MAT 319 Proof of the intermediate value theorem

We will give a proof that is slightly different from the one in the book, in particular, it uses ϵ - δ -approach rathen than sequences. (Please read the proof in the book, it's also a good proof!)

We will need the following lemma (a version was proved in class, another version is on the homework). We don not include a proof here.

Lemma 1. (1) Suppose f is a function continuous at a point z, and f(z) > c. Then there is $\delta > 0$ such that for every $x \in (z - \delta, z + \delta)$, we have f(x) > c (as long as $x \in dom(f)$).

(2) Suppose f is a function continuous at a point z, and f(z) < c. Then there is $\delta > 0$ such that for every $x \in (z - \delta, z + \delta)$, we have f(x) < c (as long as $x \in dom(f)$).

Now we prove the intermediate value theorem: suppose f is continuous on [a, b], f(a) < c, f(b) > c. We need to show that there is a point $x_0 \in (a, b)$ such that $f(x_0) = c$.

Since f(a) < c, Lemma 1 implies that f(x) stays less than c for x close to a. Let's travel from a towards b, and see how far we can get while the values of f stay less than c. To make this precise, consider the set

 $S = \{x \in [a,b] : f(x) < c, \text{ and the values of } f \text{ are less than } c \text{ at all points between } a \text{ and } x\}.$

You can actually show that the set S is just an interval starting at a. Importantly for us, S is non-empty (because it contains a), and S is bounded, because $S \subset [a, b]$. By Completeness Axiom, S has a supremum.

Consider $x_0 = \sup S$. We will show that $f(x_0) = c$. Indeed, we will rule out the possibilities $f(x_0) < c$ and $f(x_0) > c$; this will mean $f(x_0) = c$.

First, let's assume $f(x_0) > c$. Then by Lemma 1, there is $\delta > 0$ such that for all $x \in (x_0 - \delta, x_0 + \delta)$ we have f(x) > c. This means (why?) that the interval $(x_0 - \delta, x_0 + \delta)$ contains no points of S. But the contradicts (why?) the fact that $x_0 = \sup S$.

Now, let's assume that $f(x_0) < c$. In this case, we will show that the set S extends to the right of x_0 , so x_0 cannot be an upper bound for S. This will again give a contradiction. Indeed: by Lemma 1, there is $\delta > 0$ such that for all $x \in (x_0 - \delta, x_0 + \delta)$ we have f(x) < c. Now, since $x_0 = \sup S$, there must (why?) be a point $x' \in S$ such that $x_0 - \delta < x' \le x_0$. But now we have that f(x) < c for all points between a and x', including x' (why?), and then f(x) < c for all points between x' and $x_0 + \delta$. But this means (why?) that the set S contains points x with $x > x_0$, a contradiction with $x_0 = \sup S$.

Please make sure you can answer all the "why?". Make a picture to understand this proof better.