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Abstract. In a classical work of the 1950’s, Lee and Yang proved that for
fixed nonnegative temperature, the zeros of the partition functions of a fer-
romagnetic Ising model always lie on the unit circle in the complex magnetic
field. Zeros of the partition function in the complex temperature were then
considered by Fisher, when the magnetic field is set to zero. Limiting distribu-
tions of Lee-Yang and of Fisher zeros are physically important as they control
phase transitions in the model. One can also consider the zeros of the partition
function simultaneously in both complex magnetic field and complex temper-
ature. They form an algebraic curve called the Lee-Yang-Fisher (LYF) zeros.
In this paper we study their limiting distribution for the Diamond Hierarchi-
cal Lattice (DHL). In this case, it can be described in terms of the dynam-
ics of an explicit rational function R in two variables (the Migdal-Kadanoff
renormalization transformation). We prove that the Lee-Yang-Fisher zeros
are equidistributed with respect to a dynamical (1, 1)-current in the projective
space. The free energy of the lattice gets interpreted as the pluripotential of
this current. We also describe some of the properties of the Fatou and Julia
sets of the renormalization transformation.
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1. Introduction

1.1. Phenomenology of Lee-Yang-Fisher zeros. We will begin with a brief
survey of the Ising model of magnetic matter. More background is given in Part I
of the series [BLR1]; see also [Ba, R2].

The matter in a certain scale is represented by a graph Γ. Let V and E stand
respectively for the set of its vertices (representing atoms) and edges (representing
magnetic bonds between the atoms). A magnetic state of the matter is represented
by a spin configuration σ : V → {±1} on Γ. The spin σ(v) represents a magnetic
momentum of an atom v ∈ V .

The total energy of such a configuration is given by the Hamiltonian

(1.1) H(σ) = −J
∑

{v,w}∈E

σ(v)σ(w) − hM(σ), where M(σ) =
∑

v∈V

σ(v).

Here, M(σ) is the total magnetic moment of the configuration σ, J is a constant
describing the interaction between neighboring spins and h is a constant describing
an external magnetic field applied to the matter.

By the Gibbs Principle, a configuration σ occurs with probability proportional
to its Gibbs weight W (σ) = exp(−H(σ)/T ), where T ≥ 0 is the temperature. The
total Gibbs weight Z =

∑
W (σ) is called the partition function. It is a Laurent

polynomial in two variables (z, t), where z = e−h/T is a “field-like” variable and
t = e−J/T is “temperature-like”.

For a fixed t ∈ [0, 1], the complex zeros of Z(z, t) in z are called the Lee-Yang
zeros. Their role comes from the fact that some important observable quantities can
be calculated as electrostatic-like potentials of the equally charged particles located
at the Lee-Yang zeros. A celebrated Lee-Yang Theorem [YL, LY] asserts that for
the ferromagnetic1 Ising model on any graph, the zeros of the partition function
lie on the unit circle T in the complex plane (corresponding to purely imaginary
magnetic field h = −iTφ).2.

Magnetic matter in various scales can be modeled by a hierarchy of graphs Γn of
increasing size (corresponding to finer and finer scales). For suitable models, zeros
of the partition functions Zn will have an asymptotic distribution dµt = ρtdφ/2π on
the unit circle. This distribution supports singularities of the magnetic observables
(or rather, their thermodynamical limits), and hence it captures phase transitions
in the model.

Instead of freezing temperature T , one can freeze the external field h, and study
zeros of Z(z, t) in the t-variable. They are called Fisher zeros as they were first
studied by Fisher for the regular two-dimensional lattice, see [F, BK]. Similarly to
the Lee-Yang zeros, asymptotic distribution of the Fisher zeros is supported on the
singularities of the magnetic observables, and is thus related to phase transitions
in the model. However, Fisher zeros do not lie on the unit circle any more. For
instance, for the regular 2D lattice at h = 0, the asymptotic distribution lies on the
union of two Fisher circles, see Figure 1.1.

More generally, one can study the distribution of zeros for Z(z, t) on other com-
plex lines in C2. In order to organize the limiting distributions over all such lines
into a single object, we use the theory of currents; see [dR, Le].

1i.e., with J > 0
2We will use either the z-coordinate or the angular coordinate φ = arg z ∈ R/2πZ on T, without

a comment.
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t = 1
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Figure 1.1. The Fisher circles: |t± 1| =
√
2.

A (1, 1)-current ν on C2 is a linear functional on the space of (1, 1)-forms that
have compact support (see Appendix A.5). A basic example is the current [X ] of
integration over an algebraic curve X . A plurisubharmonic function G is called
a pluripotential of ν if i

π∂∂̄G = ν, in the sense of distributions. (Informally, this
means that ∆(G|L) = ν|L for almost any complex line L, so G|L is an electrostatic
potential of the charge distribution ν|L.)

For each n, the zero locus of Zn(z, t) is an algebraic curve Sc
n ⊂ C2, which we

call the Lee-Yang-Fisher (LYF) zeros. Let dn be the degree of Sc
n. It is natural to

ask whether there exists a (1, 1) current µc so that

1

dn
[Sc

n] → µc.

It will describe the limiting distribution of Lee-Yang-Fisher zeros. Within almost
any complex line L, the limiting distribution of zeros can be obtained as the re-
striction µc|L.

In order to justify existence of µc, one considers the sequence of “free energies”

F#
n (z, t) := log |Žn(z, t)|,

where Žn(z, t) is the polynomial obtained by clearing the denominators of Zn. We
will say that the sequence of graphs Γn has a global thermodynamic limit if

1

dn
F#
n (z, t) → F#(z, t)

in L1
loc(C

2). In Proposition 2.1 we will show that this is sufficient for the limiting
current µc to exist. More details, including the relation of this notion to the classical
definition of thermodynamic limit, are given in §2.2.

The support of µc consists of the singularities of the magnetic observables of the
model, thus describing global phase transitions in C2. Connected components of
C2 r suppµc describe the distinct (complex) phases of the system.

This discussion can also be extended to the compactification CP2 of C2 by con-
sidering lifts F̂#

n of the free energies to C3; See §2.3.

1.2. Diamond hierarchical model. The Ising model on hierarchical lattices was
introduced by Berker and Ostlund [BO] and further studied by Bleher & Žalys
[BZ1, BZ2, BZ3] and Kaufman & Griffiths [KG1].
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Figure 1.2. Diamond hierarchical lattice.

The diamond hierarchical lattice (DHL), illustrated on Figure 1.2, is a sequence
of graphs Γn with two marked vertices such that Γ0 is an interval, Γ1 = Γ is a
diamond, and Γn+1 is obtained from Γn by replacing each edge of Γn with Γ so
that the marked vertices of Γ match with the vertices of Γn. We then mark two
vertices in Γn+1 so that they match with the two marked vertices of Γn. Part I
of the series [BLR1] and the present paper are both fully devoted to study of this
lattice.

Remark 1.1. For the DHL we will use the following slightly different definition of
magnetic momentum:

(1.2) M(σ) =
1

2

∑

(v,w)∈E

(σ(v) + σ(w)).

For a motivation, see Appendix F of [BLR1]. Also, we will use t := t2 = e−2J/T for
the temperature-like variable, as it makes formulas nicer.

There is a general physical principle that the values of physical quantities de-
pend on the scale where the measurement is taken. The corresponding quantities
are called renormalized, and the (semi-group) of transformations relating them at
various scales is called the renorm-group (RG). However, it is usually hard to jus-
tify rigorously the existence of the RG, let alone to find exact formulas for RG
transformations. The beauty of hierarchical models is that all this can actually be
accomplished.

The Migdal-Kadanoff RG equations [M1, M2, K] (see also [BO, BZ1, KG1]) for
the DHL assume the form:

(1.3) (zn+1, tn+1) =

(
z2n + t2n
z−2
n + t2n

,
z2n + z−2

n + 2

z2n + z−2
n + t2n + t−2

n

)
:= R(zn, tn),

where zn and tn are the renormalized field-like and temperature-like variables on
Γn. The map R that relates these quantities is also called the renormalization
transformation.

To study the Fisher zeros, we consider the line Linv = {z = 1} in CP2. This line
is invariant underR, andR : Linv → Linv reduces to a fairly simple one-dimensional
rational map

R : t 7→
(

2t

t2 + 1

)2

.
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The Fisher zeros at level n are obtained by pulling back the point t = −1 under
Rn. As shown in [BL], the limiting distribution of the Fisher zeros in this case
exists and it coincides with the measure of maximal entropy (see [Br, Ly]) of R|L.
The limiting support for this measure is the Julia set for R|Linv, which is shown in
Figure 1.3. It was studied by [DDI, DIL, BL, Ish] and others.

t = 1tct = 0

Figure 1.3. On the left is the Julia set for R|Linv. On the right
is a zoomed-in view of a boxed region around the critical point
tc. The invariant interval [0, 1] corresponds to the states with real
temperatures T ∈ [0,∞] and vanishing field h = 0.

To study the Lee-Yang zeros for the DHL, one considers the Lee-Yang cylinder
C := T × I, which is invariant under R. The Lee-Yang zeros for Γn are the
real algebraic curve Sn := Sc

n ∩ C. Equation (1.3) shows that Sn is the pullback of
S0 under the n-fold iterate of R, i.e., Sn = (Rn)∗S0. Part I of the series [BLR1]
uses this dynamical approach to obtain detailed information about the limiting
distribution of Lee-Yang zeros for the DHL.

In this paper, we will use the Migdal-Kadanoff RG equations to study the global
limiting distribution of Lee-Yang-Fisher zeros for the DHL. Their extension to CP2,
which we will also denote by Sc

n, is a curve of degree 2 · 4n. Our main result is:

Theorem (Global Lee-Yang-Fisher Current). The currents 1
2·4n [Sc

n] converge

distributionally to some (1, 1)-current µc on CP2 whose pluripotential coincides with

the (lifted) free energy F̂# of the system.

An important subtlety arises because the degrees of R do not behave properly
under iteration:

4n < deg(Rn) < (deg(R))n = 6n.

This algebraic instability3 of R has the consequence that

Sc
n 6= (Rn)∗Sc

0 .

The issue is resolved by working with another rational mapping R coming di-
rectly from the Migdal-Kadanoff RG Equations, without passing to the “phys-
ical” (z, t)-coordinates. This map is semi-conjugate to R by a degree two ra-
tional map Ψ : CP2 → CP2. Moreover, R is algebraically stable, satisfying

3For the definition, see Appendix B.1.
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deg(Rn) = (deg(R))n = 4n. For each n ≥ 0, we have:

Sc
n = Ψ−1(R−nSc

0),

where Sc
0 is an appropriate projective line.

Associated to any (dominant, algebraically stable) rational mapping f : CPk →
CPk is a canonically defined invariant current mc, called the Green current of f .
It satisfies f∗mc = d · mc, where d = deg f . If f satisfies an additional (minor)
technical hypothesis, then suppmc equals the Julia set of f . (In our case, R does
not satisfy this additional hypothesis, but we still have that suppmc equals the
Julia set for R; see Prop. 4.4).

Such invariant currents are a powerful tool of higher-dimensional holomorphic
dynamics: see Bedford-Smillie [BS], Fornaess-Sibony [FS1], and others (see [Si] for
an introductory survey to this subject). In Appendix B we provide some further
background on complex dynamics in several variables.

