
HOMEWORK 10 SOLUTIONS

1.

(a) Assume f(a) > y > f(b). Let S = {x ∈ [a, b] : f(x) < y}. Since b ∈ S, this
set is nonempty. Then x0 = inf S is a real number and lies in [a, b]. For
each n ∈ N, x0 + 1/n is not a lower bound for S so there exists some sn
such that x0 ≤ sn < x0 + 1/n. By construction, lim sn = x0 and f(sn) < y
for all n. Then continuity of f gives

f(x0) = lim f(sn) ≤ y.

Now define the sequence (tn) by tn = max{a, x0−1/n}. Then tn ∈ [a, b]\S,
so f(tn) ≥ y for all n. Since lim tn = x0, continuity gives limn→∞ f(tn) =
f(x0). Furthermore, f(tn) ≥ y implies that lim f(tn) ≥ y by exercise 4 of
homework 9. Thus

f(x0) ≥ y.

It follows that f(x0) = y, as was to be shown.

(b) Assume f(a) > y > f(b). Then −f(a) < −y < −f(b), and −f is continu-
ous. Therefore by the known case of the intermediate value theorem, there
exists some x ∈ (a, b) such that −f(x) = −y. But then f(x) = y, so we’re
done.

2. I’ll first prove a lemma to be used in parts (b) and (d): If (sn) is a sequence
such that lim |sn| = 0, then lim sn = 0. To see this, note that −|sn| ≤ sn ≤ |sn|.
From the first inequality (and exercise 4 from homework 9),

lim sn ≥ lim−|sn| = − lim |sn| = 0.

And from the second inequality,

lim sn ≤ lim |sn| = 0.

This proves that lim sn = 0.

(a) The limit does not exist. Consider the sequences xn = −2πn, yn = π−2πn.
Then xn cos(xn) = −2πn, which diverges to −∞. However, yn cos(yn) =
(π − 2πn)(−1) = 2πn− π, which diverges to +∞.

(b) limx→0 x cosx = 0. Suppose that xn is any sequence converging to 0. Then

lim
n→∞

|xn cosxn| ≤ lim
n→∞

|xn| = 0.

By the above lemma, limn→∞ xn cosxn = 0, which proves the claim.
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(c) limx→0+
cos x
x = +∞. Let (xn) be a positive sequence that converges to 0.

Observe that by continuity, limn→∞ cosxn = cos 0 = 1, while limn→∞ 1/xn =
limn→∞ n = +∞. By theorem 9.9, limn→∞

cos xn

xn
= +∞.

(d) limx→+∞
cos x
x = 0. Suppose that xn is any sequence diverging to +∞.

Then

lim
n→∞

∣∣∣cosxn
xn

∣∣∣ ≤ lim
n→∞

∣∣∣ 1

xn

∣∣∣ = 0.

By the above lemma, limn→∞
cos xn

xn
= 0.

3.

(1) Every sequence (xn) converging to 2 with xn < 2 for all n satisfies limn→∞ f(xn) =
−∞.

(2) For every M > 0, there exists a δ > 0 such that x < 2 and |x−2| < δ imply
f(x) < −M .

(1) ⇒ (2) We prove the contrapositive. Suppose that (2) does not hold, so for
some M > 0, the proposition

x < 2 and |x− 2| < δ implies f(x) < −M

fails for every δ > 0. For each δ = 1/n, choose xn < 2 such that |xn − 2| < δ
but f(xn) ≥ −M . Then xn → 2 and xn < 2, but limn→∞ f(xn) ≥ −M > −∞.
Therefore (1) does not hold.

(2)⇒ (1). Let (xn) be any sequence converging to 2 with xn < 2 for all n. For
any M > 0, there exists a δ > 0 such that x < and |x−2| < δ imply f(x) < −M .
Since xn → 2, there exists some N such that |xn − 2| < δ for all n > N .
Then f(xn) < −M for all n > N , so we conclude that limn→∞ f(xn) = −∞.
Therefore (1) holds.

