradiction that (xnk
) is a decreasing subse-

quence. Since xn diverges to +∞, there can only be finitely many elements
less than any given M > 0. (From the definition of divergence to +∞,
there exists some finite index N beyond which all terms in the sequence are
larger than M .) Consider M = xn1 + 1. Since (xnk

) is decreasing, every
element in this subsequence is less than M . This yields infinitely many
elements of xn that are less than M , a contradiction. We conclude that a
sequence diverging to +∞ cannot have a decreasing subsequence.
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4. I claim that sn is decreasing and bounded below. In particular,

3

8
≤ sn+1 ≤ sn ≤ 1

for all n. To establish this claim we use induction. Observe that s2 = 7/12, and
3/8 ≤ 7/12 ≤ 1 ≤ 1. This proves the base case. Now assume the result is true
up to n. Then

sn ≥ 3
8

2
3sn ≥

1
4

sn ≥ 1
4 + 1

3sn

sn ≥ sn+1.

We also have

sn+1 = 1
4 + 1

3sn

≥ 1
4 + 1

3 ·
3
8

= 3
8 .

This proves the claim. Since sn is monotone and bounded, its limit exists. Call
it s. We can now take the limit of both sides of sn+1 = 1/4 + sn/3 to get
s = 1/4 + s/3, which yields s = 3/8.
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5.

(a) (i) Every nonempty subset of R that is bounded above has a least upper
bound.

(ii) Every bounded sequence has a convergent subsequence.

(b) By the Archimedean property, there exists some positive integer N such
that 1/N < ε. Therefore 1/N is rational and lies in the interval (0, ε).
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