
HOMEWORK 11 SOLUTIONS

1.

(a) Suppose that L = limx→x0
f(x) < 0. Then consider ε = L/2 in the ε-δ

definition of a limit - the definition states there must exists some δ > 0
such that |f(x)−L| < ε = L/2 for all |x− x0| < δ. Then f(x) < L/2 of all
|x− x0| < δ, a contradiction to the non-negativity of f . We conclude that
L ≥ 0.

(b) Suppose that L = limx→x0
f(x) > 0. Then consider ε = L/2 in the ε-δ

definition of a limit - the definition states there must exists some δ > 0
such that |f(x)−L| < ε = L/2 for all |x− x0| < δ. Then f(x) > L/2 of all
|x − x0| < δ, a contradiction to the non-positivity of f . We conclude that
L ≤ 0.

(c) Choose x0 = 0 and take f1(x) = x2, f2(x) = −x2.

2. For any x < a, since f is decreasing we have that f(x) ≥ f(a). Conversely,
for x > a we have f(x) ≤ f(a), and therefore

g(x) :=
f(x)− f(a)

x− a

satisfies g(x) ≤ 0 for all x 6= a. By question 1, it follows that limx→a g(x) ≤ 0.
Since limx→a g(x) = f ′(a), we are done.

The function f(x) = −x3 is strictly decreasing, but has derivative 0 at x = 0.
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28.2

(a)

lim
x→2

f(x)− f(2)

x− 2
= lim

x→2

x2 − 23

x− 2

= lim
x→2

(x− 2)(x2 + 2x+ 4)

x− 2

= lim
x→2

(x2 + 2x+ 4)

= 12.

Evaluation of the final limit follows from continuity.

(b)

lim
x→a

g(x)− g(a)

x− a
= lim

x→a

(x+ 2)− (a+ 2)

x− a

= lim
x→a

x− a
x− a

= lim
x→a

1

= 1.

(c)

lim
x→0

f(x)− f(0)

x− a
= lim

x→0

x2 cosx− 0

x− 0

= lim
x→0

x cosx

= 0.

Here we apply continuity of x cosx to evaluate the final limit.

(d)

lim
x→1

r(x)− r(1)

x− 1
= lim

x→1

3x+4
2x−1 − 7

x− 1

= lim
x→1

11

1− 2x

= −11

2
.

Again we use continuity of 11/(1 − 2x). In particular, this function is
continuous at x = 1 because it is a quotient of continuous functions and
the denominator is nonzero at x = 1.
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28.4

(a) Since 1/x is differentiable for x 6= 0 and sine is differentiable everywhere, by
the composition law sin(1/x) is differentiable for x 6= 0. We also have that
x2 is differentiable everywhere, so x2 sin(1/x) is differentiable for x 6= 0.
Using the product and chain rules,

f ′(a) = 2a sin

(
1

a

)
− cos

(
1

a

)
.

(b)

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x2 sin(1/x)

x

= lim
x→0

x sin(1/x)

= 0.

To see this final limit, observe that limx→0 |x sin(1/x)| ≤ limx→0 |x| = 0.
Then apply the lemma proved in homework 10.2.

(c) By part (b), f ′(0) = 0. To show that f ′ is not continuous at 0, it will
suffice to demonstrate a sequence xn converging to zero, but such that
f ′(xn) does not converge to 0. Choose xn = 1/2nπ. Then sin(1/xn) = 0
and cos(1/xn) = 1, so we see that

lim
n→∞

f ′(xn) = lim
n→∞

−1 6= 0.

28.8

(a) The key observation is that f(x) ≤ x2 for any x, rational or irrational.
Given any ε > 0, choose δ =

√
ε. Then if |x| < δ,

|f(x)− f(0)| = |f(x)| ≤ |x2| = |x|2 < ε.

(b) Suppose that x 6= 0 is rational. Then for every n ∈ N, there exists some
irrational number rn ∈ (x− 1/n, x+ 1/n). By construction, this sequence
(rn) converges to x. But lim f(rn) = 0 6= x2 = f(x).

Now suppose that x is irrational. Then for every n ∈ N, there exists some
rational number qn ∈ (x − 1/n, x + 1/n). By construction, this sequence
(qn) converges to x but lim f(qn) = lim q2n = x2 6= 0 = f(x).
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(c) I claim that limx→0
f(x)−f(0)

x−0 = limx→0
f(x)
x = 0. To see this, let ε > 0 be

given and choose δ = ε. Then for any |x| < δ (and of course x 6= 0),∣∣∣∣f(x)

x
− 0

∣∣∣∣ ≤
∣∣∣∣∣x2x

∣∣∣∣∣ = |x| < δ = ε.

We conclude that f ′(0) exists and equals 0.

28.14

(a) Consider g(x) = f(x+ a), so f(x) = g(x− a). Then

f ′(a) = g′(0)

= lim
h→0

g(h)− g(0)

h− 0

= lim
h→0

f(h+ a)− f(a)

h
.

(b) Since the limit in part (a) exists, both left-hand and right-hand limits also
exist and are equal. This implies that we can flip the sign of h, as long as
it is done consistently throughout the limit.

lim
h→0

f(a+ h)− f(a− h)

2h
= lim

h→0

f(a+ h)− f(a) + f(a)− f(a− h)

2h

=
1

2
lim
h→0

f(a+ h)− f(a)

h
+
f(a)− f(a− h)

h

=
1

2
lim
h→0

f(a+ h)− f(a)

h
+

1

2
lim
h→0

f(a)− f(a− h)

h

=
1

2
f ′(a) +

1

2
lim
h→0

f(a+ h)− f(a)

h

= f ′(a).
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