Welcome to the preprint server of the Institute for Mathematical Sciences at Stony Brook University.
The IMS preprints are also available from the mathematics section of the arXiv e-print server, which offers them in several additional formats. To find the IMS preprints at the arXiv, search for Stony Brook IMS in the report name.
PREPRINTS IN THIS SERIES, IN PDF FORMAT.
* Starred papers have appeared in the journal cited.
In the family of area-contracting Henon-like maps with zero topological entropy we show that there are maps with infinitely many moduli of stability. Thus one cannot find all the possible topological types for non-chaotic area-contracting Hénon-like maps in a family with finitely many parameters. A similar result, but for the chaotic maps in the family, became part of the folklore a short time after Hénon used such maps to produce what was soon conjectured to be the first non-hyperbolic strange attractors in $\mathbb{R}^2$. Our proof uses recent results about infinitely renormalisable area-contracting Hénon-like maps; it suggests that the number of parameters needed to represent all possible topological types for area-contracting Hénon-like maps whose sets of periods of their periodic orbits are finite (and in particular are equal to $\{1,\, 2,\dots,\,2^{n-1}\}$ or an initial segment of this n-tuple) increases with the number of periods. In comparison, among $C^k$-embeddings of the 2-disk with $k>0$, the maximal moduli number for non-chaotic but non area-contracting maps in the interior of the set of zero-entropy is infinite.
Consider the parameter space $\mathcal{P}_{\lambda}\subset \mathbb{C}^{2}$ of complex Hénon maps \[ H_{c,a}(x,y)=(x^{2}+c+ay, ax),\ a\neq 0 \] which have a semi-parabolic fixed point with one eigenvalue $\lambda=e^{2\pi i p/q}$. We give a characterization of those Hénon maps from the curve $\mathcal{P}_{\lambda}$ that are small perturbations of a quadratic polynomial $p$ with a parabolic fixed point of multiplier $\lambda$. We prove that there is an open disk of parameters in $\mathcal{P}_{\lambda}$ for which the semi-parabolic Hénon map has connected Julia set $J$ and is structurally stable on $J$ and $J^{+}$. The Julia set $J^{+}$ has a nice local description: inside a bidisk $\mathbb{D}_{r}\times \mathbb{D}_{r}$ it is a trivial fiber bundle over $J_{p}$, the Julia set of the polynomial $p$, with fibers biholomorphic to $\mathbb{D}_{r}$. The Julia set $J$ is homeomorphic to a quotiented solenoid.
The error diffusion algorithm can be considered as a time dependent dynamical system that transforms a sequence of inputs; into a sequence of inputs;. That dynamical system is a time dependent translation acting on a partition of the phase space $\mathbb{A}$, a finite dimensional real affine space, into the Voronoï regions of the set $C$ of vertices of some polytope $\mathbf {P}$ where the inputs all belong.
Given a sequence $g(i)$ of inputs that are point in $\mathbb{A}$, $g(i)$ gets added to the error vector $e(i)$, the total vector accumulated so far, that belongs to the (Euclidean) vector space mofelling $\mathbb{A}$. The sum $g(i)+e(i)$ is then again in $\mathbb{A}$, thus in a well defined element of the partition of $\mathbb{A}$ that determines in turns one vertex $v(i)$. The point $v(i)$ of $\mathbb{A}$ is the $i^\textrm{th}$ output, and the new error vector to be used next is $e(i+1)\,=\, g(i)+e(i)-v(i)$. The maps $e(i)\mapsto e(i+1)$ and $g(i)+e(i)\mapsto g(i+1)+e(i+1)$ are two form of error diffusion, respectively in the vector space and affine space. Long term behavior of the algorithm can be deduced from the asymptotic properties of invariant sets, especially from the absorbing ones that serve as traps to all orbits. The existence of invariant sets for arbitrary sequence of inputs has been established in full generality, but in such a context, the invariant sets that are shown to exist are arbitrarily large and only few examples of minimal invariant sets can be described. Since the case of constant input (that corresponds to a time independent translation) has its own interest, we study here the invariant set for constant input for special polytopes that contain the $n$-dimensional regular simplices.
In that restricted context of interest in number theory, we study the properties of the minimal absorbing invariant set and prove that typically those sets are bounded fundamental sets for a discrete lattice generated by the simplex and that the intersections of those sets with the elements of the partition are fundamental sets for specific derived lattices.
We prove a version of the classical $\lambda$-lemma for holomorphic families of Riemann surfaces. We then use it to show that critical loci for complex Hénon maps that are small perturbations of quadratic polynomials with Cantor Julia sets are all quasiconformally equivalent.
We prove that if $\xi$ is a quasisymmetric homeomorphism between Sierpinski carpets that are the Julia sets of postcritically-finite rational maps, then $\xi$ is the restriction of a Mobius transformation to the Julia set. This implies that the group of quasisymmetric homeomorphisms of a Sierpinski carpet Julia set of a postcritically-finite rational map is finite.
We study stability and bifurcations in holomorphic families of polynomial automorphisms of $\mathbb{C}^2$. We say that such a family is weakly stable over some parameter domain if periodic orbits do not bifurcate there. We first show that this defines a meaningful notion of stability, which parallels in many ways the classical notion of J-stability in one-dimensional dynamics. In the second part of the paper, we prove that under an assumption of moderate dissipativity, the parameters displaying homoclinic tangencies are dense in the bifurcation locus. This confirms one of Palis' Conjectures in the complex setting. The proof relies on the formalism of semi-parabolic bifurcation and the construction of "critical points" in semiparabolic basins (which makes use of the classical Denjoy-Carleman-Ahlfors and Wiman Theorems).
We describe the behaviour at infinity of the bifurcation current in the moduli space of quadratic rational maps. To this purpose, we extend it to some closed, positive (1,1)-current on a two-dimensional complex projective space and then compute the Lelong numbers and the self-intersection of the extended current.
Fatou components for rational functions in the Riemann sphere are very well understood and play an important role in our understanding of one-dimensional dynamics. In higher dimensions the situation is less well understood. In this work we give a classification of invariant Fatou components for moderately dissipative Hénon maps. Most of our methods apply in a much more general setting. In particular we obtain a partial classification of invariant Fatou components for holomorphic endomorphisms of projective space, and we generalize Fatou's Snail Lemma to higher dimensions.