We will show that the normalized sequence of currents 1
4n (R

n)∗[Sc
0] converges

distributionally to the Green current mc of R. Pulling everything back under Ψ,
this will imply the Global Lee-Yang-Fisher Theorem. In this way, the classical
Lee-Yang-Fisher theory gets linked to the contemporary dynamical pluripotential
theory.

Asymptotic distribution for pullbacks of algebraic curves under rational maps
has been a focus of intense research in multidimensional holomorphic dynamics
since the early 1990’s; see [BS, FS1, RuSh, FaJ, DS2, DDG] for a sample of papers
on the subject. Our result above is very close in spirit to this work. However, the
above theorem does not seem to be a consequence of any available results.

1.3. Structure of the paper. We begin in §2 by recalling the definitions of free
energy and the classical notion of thermodynamic limit for the Ising model. We
then discuss the notion of global thermodynamic limit, which is sufficient in order
to guarantee that some lattice have a (1, 1)-current µc describing its limiting dis-
tribution of LYF zeros in C2. Following this, we extend the whole description from
C2 to CP2 by lifting the partition function and free energy to C3. We also give an
alternative interpretation of the partition function as a section of (an appropriate
tensor power of) the co-tautological line bundle over CP2 that will be central to
the proof of the Global LYF Current Theorem. We conclude §2 by summarizing
material on the Migdal-Kadanoff RG equations.

In §3 we summarize the global features of the mappings R and R on the com-
plex projective space CP2 that were studied in [BLR1], including their critical and
indeterminacy loci, superattracting fixed points and their separatrices.

In the next section, §4, we define the Fatou and Julia sets for R and show that
the Julia set coincides with the closure of preimages of the invariant complex line
{z = 1} (corresponding to the vanishing external field). It is based on M. Green’s
criteria for Kobayashi hyperbolicity of the complements of several algebraic curves
in CP2 [G1, G2] that generalize the classical Montel Theorem. We then use this
result to prove that points in the interior of the solid cylinder D × I are attracted
to a superattracting fixed point η = (0, 1) of R.

We prove the Global LYF Current Theorem in §5, relying on estimates of how
volume is transformed under a single iterate of R that are completed in §6.
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We finish with several Appendices. In Appendix A we collect needed background
in complex geometry (normality, Kobayashi hyperbolicity, currents and their pluri-
potentials, line bundles over CP2, etc). In Appendix B we provide background on
the complex dynamics in higher dimensions, including the notion of algebraic sta-
bility and information on the Green current. In Appendix C we provide background
on Whitney Folds, a normal form for the simplest critical points of our mapping.
In Appendix D we collect several open problems.

1.4. Basic notation and terminology. C∗ = C r {0}, T = {|z| = 1}, Dr =
{|z| < r}, D ≡ D1, and N = {0, 1, 2 . . .}. Given two variables x and y, x ≍ y means
that c ≤ |x/y| ≤ C for some constants C > c > 0.

Acknowledgment. We thank Jeffrey Diller, Han Peters, Robert Shrock, and
Dror Varolin for interesting discussions and comments. The work of the first author
is supported in part by the NSF grants DMS-0652005 and DMS-0969254. The work
of the second author has been partially supported by NSF, NSERC and CRC funds.
The work of the third author was partially supported by startup funds from the
Department of Mathematics at IUPUI.

2. Description of the model

2.1. Free Energy. A configuration of spins σ : V → {±1} has energy given by the
Hamiltonian
(2.1)

H(σ) = −J
∑

{v,w}∈E

σ(v)σ(w) − hM(σ), where M(σ) =
1

2

∑

(v,w)∈E

(σ(v) + σ(w)).

The Ising model is called ferromagnetic if J > 0, and anti-ferromagnetic otherwise.
In this paper (and Part I) we will assume that the model is ferromagnetic.

The partition function (or the statistical sum) is the total Gibbs weight of all of
the configurations of spins:

ZΓ = ZΓ(z, t) =
∑

σ

W (σ) =
∑

σ

exp(−H(σ)/T ).

It is a Laurent polynomial in z and t. Notice that each of the Gibbs weights is
unchanged under (σ, h) 7→ (−σ,−h). This basic symmetry of the Ising model makes
Z invariant under the involution ι : (z, t) 7→ (z−1, t). Therefore, it has the form

(2.2) ZΓ =
d∑

n=0

an(t)(z
n + z−n), where d = |E|.

Moreover, ad = t−d/2. Thus, for any given t ∈ C∗, ZΓ(t, z) has 2|E| roots zi(t) ∈ C

called the Lee-Yang zeros.
A configuration σ occurs with probability P (σ) = W (σ)/Z. Its entropy is defined

as S(σ) = − logP (σ) = logZ +H(σ)/T . The free energy of the system is defined
as

(2.3) FΓ = H(σ) − TS(σ) = −T log |ZΓ|.
It is independent of the configuration σ.

Equations (2.3) and (2.2) imply:

(2.4) FΓ = −T
∑

log |z − zi(t)|+ |E|T ( log |z|+ 1

2
log |t| ),
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where the summation is taken over the 2|E| Lee-Yang zeros zi(t) of Z(·, t).
Remark 2.1. It will be useful to consider the following variant of the free energy:

F#
Γ (z, t) := − 1

T
FΓ(z, t) + d(log |z|+ 1

2
log |t|) = log |Ž(z, t)|.

Here, Ž(z, t) := zdtd/2Z(z, t) is obtained by clearing the denominators of Z. The

advantage of using F#
Γ , instead of FΓ, is that it extends as a plurisubharmonic

function on all of C2. We will also refer to F#
Γ as the “free energy”.

2.2. Thermodynamic limit. Assume that we have a “lattice” given by a “hier-
archy” of graphs Γn of increasing size with partition functions Zn, free energies Fn

and magnetizations Mn. To pass to the thermodynamic limit we normalize these
quantities per bond. One says that the hierarchy of graphs has a thermodynamic
limit if

(2.5)
1

|En|
Fn(z, t) → F (z, t) for any z ∈ R+, t ∈ (0, 1).

In this case, the function F is called the free energy of the lattice. For many4

lattices (e.g. Zd), existence of the thermodynamic limit can be justified by van
Hove’s Theorem [vH, R2]. If the classical thermodynamic limit exists, then one can
justify existence of the limiting distribution of Lee-Yang zeros and relate it to the
limiting free energy; see [BLR1, Prop. 2.2].

When considering Fisher zeros, it is more convenient to work with the variant
F# of the free energy that is defined in Remark 2.1. In order to prove existence of a
limiting distribution for the Fisher zeros, one needs to prove existence of a limiting
free energy:

1

2|En|
F#
n (1, t) → F#(1, t) in L1

loc(C).(2.6)

For the Z2 lattice this is achieved by the Onsager solution, which provides an explicit
formula the limiting free energy; See, for example, [Ba]. Similar techniques apply to
the triangular, hexagonal, and various homopolygonal lattices (see [MaSh1, MaSh2]
for suitable references and an investigation of the distribution of Fisher zeros for
these lattices). For various hierarchical lattices, (2.6) can be proved by dynamical
means. It seems to be an open question for other lattices, including Zd, when d ≥ 3.

The situation is similar for the Lee-Yang-Fisher zeros:

Proposition 2.1. Let Γn be a hierarchy of graphs and suppose that

1

2|En|
F#
n (z, t) → F#(z, t) in L1

loc(C
2).(2.7)

Then, there is a closed positive (1, 1)-current µc on C2 describing the limiting dis-
tribution of Lee-Yang-Fisher zeros. Its pluripotential coincides with the free energy
F#(z, t).

For the DHL, we will prove existence of the limit (2.7) in the Global LYF Current
Theorem. It is an open question whether such a limit exists for other lattices,
including the classical Zd lattices for d ≥ 2; see Problem D.1.

4Note that the DHL is not in this class—instead, dynamical techniques are used to justify its
classical thermodynamic limit.



LEE-YANG-FISHER ZEROS 9

Proof. The locus of Lee-Yang-Fisher zeros Sc
n are the zero set (counted with mul-

tiplicities) of the degree 2|En| polynomial Žn(z, t). The Poincaré-Lelong Formula
describes its current of integration:

[Sc
n] = ∆p log |Žn(z, t)| = ∆pF

#
n (z, t).

Here, ∆p = i
π∂∂̄ is the pluri-Laplacian; see Appendix A.

Hypothesis (2.7) implies

1

2|En|
[Sc

n] = ∆p
1

2|En|
F#
n (z, t) → ∆pF

#(z, t) =: µc.

�

2.3. Global consideration of partition functions and free energy on CP2.
It will be convenient for us to extend the partition functions Zn and their associated
free energies F#

n from C2 to CP2. We will use the homogeneous coordinates
[Z : T : Y ] on CP2, with the “physical” copy of C2 given by the affine coordinates
(z, t) 7→ [z : t : 1].

For each n, we clear the denominators of Zn(z, t), obtaining a polynomial Žn(z, t)

of degree dn := 2|En|. It lifts to a unique homogeneous polynomial Ẑn(Z, T, Y ) of

the same degree that satisfies Žn(z, t) = Ẑn(z, t, 1). The associated free energy
becomes a plurisubharmonic function

F̂#
n (Z, T, Y ) := log |Ẑn(Z, T, Y )|

on C3. It is related by the Poincaré-Lelong Formula to the current of integration
over the Lee-Yang-Fisher zeros: π∗[Sc

n] := ∆p F̂#
n (Z, T, Y ).

Both of these extensions are defined on C3, rather than CP2. In the proof of
the Global LYF Current Theorem, it will be useful for us to interpret the partition
function as an object defined on CP2. Instead of being a function on CP2, it gets
interpreted as a section σZn

of an appropriate tensor power of the co-tautological
line bundle; See Appendix A.4. The Lee-Yang-Fisher zeros Sc

n are described as the
zero locus of this section. (See Remark A.1 for an explanation of why a similar
interpretation of the free energy as a section of a suitable real line bundle is not
used.)

2.4. Migdal-Kadanoff renormalization for the DHL. Migdal-Kadanoff renor-
malization will allow us to write recursive formuli for the partition function Zn(z, t).
Restricting the spins at the marked vertices {a, b} we obtain three conditional par-
tition functions, Un, Vn and Wn as follows:

⊖

⊖

⊕

⊕
= Zn

⊖

⊕⊖

⊕
Un := Zn Wn := ZnVn := Zn, ,

The total partition function is equal to

Zn = ZΓn
= Un + 2Vn +Wn.

Migdal-Kadanoff RG Equations:

Un+1 = (U2
n + V 2

n )
2, Vn+1 = V 2

n (Un +Wn)
2, Wn+1 = (V 2

n +W 2
n)

2.
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See Part I [BLR1] for a proof. They give a homogeneous degree 4 polynomial map

R̂ : (U, V,W ) 7→
(
(U2 + V 2)2, V 2(U +W )2, (W 2 + V 2)2

)
,(2.8)

called the Migdal Kadanoff Renormalization, with the property that (Un, Vn,Wn) =

R̂n(U0, V0,W0). We will also call the induced mapping R : CP2 → CP2 the Migdal
Kadanoff Renormalization.