20.14 Let (xn) be any positive sequence that converges to 0. Let M > 0 be
given. Since limxn = 0, there exists some N such that xn < 1/M for all n > N .
Then f(xn) = 1/xn > M for all n > N , so lim f(xn) = +∞.

Let (xn) be any negative sequence that converges to 0. Let M > 0 be given.
Since limxn = 0 there exists some N such that xn > −1/M for all n > N .
(This is effectively saying that |xn − 0| < 1/M .) Then f(xn) < −M for all
n > N so lim f(xn) = −∞.
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20.16

(a) Consider f2 − f1. Let (xn) be any sequence converging to a with xn > a
for all n. Then since (f2− f1)(xn) ≥ 0, and the limit exists by assumption,
problem 4 of the previous assignment shows that limn→∞[(f2−f1)(xn)] ≥ 0.
Distributing the limit then shows that L2 ≥ L1.

(b) No. Let f1(x) = x and f2(x) = 2x. Then f1(x) < f2(x) for all x > 0, but
limx→0+ f1(x) = 0 6< 0 = limx→0+ f2(x).

20.18 We first manipulate the expression so that it becomes more manageable.

f(x) =

√
1 + 3x2 − 1

x2

=

√
1 + 3x2 − 1

x2
·
√

1 + 3x2 + 1√
1 + 3x2 + 1

=
3x2

x2(
√

1 + 3x2 + 1)

' 3√
1 + 3x2 + 1

,

where the ' indicates equality when x 6= 0. (Note that when x = 0, the last
expression is well-defined but f(x) is not.) Denote the last expression by g(x),
so that f(x) = g(x) for all x 6= 0. Now let (xn) be any sequence that converges
to 0 (and xn 6= 0 for all n). Since g is continuous,

lim
n→∞

f(xn) = lim
n→∞

g(xn) = g(0) =
3

2
.

The sequence (xn) is arbitrary, so we conclude that limx→0 f(x) = 3/2.
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20.20

(a) Let (xn) ⊆ S be a sequence converging to a. If limx→aS f2(x) = L2 6= −∞,
then limn→∞ f2(xn) = L2 6= −∞, so

lim
n→∞

(f1 + f2)(xn) = lim
n→∞

f1(xn) + f2(xn) = +∞

by exercise 9.11. This proves that limx→aS (f1 + f2)(x) = +∞.

(b) Let (xn) ⊆ S be a sequence converging to a. If limx→aS f2(x) = L2 > 0,
then limn→∞ f2(xn) = L2 > 0, so

lim
n→∞

(f1f2)(xn) = lim
n→∞

f1(xn)f2(xn) = +∞

by theorem 9.9. This proves that limx→aS (f1f2)(x) = +∞.

(c) Let (xn) ⊆ S be a sequence converging to a. If limx→aS f2(x) = L2 <
0, then limn→∞ f2(xn) = L2 < 0, so we can multiply by -1 to get that
limn→∞−f2(xn) = L2 > 0. Now we can again apply theorem 9.9 to get

lim
n→∞

(−f1f2)(xn) = lim
n→∞

f1(xn)[−f2(xn)] = +∞.

Multiplying again by −1, this proves that limx→aS (f1f2)(x) = −∞.

(d) Nothing. The limit of the quotient might be +∞,−∞, or even any finite
number. To see this, fix f2(x) = x. For the first two cases, take f1(x) = ±1
respectively. To obtain the real number r, put f1(x) = rx.

For the sake of completeness, here is a proof of the relevant part from exercise
9.11. Let (sn), (tn) be two sequences with sn → +∞ and tn → L 6= −∞. To see
that sn + tn → ∞, let M > 0 be given. Choose N1 such that sn > M − L for
all n > N1, and N2 such that tn > L− 1 for all n > N2. Put N = max{N1N2}.
Then

sn + tn > M − 1

for all n > N , so sn + tn can be made arbitrarily large. Thus sn + tn → +∞.
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