HOMEWORK 9 SOLUTIONS

1. If —f achieves its maximum at xo € [a,b], then by definition — f(xq) >
—f(z) for all z € [a,b]. Multiplying by —1 reverses the inequality, so this is
equivalent to f(zo) < f(z) for all = € [a,b]. Therefore f achieves its minimum
at zg.

Given a continuous function f, —f is also continuous and therefore achieves
its maximum on the closed interval [a,b]. The above argument shows that the
maximum of —f is the minimum of f, so f achieves its minimum on [a, b].

2. Theorem 18.1 still shows that f is bounded, so m = inf{f(z) : = € [a,b]}
is a real number. Then for each n € N, m + 1/n is not a lower bound for the
range of f, so there exists some point x,, satisfying

1
mgf(xn)<m+£.

By construction, lim f(z,) = m. Using the Bolzano-Weierstrass theorem, we
can extract a convergent subsequence (z,, ) with limit, say, zo € [a, b]. Then by
continuity of f,

lim f('rnk) = f(.l?o)

k—o0

But f(x,,) is itself a convergent subsequence, so limy_, 0o f(Zn, ) = limy, 00 f(xn) =
m. This shows f(xg) = m, so we conclude that f achieves its minimum.

3. Since f(x) is strictly less than ¢, the number € = ¢ — f(xg) is positive.
Then by definition of continuity, there exists some § > 0 such that

[f (@) = fzo)| <€

whenever |z — xo| < §. This condition is equivalent to = € (xg — d, 0 + 9), and
if | f(z) — f(xo)| < € then f(z) < ¢. This shows we have found the required J.



4.
(a)

(b)

Let s = lim s,, and choose € = a—s. Then by definition of convergence, there
exists some N such that |s, —s| <eforalln > N. If |s, —s|<e=a—s,
then s, < a. Therefore this N satisfies the desired property.

Consider the contrapositive of the given statement: if lim s,, < a, then s, <
a for at least one n. We proved in part (a) that in fact, if lim s,, < a, then
$n < a for infinitely many n. Therefore part (a) implies the contrapositive
of the given statement.

Consider the sequence t,, = —s,. Then ¢, > —b and (¢,) converges. Part
(b) then implies that lim¢, > —b, hence lim s,, = —lim¢,, <b.

No. Observe that s, = 1/n > 0, but lims,, = 0 # 0. Similarly, ¢, =
—1/n < 0 but limt¢,, =0 £ 0.

18.4 Let f(z) =1/(x — o). Then

li =1
i ()| =l

and |z, — z9| — 0 by assumption. This shows that |f(x,)| — oo, so f is
unbounded on S. f is continuous on S since the denominator x — z( is nonzero
forall z € S.

18.6 We apply the intermediate value theorem to f(x) = x — cos(z). Note
that f(0) = —1 and f(7/2) = 7/2. Since 0 € (—1,7/2), the intermediate value
theorem guarantees some xg € (0,7/2) such that f(xzo) = 0. Then z¢ = cos(xg).