In order to express Un, Vn, and Wn in terms of z and t, one can use

U0 = z−1t−1/2, V0 = t1/2, and W0 = zt−1/2.(2.9)

as initial conditions for the iteration. According to (2.9), these coordinates are
related to the “physical” (z, t)-coordinates as follows:

(U : V : W ) = Ψ(z, t) = (z−1t−1/2 : t1/2 : zt−1/2).(2.10)

Therefore, in the (z, t)-coordinates, the renormalization transformation assumes the
form:

(2.11) R : (z, t) 7→
(

z2 + t2

z−2 + t2
,

z2 + z−2 + 2

z2 + z−2 + t2 + t−2

)
.

Physically, the iterates (zn, tn) are interpreted as the renormalized field-like and
temperature-like variables.

By the basic symmetry of the Ising model, the change of sign of h interchanges
the conditional partition functions Un and Wn keeping Vn and the total sum Zn

invariant. Consequently, the RG transformation R commutes with the involution
(U : V : W ) 7→ (W : V : U), which is also obvious from the explicit formula (2.8),
while R commutes with (z, t) 7→ (z−1, t).

Existence of the renormalization mapping R makes discussion of the free energies
F̂#
n especially clear for the DHL. Consider the linear form

Y0(U, V,W ) := U + 2V +W,

which is chosen so that Sc
0 is the zero divisor of σY0

. For each n,

Ẑn = Y0 ◦ R̂n and F̂#
n = log |Ẑn|.(2.12)

Here, Ẑn and F̂#
n are expressed in terms of the initial values of (U0, V0,W0). To

rewrite (2.12) in terms of (z, t), we can pull back these expressions under Ψ.

3. Global properties of the RG transformation in CP2.

We will now summarize (typically without proofs) results from [BLR1] about
the global properties of the RG mappings.

3.1. Preliminaries. The renormalization mappings R and R are semi-conjugate
by the degree two rational mapping Ψ : CP2 → CP2 given by (2.10).

Both mappings have topological degree 8 (see Prop. 4.3 from Part I). However,
as noted in the introduction, their algebraic degrees behave differently: R is alge-
braically stable, while R is not. Since deg(Rn) = 4n, for any algebraic curve D of
degree d, the pullback (Rn)∗D is a divisor of degree d · 4n. (For background on
divisors, see Appendix A.) For this reason, we will focus most of our attention on
the dynamics of R.
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The semiconjugacy Ψ sends Lee-Yang cylinder C to a Mobius band C that is
invariant under R. It is obtained as the closure in CP2 of the topological annulus

(3.1) C0 = {(u,w) ∈ C2 : w = ū, |u| ≥ 1}.
Let T = {(u, ū) : |u| = 1} be the “top” circle of C, while B be the slice of C at
infinity. In fact, Ψ : C → C is a conjugacy, except that it maps the bottom B of C
by a 2-to-1 mapping to B (see Prop. 3.1 from Part I).

3.2. Indeterminacy points for R. In homogeneous coordinates on CP2, the map
R has the form:

(3.2) R : [U : V : W ] 7→ [(U2 + V 2)2 : V 2(U +W )2 : (V 2 +W 2)2)].

One can see that R has precisely two points of indeterminacy a+ := [i : 1 : −i] and
a− := [−i : 1 : i]. Resolving all of the indeterminacies of R by blowing-up the two

points a± (see Appendix A.3), one obtains a holomorphic mapping R̃ : C̃P
2 → CP2.

In coordinates ξ = u − i and χ = (w + i)/(u − i) near a+ = (i,−i), we obtain

the following expression for the map R̃ : C̃P
2 → CP2 near Lexc(a+):

(3.3) u =

(
ξ + 2i

1 + χ

)2

, w =

(
χ2ξ − 2iχ

1 + χ

)2

.

(Similar formulas hold near a− = (−i, i).) The exceptional divisor Lexc(a+) is

mapped by R̃ to the conic

G := {(u− w)2 + 8(u+ w) + 16 = 0}.

3.3. Superattracting fixed points and their separatrices. We will often refer
to L0 := {V = 0} ⊂ CP2 as the line at infinity. It contains two symmetric
superattracting fixed points, e = (1 : 0 : 0) and e′ = (0 : 0 : 1). Let Ws(e) and
Ws(e′) stand for the attracting basins of these points. It will be useful to consider
local coordinates (ξ = W/U, η = V/U) near e.

The line at infinity L0 = {η = 0} is R-invariant, and the restriction R|L0 is the
power map ξ 7→ ξ4. Thus, points in the disk {|ξ| < 1} in L0 are attracted to e,
points in the disk {|ξ| > 1} are attracted to e′, and these two basins are separated
by the unit circle B. We will also call L0 the fast separatrix of e and e′.

Let us also consider the conic

(3.4) L1 = {ξ = η2} = {V 2 = UW}
passing through points e and e′. It is an embedded copy of CP1 that is invariant
under R, with R|L1(w) = w2, where w = W/V = ξ/η. Thus, points in the disk
{|w| < 1} in L1 are attracted to e, points in the disk {|w| > 1} are attracted to e′,
and these two basins are separated by the unit circle T (see §3.1 from Part I). We
will call L0 the slow separatrix of e and e′.

If a point x near e (resp. e′) does not belong to the fast separatrix L0, then its
orbit is “pulled” towards the slow separatrix L1 at rate ρ4

n

, with some ρ < 1, and
converges to e (resp. e′) along L1 at rate r2

n

, with some r < 1.
The strong separatrix L0 is transversally superattracting: all nearby points are

pulled towards L0 uniformly at rate r2
n

(see also the proof of Lemma 3.3). It follows
that these points either converge to one of the fixed points, e or e′, or converge to
the circle B.
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Given a neighborhood Ω of B, let

(3.5) Ws
C,loc(B) = {x ∈ CP2 : Rnx ∈ Ω (n ∈ N) and Rnx → B as n → ∞}

(where Ω is implicit in the notation, and an assertion involving Ws
C,loc(B) means

that it holds for arbitrary small suitable neighborhoods of B). It is shown in Part I
(§9.2) that Ws

C,loc(B) has the topology of a 3-manifold that is laminated by the

union of holomorphic stable manifolds W s
C,loc(x) of points x ∈ B.

We conclude:

Lemma 3.1. Ws(e) ∪Ws(e′) ∪Ws
C,loc(B) fills in some neighborhood of L0.

3.4. Regularity of Ws
C,loc(x). For a diffeomorphism the existence and regularity

of the local stable manifold for a hyperbolic invariant manifold N has been studied
extensively in [HPS]. In order to guarantee a C1 local stable manifold Ws

loc(N), a
strong form of hyperbolicity known as normal hyperbolicity is assumed. Essentially,
N is normally hyperbolic for f if the expansion of Df in the unstable direction
dominates the maximal expansion of Df tangent to N and the contraction of Df
in the stable direction dominates the maximal contraction of Df tangent to N . See
[HPS, Theorem 1.1]. If, furthermore, the expansion in the unstable direction domi-
nates the r-th power of the maximal expansion tangent to N and the contraction in
the stable direction dominates the r-th power of the maximal contraction tangent
to N , this guarantees that the stable manifold is of class Cr. The corresponding
theory for endomorphisms is less developed, although note that other aspects of
[HPS], related to persistence of normally hyperbolic invariant laminations, have
been generalized to endomorphisms in [Be].

In our situation, B is not normally hyperbolic because it lies within the invariant
line L0 and R is holomorphic. This forces the expansion rates tangent to B and
transverse to B (within this line) to coincide. Therefore, the following result does
not seem to be part of the standard hyperbolic theory:

Lemma 3.2. Ws
C,loc(x) is a C∞ manifold and the stable foliation is a C∞ foliation

by complex analytic discs.

Proof. In Proposition 9.11 from Part I, we showed that within the cylinder C the
stable foliation of B has C∞ regularity and that the stable curve of each point is
real analytic. Mapping forward under Ψ, we obtain the same properties for the
stable foliation of B within C.

Let us work in the local coordinates ξ = W/U and η = V/U . In these coor-
dinates, B = {η = 0, |ξ| = 1}. The stable curve of some ξ0 ∈ B can be given by
expressing ξ as the graph of a holomorphic function of η:

ξ = h(η, ξ0) =
∞∑

i=0

ai(ξ0)η
i.(3.6)

The right hand side is a convergent power series with coefficients depending on ξ0,
having a uniform radius of convergence over every ξ0 ∈ B. The series is uniquely
determined by its values on the real slice C, in which the leaves depend with C∞

regularity on ξ0. Therefore, each of the coefficients ai(ξ0) is C
∞ in ξ0. This gives

that W s
C,loc(x) is a C∞ manifold.

�
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4
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4

a−

a+

L−

3

Figure 3.1. Critical locus for R shown with the separatrix L0 at infinity.

Remark 3.1. The technique from the proof of Lemma 3.2 applies to a more general
situation: Suppose that M is a real analytic manifold and f : M → M is a real
analytic map. Let N ⊂ M be a compact real analytic invariant submanifold for f ,
with f |N expanding and with N transversally attracting under f . Then, N will
have a stable foliation Ws

loc(N) of regularity Cr, for some r > 0 (see the beginning
of this subsection), with the stable manifold of each point being real-analytic. The
stable manifold Ws

C,loc(N) for the extension of f to the complexification MC of M
will then also have Cr regularity.

3.5. Critical locus. We showed in Part I [BLR1] that the critical locus of R
consists of 6 complex lines and one conic:

L0 := {V = 0} = line at infinity,

L1 := {UW = V 2} = conic {uw = 1},
L2 := {U = −W} = {u = −w},
L±
3 := {U = ±iV } = {u = ±i},

L±
4 := {W = ±iV } = {w = ±i}.

(Here the curves are written in the homogeneous coordinates (U : V : W ) and in
the affine ones, (u = U/V,w = W/V ).) The critical locus is schematically depicted
on Figure 3.1, while its image, the critical value locus, is depicted on Figure 3.2.

It will be helpful to also consider the critical locus for the lift R̃ : C̃P
2 → CP2.

Each of the critical curves Li lifts by proper transform (see Appendix A.3) to a

critical curve L̃i ⊂ C̃P
2
for R̃. Moreover, any critical point for R̃ is either one of

these proper transforms or lies within the exceptional divisors of Lexc(a±).
By symmetry, it is enough to consider the blow-up of a+. We saw in Part I

that there are four critical points on the exceptional divisor Lexc(a+) occurring at
χ = −1, 1,∞, and 0, where χ = (w − i)/(u− 1). They correspond to intersections

of Lexc(a+) with the collapsing line L̃2, the L̃1, and the critical lines L̃+
3 and L̃−

4 ,
respectively.
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R(L±

4
)

e = [1 : 0 : 0]

e′ = [0 : 0 : 1]

L0

L1

0 = [0 : 1 : 0]

R(L±

3
)

Figure 3.2. Critical values locus of R.

Whitney Folds are a normal form for the simplest type of critical points of a
mapping (see Appendix C). We have:

Lemma 3.3. All critical points of R̃ except the fixed points e, e′, the collapsing line

L̃2, and two points {±(i, i)} = L̃±
3 ∩ L̃±

4 , are Whitney folds.

The only critical values obtained as images of non-Whitney folds are: e, e′,
b0 = R(L̃2) ∈ L0 and 0 := (0, 0) = R(±(i, i)).

4. Fatou and Julia sets and the measure of maximal entropy

4.1. Julia set. For a rational map R : CPn → CPn, the Fatou set FR is defined to
be the maximal open set on which the iterates {Rm} are well-defined and form a
normal family. The complement of the Fatou set is the Julia set JR.

If R is dominant and has no collapsing varieties, Lemma A.1 gives that R is
locally surjective (except at indeterminate points), so that the Fatou set is forward
invariant and consequently, the Julia set is backward invariant.

IfR has indeterminate points, then, according to this definition they are in JR. In
this case, FR and JR are not typically totally invariant. One can see this by blowing
up an indeterminate point and observing that the image of the resulting exceptional
divisor typically intersects FR. Moreover, if R is not algebraically stable, then any
curve C that is mapped by some iterate to the indeterminacy points is in JR.

The Migdal-Kadinoff renormalizationR is not locally surjective at any x ∈ L2 r L0.
More specifically, if U is a small neighborhood of x that avoids L0, then

R(U) ∩ L0 = b0 = R(x),

since any point of L0 r {b0} only has preimages in L0. However, we still have the
desired invariance:

Lemma 4.1. The Migdal-Kadinoff renormalization R has forward invariant Fatou
set and, consequently, backward invariant Julia set.

Proof. It suffices to show that L2 ⊂ JR, since R is locally surjective at any other
point, by Lemma A.1. By definition, {a±} ⊂ JR, so we consider x ∈ L2 r {a±}.
Let U be any small neighborhood of x. Note that R(x) = b0 is a fixed point of
saddle-type, with one-dimensional stable and unstable manifolds. Therefore, in
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order for the iterates to form a normal family on U , we must have R(U) ⊂ Ws(b0).
However, this is impossible, since there are plenty of regular points for R in U . �

Lemmas 3.1 and 3.2 give a clear picture of JR in a neighborhood of the line at
infinity L0.

Proposition 4.2. Within some neighborhood N of L0 we have that JR ∩ N =
Ws

C,loc(B) ∩N . Within this neighborhood, JR is a C∞ 3-dimensional manifold.

Let us consider the locus {h = 0} of vanishing magnetic field in CP2 for the
DHL. In the affine coordinates, it an R-invariant line Linv = {u = w}; in the
physical coordinates, it is an R-invariant line Linv = {z = 1}. The two maps
are conjugate by the Möbius transformation Linv → Linv, u = 1/t. Dynamics of

R : t 7→
(

2t

t2 + 1

)2

on Linv was studied in [BL]. In particular, it is shown in that

paper that the Fatou set for R|Linv consists entirely of the basins of attraction of
the fixed points β0 and β1 which are superattracting within this line: see Figure 1.3.

Proposition 4.3. JR =
⋃

n R
−n(Linv).

Proof. Since R|Linv is conformally conjugate to R|Linv, every point in the Fatou
set of R|Linv is in the basin of attraction of either b0 or b1. Since these points are
of saddle-type in CP2, the family of iterates Rn cannot be normal at any point on
Linv. Thus Linv ⊂ JR. It follows that

⋃
n R

−n(Linv) ⊂ JR since JR is closed and
backward invariant.

We will now show that
⋃

n R
−n(Linv) is dense in JR. Consider a configuration

of five algebraic curves

X0 := {V = 0} = the separatrix L0,

X1 := {U = W} = the invariant line Linv,

X2 := {U = −W} = the collapsing line L2 ⊂ R−1(Linv),

X3 := {U2 + 2V 2 +W 2 = 0} = a component of R−1(Linv),

X4 := {U4 + 2U2V 2 + 2V 4 + 2W 2V 2 +W 4 = 0} = a component of R−1(X3).

We will use the results of M. Green to check that the complement of these curves,
M := CP2r

⋃
iXi, is a complete Kobayashi hyperbolic manifold hyperbolically em-

bedded in CP2 (see Appendix A.6). We will first check that M is Brody hyperbolic,
i.e., there are no non-constant holomorphic maps f : C → M . To this end we will
apply Green’s Theorem A.5. It implies that the image of f must lie in a line L that
is tangent to the conic X3 at an intersection point with Xi, for one of the lines Xi,
i = 0, 1, 2, and contains the intersection point Xj ∩ Xl of the other two lines. It
is a highly degenerate situation which does not occur for a generic configuration.
However, this is exactly what happens in our case, as the lines X0, X1, X2 form a
self-dual triangle with respect to the conic X3 (see §A.7). However, one can check
by direct calculation that the last curve, X4, must intersect each of these tangent
lines L in at least one point away from X0, . . . , X3. Since any holomorphic map
from C to Lr

⋃
i Xi must then omit 3 points in L, it must be constant.

So, M is Brody hyperbolic. Moreover, for each i = 0, . . . , 4 the remaining
curves

⋃
j 6=i Xj intersect Xi in at least three points so that there is no non-constant

holomorphic map from C to Xi r
⋃

j 6=i Xj . Therefore, another of Green’s results

(Theorem A.4) applies showing that M is complete hyperbolic and hyperbolically
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embedded. It then follows from Proposition A.3 that the family {Rn} is normal on
any open set N ⊂ CP2 for which Rn : N → M for all n.

Given any ζ ∈ JR and any neighborhood N of ζ, we’ll show that some preimage
R−n(Linv) intersects N . Since ζ ∈ JR, the family of iterates Rn are not normal on
N , hence Rn(N) must intersect

⋃
i Xi for some n. If the intersection is with Xi for

i > 0 then Rn+2(N) intersects Linv.
So, some iterate Rn(N) must intersect X0 = L0. Suppose first that ζ ∈ L0.

Then, by Lemma 3.1, ζ ⊂ Ws(e) ∪ Ws(e′) ∪ T. Since the first two basins are
contained in the Fatou set, ζ ∈ T, where preimages of the fixed point β0 ∈ Linv are
dense.

Finally, assume ζ 6∈ L0. By shrinking N if needed, we can make it disjoint from
L0. Hence there is n > 0 such that Rn(N) intersects L0, while R

n−1(L0) is disjoint
from L0. But since R−1(L0) = L0 ∪ L2, we conclude that Rn−1(N) must intersect
L2. But L2 collapses under R to the fixed point β0 ∈ Linv. Hence R

n(N) intersects
Linv. �

We will now relate JR to the Green current mc. (See Appendix B for the defi-
nition and basic properties of mc.)

Proposition 4.4. JR = suppmc.

Proof. The inclusion suppmc ⊂ JR follows immediately from Theorem B.5. We
will use Proposition 4.3 to show that JR ⊂ suppmc. Since suppmc is a backward
invariant closed set, it is sufficient for us to show that Linv ⊂ suppmc.

Note that Linv = Ws(b0) ∪ Ws(b1) ∪ JR|Linv
. The basin Ws(L0) is open and

contained within the regular set for R (see Appendix B for the definition), since
every point of Ws(L0) has a neighborhood whose forward iterates remain bounded
away from {a±}. Therefore, Ws(b0) ⊂ JR ∩N ⊂ suppmc, by Theorem B.5. Since
suppmc is closed, we also have that JR|Linv

⊂ suppmc.
Every point of Ws(b1) is irregular because

b1 ∈
⋃

n≥0

R−n{a±}.

Therefore, we cannot directly use Theorem B.5 to conclude that Ws(b1) ⊂ suppmc.
Notice that the points of L2 r {a±} are regular, since they are in Ws(L0).

Theorem B.5 gives that L2 r {a±} ⊂ suppmc, since L2 ⊂ JR. Because suppmc is
closed, L2 ⊂ suppmc. Let D2 ⊂ L2 be a small disc centered around a+. Preimages
of D2 under appropriate branches of Rn will give discs intersecting L1 transversally
at a sequence of points converging to b1. By the Dynamical λ-Lemma (see [PM,
pp. 80-84]), this sequence of discs will converge to Ws

0(b1) ⊂ Linv, where Ws
0(b1)

is the immediate basin of b1. Since each of the discs is in suppmc, and the latter
is closed, we find that Ws

0(b1) ⊂ suppmc. Further preimages show that all of
Ws(b1) ⊂ suppmc.

�

4.2. Fatou Set. Because JR = suppmc, we immediately have:

Corollary 4.5. The Fatou set of R is pseudoconvex.

For the definition of pseudoconvexity, see [Kra].
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Proof. It is well-known that in the complement in CP2 of the support of a closed
positive (1, 1)-current is pseudoconvex. See [C, Theorem 6.2] or [U, Lemma 2.4]. �

Computer experiments indicate that the Fatou set of R may be precisely the
union of the basins of attraction Ws(e) and Ws(e′) for the two superattracting
fixed points e and e′. See Problem D.4.

Consider the solid cylinders

SC :=

{
[U : V : W ] :

V 2

UW
∈ [0, 1] and

∣∣∣∣
W

U

∣∣∣∣ < 1

}
and

SC′ :=

{
[U : V : W ] :

V 2

UW
∈ [0, 1] and

∣∣∣∣
W

U

∣∣∣∣ > 1

}
.

Then, we can prove the following more modest statement:

Proposition 4.6. For the mapping R we have SC ⊂ Ws(e) and SC′ ⊂ Ws(e′).

In the proof, we will need to use an important property of R : C → C that was
proved in Part I. Recall from §3.1 that C = Ψ(C) is the invariant real Möbius and
that C0 = C rB is the topological annulus obtained by removing the “core curve”
B.

The key property is:

(P9′) Every proper path γ in C0 lifts under R to at least 4 proper paths in C0.
If γ crosses G at a single point, then R−1γ = ∪ δi.

Proof of Prop. 4.6: It suffices to prove the proposition for SC, since the statement
for SC′ follows from the symmetry ρ.

We will decompose SC as a union of complex discs and show that each disc is
in Ws(e). Let

Pc :=

{
[U : V : W ] :

V 2

UW
= c ∈ [0, 1]

}
,

and

P ∗
c :=

{
[U : V : W ] :

V 2

UW
= c ∈ [0, 1] and

∣∣∣∣
W

U

∣∣∣∣ < 1

}
,

so that SC =
⋃

c∈[0,1] P
∗
c .

The discs P ∗
0 and P ∗

1 are in Ws(e) because they are each within the forward
invariant critical curves L0 and L1, respectively, on which the dynamics is given by
(W/U) → (W/U)4 and (W/U) → (W/U)2, respectively.

We now show that for any c ∈ (0, 1) we also have P ∗
c ⊂ Ws(e). In fact e ∈ P ∗

c ,
so it suffices to show that Rn forms a normal family on P ∗

c . Consider any x ∈ P ∗
c .

If x = e, then x ∈ Ws(e) so that Rn is normal on some neighborhood of x in P ∗
c .

Now consider any x ∈ P ∗
c r {e}. There is a neighborhood of N ⊂ P ∗

c of x
with e 6∈ N , on which we will show that Rn forms a normal family. Recall the
family of curves X0, . . . , X4 from the proof of Proposition 4.3, where we showed
that CP2 r

⋃
iXi is complete hyperbolic and hyperbolically embedded. We will

show for every n that Rn(N) is in CP2 r
⋃

iXi, so that Rn is normal on N .
Since P ∗

c ∩ X0 = {e}, and e 6∈ N , we have that N ∩ X0 = ∅. Therefore, by
reasoning identical to that in the proof of Proposition 4.3, if Rn(N) intersects Xi

for any i = 0, . . . , 4 we must have that some iterate Rm(N) intersects X1 = Linv.
We will check that forward iterates of Rn(P ∗

c ) are disjoint from Linv, which is
sufficient since N ⊂ P ∗

c . The line Linv intersects the invariant annulus C0 in two
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properly embedded radial curves, so Property (P9’) gives that (Rn)∗Linv intersects
C in at least 2 · 4n properly embedded radial curves.

One can check that Pc intersects the invariant annulus C in the horizontal curve
{
[U : V : W ] :

V 2

UW
= c ∈ [0, 1] and

∣∣∣∣
W

U

∣∣∣∣ = 1

}
,

which corresponds to |u| = 1/
√
c > 1 in the u coordinate for C. Therefore, the

2 ·4n radial curves in C from (Rn)∗Linv intersect Pc in at least 2 ·4n distinct points
within C.

We will now show that these are the only intersection points between (Rn)∗Linv

and Pc in all of CP2. Since R is algebraically stable, Bezout’s Theorem gives
deg(Pc) ·deg((Rn)∗Linv) = 2 · 4n intersection points, counted with multiplicities, in
all of CP2. Therefore Pc ∩ (Rn)∗Linv ⊂ C.

Since P ∗
c ⊂ Pc with P ∗

c ∩ C = ∅, we conclude that P ∗
c ∩ (Rn)∗Linv = ∅ for ever

n. In other words, Rn(P ∗
c )∩Linv = ∅ for ever n. Thus, the same holds for N ⊂ P ∗

c ,
implying that Rn is a normal family on N . �

Proposition 4.6 has an interesting consequence for R. The fixed point e′ for R
has a single preimage η′ = Ψ−1(e′), which is a superattracting fixed point for R.
However, e has the entire collapsing line Z = 0 as preimage under Ψ. Within this
line is another superattracting fixed point η = [0 : 1 : 1] for R and every point in
{Z = 0}r {0, γ} is collapsed by R to η.

We obtain:

Theorem 4.7. For the mapping R, the solid cylinder {(z, t) : |z| < 1, t ∈ (0, 1]}
is in Ws(η) and, symmetrically, the solid cylinder {(z, t) : |z| > 1, t ∈ [0, 1]} is in
Ws(η′).

Notice that we we had to omit the “bottom”, t = 0, of the solid cylinder in
Ws(η) because points on it are forward asymptotic to the indeterminate point 0.

4.3. Measure of Maximal Entropy. There is a conjecture specifying the ex-
pected ergodic properties of a dominant rational map of a projective manifold5

in terms of the relationship between various “dynamical degrees” of the map; see
[Gu2].

Since the Migdal-Kadanoff renormalization R is an algebraically stable map of
CP2, there are only two relevant dynamical degrees, the topological degree degtop R
and the algebraic degree degR, which satisfy

degtop R = 8 > 4 = degR.

This case of high topological degree was studied by Guedj [Gu1], who made use of a
bound on topological entropy obtained by Dinh and Sibony [DS1]. In our situation,
his results give

Proposition 4.8. R has a unique measure ν of maximal entropy log 8 with the
following properties

(i) ν is mixing;

(ii) The Lyapunov exponents of ν are bounded below by log
√
2;

(iii) If θ is any probability measure that does not charge the postcritical set of
R, then 8−n(Rn)∗θ → ν;

5It is stated more generally in [Gu2], for meromorphic maps of compact Kähler manifolds.
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(iv) If Pn is the set of repelling periodic points of R of period n that are in
supp ν, then 8−n

∑
a∈Pn

δa → ν.

The measure ν satisfies the backwards invariance R∗ν = 8ν, hence its support
is totally invariant. In our situation, supp ν ( JR because (for example) the points
in Ws(B) are not in supp ν. It can be thought of as the “little Julia set” within JR
on which the “most chaotic” dynamics occurs.

Remark 4.1. The statement of (iv) is slightly different in [Gu1], where it is not
emphasized that the repelling periodic points being considered are actually on
supp ν. However, it follows from the proof in [Gu1] and the fact that supp ν is
totally invariant. See [DS3, Thm 1.4.13] for the analogous argument for holomor-

phic f : CP2 → CP2.

Remark 4.2. We know very little about the support of ν. See Problem D.3.

5. Pluri-potential interpretation

We will now prove the Global Lee-Yang-Fisher Theorem, assuming some techni-
cal volume estimates that will be saved for §6.

Theorem 5.1. Let us consider a linear form Y = pU+qV +rW with p 6= 0, r 6= 0.
Then the limit

(5.1) G = lim
n→∞

1

4n
log |Y ◦ R̂n|

exists in L1
loc(C

3) and is equal to the Green potential of R (see Appendix B.2).

The form Y determines a section σY of the co-tautological line bundle on CP2

(see §A.4). Let LY stand for the line σY = 0 in CP2 and [LY ] stand for the current
of integration over Y . Its pullbacks (Rn)∗[LY ] under the iterates of R are the
currents of integration over the zero divisor of (Rn)∗σY = σY ◦Rn.

Let mc = π∗(∆pG) stand for Green (1,1)-current of R (see §B.3). Applying the
pluri-Laplacian ∆p = i

π∂∂̄ to (5.1) we obtain:

Corollary 5.2. Let Y be a linear form as in Theorem 5.1. Then, the normalized
currents of integration 4−n(Rn)∗[LY ] weakly converge to the Green current mc. In

particular, this current gives the asymptotic distribution of 1
4n (R

n)∗[Sc
0] in CP2.

Remark 5.1. The Global Lee-Yang-Fisher Theorem follows from Theorem 5.1 and
Corollary 5.2, after pulling everything back under Ψ.

Remark 5.2. Note that the principal Lee-Yang-Fisher locus Sc
0 does not lie within

the Julia set JR. In fact, the only holomorphic curves inside the stable manifold
Ws

C,loc(B) are the stable manifolds Ws
loc(ζ) of various points ζ ∈ B. Indeed, the

maximal complex subspace within the tangent space Ex := Tx(Ws
C,loc(B)) is the

complex line Ec
x := Ex ∩ iEx, which thus must coincide with TxWs

loc(ζ). Conse-
quently, any holomorphic curve inside Ws

C,loc(B) must be tangent to the line field

TxWs
loc(ζ).

For the same reason, none of the LY loci Sn = (Rn)∗(S0) lies inside JR either.
However, in the limit they are distributed within the Julia set JR = suppmc.
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5.1. Proof of Theorem 5.1. Let us now endow the co-tautological bundle with
the standard Hermitian structure ‖ · ‖ (see §A.4).

Theorem 5.3. Let Y be a linear form as in Theorem 5.1. Then

1

4n
log ‖σY ◦Rn‖ → 0 in L1

loc(CP
2) as n → ∞.

We will first show that Theorem 5.3 implies Theorem 5.1:

Proof. Let X = (U, V,W ) ∈ C3 r {0} and x = (U : V : W ) ∈ CP2. By (A.5) from
Appendix B we have:

‖σY (x)‖ =
|Y (X)|
‖X‖ and ‖σY (R

nx)‖ =
|Y (R̂nX)|
‖R̂nX‖

.

Outside of the measure zero set R̂−n{Y = 0}, we can take 4−n log and apply
Theorem 5.3 to obtain

1

4n
log |Y (R̂nX)| = 1

4n
log ‖R̂nX‖+ o(1)

in L1
loc(C

3). But since R is algebraically stable the quantity in the right-hand side
converges to the Green potential (Theorem B.3). �

Proof of Theorem 5.3: We will use the following general convergence criterion:

Lemma 5.4. Let φn be a sequence of L2 functions on a finite measure space (X,m)
with bounded L2-norms. If φn → 0 a.e. then φn → 0 in L1.

Proof. Take any ǫ > 0 and δ > 0. By Egorov’s Lemma, there exists a set X ′ ⊂ X
with m(X r X ′) < ǫ such that φn → 0 uniformly on X ′. So, eventually the
sup-norms of the φn on X ′ are bounded by δ. Hence

∫
|φn| dm =

∫

X′

|φn| dm+

∫

XrX′

|φn| dm ≤ δ ·m(X) +B
√
ǫ,

where the last estimate follows from the Cauchy-Schwarz Inequality (with B the
L2-bound on the φn). The conclusion follows �

Next, we will estimate how badly volume can increase under iterated pullbacks
by R. Any volume form on CP2 will suffice for our discussion, but it will be helpful
to normalize, so that volCP2 = 1. Let us fix a small forward-invariant tubular
neighborhood Ω ⊂ CP2 of the super-attracting line L0 = {V = 0} at infinity, and
let Ω′ be a neighborhood of 0 = [0 : 1 : 0] such that R(Ω′) ⊂ Ω.

Lemma 5.5. There exists C1 > 0 so that for any measurable set X ⊂ CP2r(Ω∪Ω′),

vol(R−nX) ≤ C1(volX)1/2
n

.

Proof. Let R̃ : C̃P
2 → CP2 stand for the lift of R to the projective space with

both indeterminacy points, a±, blown up. By Lemma 3.3, all critical values of R̃
in CP2 r (Ω ∪ Ω′) are generic, that is, they come from Whitney folds only. The
conclusion now follows from the volume transformation rule near folds (Lemma

C.3) and the fact that the projection π : C̃P
2 → CP2 does not increase volume. �
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Let now D be a tubular neighborhood of the line Y that stays away from the
fixed points e, e′. Let D0 = D ∩ Ω, D′

0 = D ∩ Ω′, and D′′
0 = D r {Ω ∪ Ω′}. We

inductively define

Dk = R−1Dk−1 ∩ Ω, D′
k = R−1Dk−1 r Ω, and D′′

k = R−1D′
k+1.

Since R(Ω) ⊂ Ω and R(Ω′) ⊂ Ω, the sets D′′
k and their further pullbacks lie outside

Ω ∪ Ω′. For any n ≥ 0,

R−nD = Dn ∪D′
n ∪

n−2⋃

k=0

R−(n−k)D′′
k .(5.2)

Lemma 5.6. There exists C2 > 0 so that

volDk ≤ C2 volD0, volD′
k ≤ C2(volD0)

1/4, and volD′′
k ≤ C2(volD0)

1/16.

Proof. Recall that the map R is the fourth-power map ξ 7→ ξ4 on line L0, and
this line is normally super-attracting. Since D stays away from the fixed points
e, e′ of R|L0, the set Dk comprises 4k tubes of full vertical size (in the tubular
neighborhood Ω) and of horizontal size of order 1/4k. The total volume of these
tubes is of order 4−k volD0 (which is much better than needed).

The last two estimates now follow from the power transformation rule for the
volume (Corollary 6.6). �

Lemma 5.7. There exists C3 > 0 so that volR−nD ≤ C (volD)γ/2
n

with γ = 1/16.

Proof. Since volD < 1, the first two terms of (5.2) are taken care by Lemma 5.6.
By the same lemma, volD′′

k ≤ C2(volD0)
1/16. By Lemma 5.5,

vol(R−(n−k)D′′
k) ≤ C′(volD0)

1/2n−k+4

.

Summing these up over k, we obtain the desired inequality. �

Let

φn =
1

4n
log ‖σY ◦Rn‖.

Let us estimate distribution of the tales of these “random variables”.

Lemma 5.8. Let M = sup log ‖σY ‖. Then, there exists C > 0 so that

vol{|φn| > r} ≤ C exp(−γr2n) for any r > M4−n,

where γ is the same as in Lemma 5.7.

Proof. We have:

Xn(r) := {|φn| > r} = {log ‖σ ◦Rn‖ > r4n} ∪ {log ‖σ ◦Rn‖ < −r4n} =

= {log ‖σY ◦Rn‖ < −r4n} = R−n{‖σY ‖ < exp(−r4n)}
(we have used that log ‖σY ‖ < r4n). Using Lemma 5.7, together with the fact that
a tubular neighborhood {‖σY ‖ < k} of the projective line LY has volume ≤ C4k

2,
we find

volXn(r) ≤ C exp(−γr2n+1).

�

We are ready to show that the functions φn satisfy the conditions of Lemma 5.4.

Lemma 5.9. The sequence φn is L2-bounded.
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Proof. We have:

‖φn‖2 ≤
∞∑

k=0

(k + 1)2 vol{|φn| ≥ k}.

By Lemma 5.8, this sum is bounded by

vol(CP2)

M+1∑

k=0

(k + 1)2 + C
∑

k>M

(k + 1)2 exp(−γk2n+1)

≤ C0 + C

∞∑

k=0

(k + 1)2 exp(−γk) < ∞.

�

Lemma 5.10. The sequence φn exponentially converges to 0 almost everywhere.

Proof. Fix any λ ∈ (1, 2). For sufficiently large n, we have λ−n > M4−n, hence
Lemma 5.8 gives

vol{|φn| > λ−n} ≤ C exp(−2γ(2λ−1)n).

Since the sum of these volumes converges, the Borel-Cantelli Lemma gives that for
a.e. x ∈ CP2, we eventually have |φn(x)| ≤ λ−n. �

This completes the proof of Theorem 5.3. �

6. Volume Estimates

We will now prove the estimates on how volumes transform under a single iterate
of R that were used in the proof from §5.
Lemma 6.1. Let X ⊂ CP2 be a measurable set such that d := dist(X, {e, e′, b0,0}) > 0.

Then vol(R−1X) = O(
√
volX), with the constant depending on d.

Proof. By Lemma 3.3, e, e′, b0,0 are the only critical values of R̃ that are im-
ages of critical points more complicated than Whitney folds. By Corollary C.3,
vol(R̃−1X) = O(

√
volX). Since R−1X = π(R̃−1X), where the projection

π : C̃P
2 → CP2 is regular, we are done. �

6.0.1. R near the collapsing line L2.

Lemma 6.2. Near any finite point of the collapsing line L2, except two indetermi-
nacy points a±, we have: detDR ≍ (u+ w)2.

Proof. We will use coordinate

λ =
u+ w

1 + u2

near the collapsing line L2 = {u + w = 0} and outside the indeterminacy points
a±.

Recall that R(L2) = b0. In local coordinates (z = 1/u, ζ = u/w) near b0, the
map R (3.2) assumes form

z = λ2, ζ = σ2, where σ =
1 + u2

1 + w2
.

So, in local coordinates R : (λ, u) 7→ (z, ζ) we have:

(6.1) detDR = 4λσ
∂σ

∂u
.
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Moreover, in these coordinates, w = (1 + u2)λ − u, ∂w/∂u = 2uλ − 1, and an
elementary calculation yields:

∂σ

∂u
= 2

1 + u2

(1 + w2)2
(1− uw)λ ≍ λ,

as long as we stay near L2 and away from a±. The conclusion follows. �

A similar estimate holds in the blow-up coordinates near the indeterminacy
points a± ∈ L2. Recall that R̃ is given by (3.3) in the blow-up coordinates (ξ, χ).

Moreover, L̃2 = {χ = −1}.
Lemma 6.3. Near L̃2 ∩ Lexc(a±) we have:

detDR̃ ≍ (1 + χ)2.

Proof. It is sufficient to treat R̃ near L̃2 ∩ Lexc(a+). In the local coordinates

λ =
1 + χ

ξ + 2i
, ξ = u− i

near Lexc(a) and local coordinates (z = 1/u, ζ = u/w) near b1, the map R̃ assumes
form

z = λ2, ζ = σ2, where σ =
ξ + 2i

χ2ξ − 2iχ
.

So

detDR = 4λσ
∂σ

∂ξ
.

Moreover,
∂χ

∂ξ
= λ, and an elementary calculation yields:

∂σ

∂ξ
≍ λ near L̃2∩Lexc(a+).

�

We can now estimate how the volume is transformed near L2:

Lemma 6.4. Any point x ∈ L̃2 r L0 has a neighborhood D such that for any

measurable set X ⊂ C̃P
2
, we have:

vol(R−1X ∩D) ≤ C(volX)1/3

Proof. By Lemmas 6.2 and 6.3, there are coordinates (λ, ξ) near x such that L̃2 =

{λ = 0}, ξ(x) = 0, and detDR̃ ≍ λ2. Let us take a bidisk neighborhood of x:

D = {|λ| < ǫ} × {|ξ| < ǫ}.
For any measurable set Y that is sufficiently close to x we have:

vol(R̃(Y )) ≍
∫

Y v

∫

|λ|<ǫ

|λ|4(areaY h
ξ ) d area(λ) d area(ξ),

where Y v is the projection of Y onto L2) (in the bidisk coordinates) and Y h
ξ are the

slices of Y by the horizontal sections of D. But the inner integral above is exactly
(1/9) area(Q3(Y

h
ξ )), where Q3(λ) = λ3. By Lemma C.2, it is bounded from below

by (1/9)(areaY h
ξ )3. By the Hölder inequality,

(areaY v)2
∫

Y v

(areaY h
ξ )3 d area(ξ) ≥

(∫

Y v

(areaY h
ξ ) d area(ξ)

)3

= (volY )3.

The conclusion follows, since areaY v > (areaY v)2. �
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Let us also take care of one special point:

Lemma 6.5. The intersection point L2 ∩ L0 has a neighborhood D such that for
any measurable set X ⊂ CP2, we have:

vol(R−1X ∩D) ≤ C(volX)1/3

Proof. The proof will be very similar to Lemma 6.4.
Let ξ = W/U and η = V/U . Near {x} = L2∩L0, we will use the local coordinates

(τ = ξ + 1, η) and near b0 we use (ξ, η). We have

ξ′ =

(
η2 + (τ − 1)2

1 + η2

)2

, η′ =
τ2η2

(1 + η2)2
,

where (ξ′, η′) = R(τ, η). Sufficiently close to x we have detDR ≍ ητ2. Let D =
{|τ | < ǫ} × {|η| < ǫ}. If Y ⊂ D, we have

vol(R(Y )) ≍
∫

Y v

|η|2
∫

|τ |<ǫ

|τ |4(areaY h
η ) d area(τ) d area(η).

As in the proof of Lemma 6.4, we must show that

∫

Y v

|η|2(areaY h
η )3d area(η) ≥ C(volY )3.

The Hölder Inequality gives that

(∫

Yv

1/|η| d area(η)
)2 ∫

Y v

|η|2(areaY h
η )3 d area(η) ≥

(∫

Y v

(areaY h
η ) d area(η)

)3

= (volY )3.

The result follows since 1/|η| is locally integrable. �

Corollary 6.6. For any measurable set X on distance at least d from the fixed
points e, e′, we have:

vol(R−1X) ≤ C(d)(volX)1/4.

Proof. The only critical value in X not covered by Lemmas 6.1, 6.4 and 6.5 is
0. But at the corresponding critical points, ±(i, i), the map R is composed of a
diffeomorphism and the squaring map (u,w) 7→ (u2, w2). It follows that at these
points the volume is transformed with exponent 4. �

Appendix A. Elements of complex geometry

We are primarily interested in rational maps between complex projective spaces
in two dimensions. However, greater generality will be useful in many circumstances
(for example, in order to study a rational mapping near its indeterminate points).
Much of the below material can be found with greater detail in [Da, De, GH, Shaf,
K, La].
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A.1. Projective varieties and rational maps. Let π : Ck+1 r {0} → CPk

denote the canonical projection. Given z ∈ CPk, any ẑ ∈ π−1(z) is called a lift of z.

One calls V ⊂ CPk a (projective) algebraic hypersurface if there is a homogeneous
polynomial P : Ck+1 → C so that

V = {z ∈ CPk : P (ẑ) = 0}.
More generally, a (projective) algebraic variety is the locus satisfying a finite number
homogeneous polynomial equations. Any algebraic variety V has the structure of
a smooth manifold away from a proper subvariety Vsing ⊂ V and the dimension of
V rVsing is called the dimension of V . One calls V a projective manifold if Vsing = ∅.

A rational map R : CPk → CPl is given by a homogeneous polynomial map
R̂ : Ck+1 → Cl+1 for which we will assume the components have no common
factors. One defines R(z) := π(R̂(ẑ)) if R̂(ẑ) 6= 0, and otherwise we say that z

is an indeterminacy point for R. Since R̂ is homogeneous, the above notions are

well-defined. Because the components of R̂ have no common factors, the set of
indeterminate points I(R) is a projective variety of codimension greater than or
equal to two.

Given two projective varieties, V ⊂ CPk and W ⊂ CPl, a rational map R : V →
W is the restriction of a rational map R : CPk → CPl such that R(V r I(R)) ⊂ W .
As above, I(R) ⊂ V is a projective subvariety of codimension greater than or equal
to two in V . If I(R) = ∅, we say that R is a (globally) holomorphic (regular) map.

A rational mapping R : V → W between projective manifolds is dominant if
there is a point z ∈ V r I(R) such that rankDR(z) = dimW .

We will call a subvariety U ⊂ V a collapsing variety for R if dim(R(U)) < dim(U).

Lemma A.1. Let R : V → W be a dominant rational map between projective
manifolds of the same dimension. If z is not an indeterminate point for R and not
on any collapsing variety for R, then R is locally surjective at z.

Proof. The result will follow from the basic local properties of complex analytic
subsets of Ck; See, for example, [De, Ch. II, §4.2] or [GH, Ch. 0.1].

Let z∗ ∈ V satisfy the hypotheses of the Lemma. Choose local coordinates
z = (z1, . . . , zm) in a neighborhood of z∗ and w = (w1, . . . , wm) in a neighborhood
R(z∗). Together, form local coordinates on V × W in some small neighborhood
N = Nz × Nw of (z∗, R(z∗)). Within N , the graph of R is a complex analytic
variety G of dimension m, since R is dominant. Without loss of generality, we
suppose that z∗ = R(z∗) = 0.

By choosing N sufficiently small, we can suppose that I(R) ∩N = ∅ and that

G ∩ {w = 0} = {(0, 0)},(A.1)

since z∗ is not on a collapsing variety. In particular, G does not contain the zm-axis.
Let πm : N → N ∩ {zm = 0} be the projection. Using the Weierstrass Preparation
Theorem and the resultant, as described on the top of p. 13 from [GH], we see that
πm(G) is a dimension m variety within N ∩{zm = 0}. Moreover, by (A.1), we have
that

πm(G) ∩ {w = 0} = {(z̃, w) = (0, 0)}.
(Here z̃ = (z1, . . . , zm−1).) Repeating this procedure m− 1 more times, we see that
π : G ∩N → Nw is a branched covering. In particular, it is surjective. �
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A.2. Divisors. Divisors are a generalization of algebraic hypersurfaces that behave
naturally under dominant rational maps. We will present an adaptation of material
from [Da, Ch. 3] and [Shaf] suitable for our purposes.

A divisor D on a projective manifold V is a collection of irreducible hypersurfaces
C1, . . . , Cr with assigned integer multiplicities k1, . . . , kr. One writes D as a formal
sum

D = k1C1 + · · ·+ krCr.(A.2)

Alternatively, D can be described by choosing an open cover {Ui} of V and rational
functions gi : Ui → C with the compatibility property that gi/gj is a non-vanishing
holomorphic function on Ui∩Uj 6= ∅. Taking zeros and poles of the gi counted with
multiplicities, we obtain representation (A.2).

If f : V → W is a dominant holomorphic map, and D = {Ui, gi} is a divisor on
W , the pullback f∗D is the divisor on V given by {f−1Ui, f

∗gi} ≡ {f−1Ui, gi ◦ f}.
If R : V → W is a dominant rational map (with I(R) 6= ∅), we define R∗D by first
pull-backing D under R : V r I(R) → W . Since I(R) is a finite collection of points,
the result (in terms of local defining functions) can be extended trivially to obtain
a divisor R∗D on all of V . Since the trivial extension of a divisor is unique, the
result is well-defined.

A.3. Blow-ups. Given a pointed projective surface (V, p), the blow-up of V at p is

another projective surface Ṽ with a holomorphic projection π : Ṽ → V such that

• Lexc(p) := π−1(p) is a complex line CP1 called the exceptional divisor;

• π : Ṽ r Lexc(p) → V r {p} is a biholomorphic map.

See [GH, Shaf].
The construction has a local nature near p, so it is sufficient to provide it for

(C2, 0). The space of lines l ⊂ C2 passing through the origin is CP1, by definition.

Then C̃2 is realized as the surface X in C2×CP1 given by equation {(u, v) ∈ l} with
the natural projection (u, v, l) 7→ (u, v). In this model, points of the exceptional

divisor Lexc = {(0, 0, l) : l ∈ CP1} get interpreted as the directions l at which the
origin is approached.

Any line l ⊂ C2 naturally lifts to the “line” l̃ = {(u, v, l) : (u, v) ∈ l} in C̃2

crossing the exceptional divisor at (0, 0, l).6 Moreover, C̃2 r l̃ is isomorphic to C2.
Indeed, let φ(u, v) = au + bv a linear functional that determines l. It is linearly
independent from one of the coordinate functionals, say with v (so a 6= 0). Then

(u, v, l) 7→ (φ, κ := v/φ)

is a local chart that provides a desired isomorphism. In particular, two charts
corresponding to the coordinate axes in C2 provide us with local coordinates (u, κ =
v/u) and (v, κ = u/v) which are usually used in calculations.

The value of this construction lies in the fact that it can be used to resolve the
indeterminacy of a rational map; see [Shaf, Ch. IV, §3.3]. Moreover, any analytic

curve C on V lifts to an analytic curve C̃ := π−1(C r {p}) on Ṽ , known as the
proper transform of C, which tends to have milder singularities than C; see [Shaf,
Ch. IV, §4.1]. Taking multiplicities into consideration, the proper transform of a
divisor D is defined similarly.

6This turns C̃2 into a line bundle over CP1 known as the tautological line bundle.
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A.4. Divisors on CPm, Degree, and the Co-tautological line bundle. As-
sociated to any homogeneous polynomial P : Cm+1 → C is a divisor DP given
by {Ui, P ◦ σi}, where the {Ui} form an open covering of CPm that admits local
sections σi : Ui → Cm+1 r {0} of the canonical projection π. Furthermore, every
divisor can be described as a difference D = DP −DQ for appropriate P and Q.
The following simple formula describes the pull-back:

R∗DP = DR̂∗P ≡ DP◦R̂,(A.3)

where R̂ : Cm+1 → Cm+1 is the lift of R.
The degree of a divisorD = DP−DQ is degD = degP−degQ. On CP2, Bezout’s

Theorem asserts that two divisors D1 and D2 intersect degD1 ·degD2 times in CP2,
counted with appropriate intersection multiplicities. Suppose that D1 and D2 are
irreducible algebraic curves assigned multiplicity one. Then, an intersection point z
is assigned multiplicity one if and only if both curves are non-singular at z, meeting
transversally there. See [Shaf, Ch. IV].

The algebraic degree of a rational map R : CPm → CPm (denoted degR) is the

common degree of the homogeneous equations in R̂. Equation (A.3) implies

Lemma A.2. Given a dominant rational map R : CPm → CPm and a divisor D
in CPm, we have:

deg(R∗D) = degR · degD.

We can also describe divisors on CPm using sections of appropriate line bundles:
The fibers of π : Cm+1 r {0} → CPm are punctured complex lines C∗. Com-

pactifying each of these lines at infinity, we add to Cm+1 r {0} the line at infinity
L∞ ≈ CPm obtaining the total space (Cm+1)∗ ∪L∞ ≈ (CPm+1)∗ := CPm+1 r {0}.
The projection naturally extends to π : (CPm+1)∗ → CPm, whose fibers are com-
plex lines C. It is called the co-tautological line bundle over CPn.

In homogeneous coordinates (z0 : · · · : zm : t) on CPm+1, this projection is just

(A.4) π : (z0 : · · · : zm : t) 7→ (z0 : · · · : zm),

with L∞ = {t = 0}, (Cm+1)∗ = {t = 1}, and the map (z : t) 7→ t/‖z‖ parameter-
izing the fibers (here ‖z‖ stands for the Euclidean norm of z ∈ Cm+1 r {0}). This
line bundle is endowed with the natural Hermitian structure: ‖(z : t)‖ = |t|/‖z‖.

Any non-vanishing linear form Y onCn+1 determines a section of the co-tautological
line bundle:

(A.5) σY : z 7→ (z : Y (z)), z ∈ Cn+1.

The divisor DY (a projective line counted with multiplicity 1) is precisely the zero
divisor of σY .

The dth tensor power of the co-tautological bundle can be described as follows.
Its total space Xd is the quotient of (Cm+2)∗ by the C∗-action

(z0, . . . , zm, t) 7→ (λz0, . . . , λzm, λdt), λ ∈ C∗.

We denote the equivalence class of (ẑ, t) using the “homogeneous” coordinates
(ẑ : t). The projection Xd → CPm is natural, as above (A.4). A non-vanishing
homogeneous polynomial P on Cm+1 of degree d defines a holomorphic section σP

of this bundle given by σP (z) = (ẑ : P (ẑ)).
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More generally, any divisor D = DP −DQ defines a section σD of the deg(D)-th
tensor power of the co-tautological line bundle, defined by σD(z) = (ẑ : P (ẑ)/Q(ẑ)).
One can recover D from σD by taking its zero divisor.

A.5. Currents. We will now give a brief background on currents; for more details
see [dR, Le] and the appendix from [Si]. Currents are naturally defined on general
complex (or even smooth) manifolds, however to continue our discussion of rational
maps, divisors, etc, we restrict our attention to projective manifolds.

A (1, 1)-current ν on V is a continuous linear functional on (m− 1,m− 1)-forms
with compact support. It can be also defined as a generalized differential (1, 1)-form∑

µijdzidz̄j with distributional coefficients.
A basic example is the current [C] of integration over the regular points Creg of

an algebraic hypersurface C:

ω 7→
∫

Creg

ω,

where ω is a test (m− 1,m− 1)-form. The current of integration over a divisor D
is defined by extending linearly.

The space of currents is given the distributional topology: νn → ν if νn(ω) →
ν(ω) for every test form ω.

A differential (m − 1,m − 1)-form ω is called positive if its integral over any
complex subvariety is non-negative. A (1,1)-current µ is called positive if µ(ω) ≥ 0
for any positive (1,1)-form. A current µ is called closed if dµ = 0, where the
differential d is understood in the distributional sense.

In this paper, we focus on closed, positive (1, 1) currents. They have a simple
description in terms of local potentials, rather analogous to the definition of divisors.

Recall that ∂ and ∂̄ stand for the holomorphic and anti-holomorphic parts of the
external differential d = ∂+ ∂̄. Their composition ∆p = i

π∂∂̄ is the pluri-Laplacian7

Given a C2-function h, the restriction of ∆ph to any non-singular complex curve
X is equal to the form ∆(h|X)dz ∧ dz̄, where z is a local coordinate on X and ∆
is the usual Laplacian in this coordinate.

If U is an open subset of Cm and h : U → [−∞,∞) is a plurisubharmonic (PSH)
function, then its pluri-Laplacian ∆ph is a closed (1,1)-current on U . Conversely,
the ∂∂̄-Poincaré Lemma asserts that every closed, positive (1, 1)-current on U is
obtained this way.

Therefore, any closed positive (1, 1) current ν on a manifold V can be described
using an open cover {Ui} of V together with PSH functions vi : Ui → [−∞,∞) that
are chosen so that ν = ∆pvi in each Ui. The functions vi are called local potentials
for ν and they are required to satisfy the compatibility condition that vi − vj is
pluriharmonic (PH) on any non-empty intersection Ui ∩ Uj 6= ∅. The support of ν
is defined by:

supp ν := {z ∈ V : if z ∈ Uj then vj is not pluriharmonic at z}.
The compatibility condition assures that that above set is well-defined.

The Poincaré-Lelong formula describes the current of integration over a divisor
D = {Ui, gi} by the system of local potentials vi := log |gi|. I.e., on each Ui we

7Many authors introduce real operators d = ∂ + ∂̄ and dc = i
2π

(∂̄ − ∂) and denote the pluri-
Laplacian by ddc. We use ∆p to avoid confusion between the operator d and the algebraic degree

of a map.
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have [D] = ∆p log |gi|. The result is closed (1, 1) current, which is positive iff D is
effective (i.e. the multiplicities ki, . . . , kr are non-negative).

Suppose R : V → W is a dominant rational map and ν is a closed-positive (1, 1)
current on W . The pullback R∗ν is closed positive (1, 1) current on V , defined as
follows. First, one obtains a closed positive (1, 1) currentR∗ν defined on V rI(R) by
pulling-back the system of local potentials defining ν under R : V rI(R) → W . One
then extends R∗ν trivially through I(R), to obtain a closed, positive (1, 1) current
defined on all of V . (By a result of Harvey and Polking [HaPo], this extension is
closed.) See [Si, Appendix A.7] for further details. Pullback is continuous with
respect to the distributional topology.

Similarly to divisors, there is a particularly convenient description of closed,
positive (1, 1) currents on CPm. Associated to any PSH function H : Cm+1 →
[−∞,∞), having the homogeneity (for some c > 0) that

H(λẑ) = c log |λ|+H(ẑ),(A.6)

is a closed, positive (1, 1) current, denoted by π∗(∆pH), given by the system of
local potentials {Ui, H ◦ σi}, where the {Ui} form an open covering of CPm that
admits local sections σi : Ui → Cm+1 r {0} of the canonical projection π. (In each
Ui, it is defined by π∗(∆pH) = ∆p H ◦ σi.) Moreover, every closed positive (1, 1)
current on CPm is described in this way; See [Si, Thm A.5.1]. The function H is
called the pluripotential of π∗(∆pH).

If R : CPm → CPm is a rational map, the action of pull-back is described by

R∗π∗(∆pH) = π∗(∆p H ◦R).(A.7)

Remark A.1. One can imagine adapting the description of divisors on CPm in terms
of sections of (tensor powers) of the co-tautological bundle to develop a description
of closed positive (1, 1)-currents on CPm by using PSH sections of appropriate real
line bundles. However, since CPm is simply-connected, every real line bundle is
trivial. Hence, this approach does not really provide any further insights.

A.6. Kobayashi hyperbolicity and normal families. In §4 we use the Kobayashi
metric in order to prove that the iterates Rn form a normal family on certain sub-
spaces of CP2. Here we recall the relevant definitions and some important results
that we use. The reader can consult the books [K, La] and the original papers by
M. Green [G1, G2] for more details. For more dynamical applications, see e.g. [Si].

The Kobayashi pseudometric is a natural generalization of the Poincaré metric
on Riemann surfaces. Let ‖ · ‖ stand for the Poincaré metric on the unit disk D.
Let M by a complex manifold. Pick a a tangent vector ξ ∈ TM , and let H(ξ) be
a family of holomorphic curves γ : D → M tangent to the line C · ξ at γ(0). Then
Df(v) = ξ for some v ≡ vγ ∈ T0D, and the Kobayashi pseudometric is defined to
be:

dsM (ξ) = infγ∈H(ξ)‖vγ‖.(A.8)

The Kobayashi pseudometric is designed so that holomorphic maps are distance
decreasing: if f : U → M is holomorphic then dsM (Df(ξ)) ≤ dsU (ξ).

The reason for “pseudo-” is that for certain complex manifolds M , ds(ξ) can
vanish for some non-vanishing tangent vectors ξ 6= 0. For example, ds identically
vanishes on Cn or CPn. A complex manifold M is called Kobayashi hyperbolic if
ds is non-degenerate: ds(ξ) > 0 for any non-vanishing ξ ∈ TM . Then it induces a
(Finsler) metric on M .
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Let N be a compact complex manifold. Endow it with some Hermitian metric
| · |N . A complex submanifold M ⊂ N is called hyperbolically embedded in N if the
Kobayashi pseudometric on M dominates the Hermitian metric on N , i.e., there
exists c > 0 such that dsM (ξ) ≥ c|ξ|N for all ξ ∈ TM . Obviously, M is Kobayashi
hyperbolic in this case.

A complex manifold M is called Brody hyperbolic if there are no non-constant
holomorphic mappings f : C → M . If M is Kobayashi hyperbolic, it is also Brody
hyperbolic, but the converse is generally not true unless M is compact.

An open subset of CP2 that is Kobayashi hyperbolic, but not hyperbolically
embedded in CP2 is described in [K, Example 3.3.11] and an open subset of C2

that is Brody hyperbolic but not Kobayashi hyperbolic is described in [K, Example
3.6.6].

A family F of holomorphic mappings from a complex manifold U to a complex
manifold M is called normal if every sequence in F either has a subsequence con-
verging locally uniformly or a subsequence that diverges locally uniformly to infinity
in M . In the case that M is embedded into some compact manifold Z, a stronger
condition is that F is precompact in Hol(U,Z) (where Hol(U,Z) is the space of
holomorphic mappings U → Z endowed with topology of uniform convergence on
compact subsets of U).

Proposition A.3. Let M be a hyperbolically embedded complex submanifold of
a compact complex manifold N . Then for any complex manifold U , the family
Hol(U,M) is precompact in Hol(U,N).

See Theorem 5.1.11 from [K].
The classical Montel’s Theorem asserts that the family of holomorphic maps D →

Cr{0, 1} is normal (as Cr{0, 1} is a hyperbolic Riemann surface). It is a foundation
for the whole Fatou-Julia iteration theory. Several higher dimensional versions of
Montel’s Theorem, due to M. Green [G1, G2], are now available. Though their
role in dynamics is not yet so prominent, they have found a number of interesting
applications. Below we will formulate two particular results used in this paper (see
§4). The following is Theorem 2 from [G1]:

Theorem A.4. Let X be a union of (possibly singular) hypersurfaces X1, . . . , Xm

in a compact complex manifold N . Assume N rX is Brody hyperbolic and

Xi1 ∩ · · · ∩Xik r (Xj1 ∪ · · ·Xjl) is Brody hyperbolic

for any choice of distinct multi-indices {i1, . . . , ik, j1, . . . , jl} = {1, . . . ,m}. Then
N rX is a complete hyperbolically embedded submanifold of N .

In the last section of [G1], the following result is proved:

Theorem A.5. Let M = CP2 r (Q ∪X1 ∪X2 ∪X3), where Q is a non-singular
conic andX1, X2, X3 are lines. Then any non-constant holomorphic curve f : C → M
must lie in a line L that is tangent to Q at an intersection point with one of the
lines, Xi, and that contains the intersection point Xj ∩Xl of the other two lines.

The configurations that appear in this theorem are related to amusing projective
triangles:
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A.7. Self-dual triangles. Let Q(z) =
∑

qijzizj be a non-degenerate quadratic

form in E ≈ C3, and X = {Q = 0} be the corresponding conic in CP2. The form
Q makes the space E Euclidean, inducing duality between points and lines in CP2.
Namely, to a point z = (z0 : z1 : z2) corresponds the line Lz = {ζ : Q(z, ζ) = 0}
called the polar of z with respect to X (here we use the same notation for the
quadratic form and the corresponding inner product). Geometrically, this duality

looks as follows. Given a point z ∈ CP2, there are two tangent lines from z to X .
Then Lz is the line passing through the corresponding tangency points. (In case
z ∈ X , the polar is tangent to X at z).

Three points zi in CP2 in general position are called a “triangle” ∆ with vertices
zi. Equivalently, a triangle can be given by three lines Li in general position, its
“sides”. Let us say that ∆ is self-dual (with respect to the conic X) if its vertices
are dual to the opposite sides.

Lemma A.6. A triangle ∆ with vertices zi is self-dual if and only if the corre-
sponding vectors ẑi ∈ E form an orthogonal basis with respect to the inner product
Q.

All three sides of a self-dual triangle satisfy the condition of Theorem A.5, so
they can give us exceptional holomorphic curves C → CP2 r (Q ∪X1 ∪X2 ∪X3).

Remark A.2. In a similar way one can define self-dual tetrahedra in higher dimen-
sions.

Appendix B. Elements of complex dynamics in several variables

We now provide a brief background on the dynamics of rational maps in several
variables. We refer the reader to the survey [Si] for more details.

B.1. Algebraic Stability. The following statement appears in [Si, Prop. 1.4.3]:

Lemma B.1. Let R and S be two rational maps CPm → CPm. Then, deg(S◦R) =
deg(S) · deg(R) if and only if there is no algebraic hypersurface V ⊂ CPm that is
collapsed by R to an indeterminate point of S.

A rational mapping R : CPm → CPm is called algebraically stable if there is
no integer n and no collapsing hypersurface V ⊂ CPm so that Rn(V ) is contained
within the indeterminacy set of R, [Si, p. 109]. A consequence of Lemma B.1 is
that R is algebraically stable if and only if degRn = (degR)n.

A direct consequence of Lemma A.2 is:

Lemma B.2. If R is an algebraically stable map, then for any divisor D we have:

(B.1) deg((Rn)∗D) = (degR)n · degD
B.2. Green potential.

Theorem B.3 (see [Si],Thm 1.6.1). Let R : CPm → CPm be an algebraically stable
rational map of degree d. Then the limit

G = lim
n→∞

1

dn
log ‖R̂n‖

exists in L1
loc(C

3) and determines a plurisubharmonic function. This function sat-
isfies the following equivariance properties:

(B.2) G(λz) = G(z) + log |λ|, λ ∈ C∗,
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G ◦ R̂ = dG.

It is called the Green potential of R.

B.3. Green current. Applying the pluri-Laplacian ∆p to the Green potential, we
obtain:

Theorem B.4 (see [Si],Thm 1.6.1). Let R : CPm → CPm be an algebraically stable
rational map of degree d. Then mc = π∗(∆pG) is a closed positive (1,1)-current on

CP2 satisfying the equivariance relation: R∗mc = d ·mc.

The current mc is called the Green current of R.
The set of regular8 points for an algebraically stable rational map R : CPm → CPm

is:

N :=

{
x ∈ CPm : there exits neighborhoods U of x and V of I(R)

so that fn(U) ∩ V = ∅ for every n ∈ N.

}

The regular points form an open subset of CPm.
One primary interest in the Green currentmc is the following connection between

its support suppmc and the Julia set JR. (See §4 for the definitions of the Fatou and
Julia sets.) Note that suppmc is closed and backwards invariant, R−1 suppmc ⊂
suppmc, since R∗mc = d ·mc.

Theorem B.5 (see [Si],Thm 1.6.5). Let f : CPm → CPm be an algebraically stable
rational map. Then:

JR ∩N ⊂ suppmc ⊂ JR.

An algebraically stable rational map R : CP2 → CP2 for which suppmc ( JR is
given in [FS1, Example 2.1].

Appendix C. Complex Whitney folds

To simplify calculations near the critical points, it is convenient to bring R to a
normal form. A complex Whitney fold is generic and the simplest one (see [AGV]).
Let R : (C2, 0) → (C2, 0) be a germ of holomorphic map with a critical point at 0.
The map R (and the corresponding critical set) is called a complex Whitney fold if

(W1) The critical set L is a non-singular curve near 0;
(W2) DR(0) has rank 1 and KerDR(0) is transverse to L;
(W3) The second differentialD2R(0) is not vanishing in the direction of KerDR(0).

The following is a standard result from singularity theory:

Lemma C.1. A Whitney fold can be locally brought to a normal form (u,w) 7→
(u,w2) in holomorphic coordinates.

We now consider how volume is transformed under a mapping near a Whitney
fold. Let us begin with the 1D power map:

Lemma C.2. Let Q : w 7→ wd. For any measurable set Y ⊂ C,

area(Q−1X) ≤ (areaX)1/d.

8They are called normal points in [Si], but we prefer regular to avoid confusion with the notion
of normal families.
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Proof. Of course, we can assume that areaX > 0. Let us take the radius r > 0
such that πr2 = areaX . Let X− = X ∩ Dr, X+ = X rX−, Xc = Dr rX−. Then

(areaX)1/d = (areaDr)
1/d = area(Q−1Dr) = area(Q−1X−) + area(Q−1Xc) ≥

area(Q−1X−) + d JacQ−1(r) areaXc ≥ area(Q−1X−) + area(Q−1X+) = area(Q−1X).

�

Corollary C.3. Let L be a complex Whitney fold for a map R, and let L′ ⋐ L.
Then for any measurable set Y sufficiently close to R(L′), we have:

vol(R−1X) ≤ C
√
volX,

where R−1 is the one-to-two branch of the inverse map associated to the fold, and
C = C(R,L, L′).

Proof. As the assertion is local, we can use the Whitney normal coordinates (u,w)
near L′ (Lemma C.1). Let Xh be the projection of X (in this coordinates) onto
the u-axis L, and let Xv(u) be the slice of X be the vertical complex line through
(u, 0) ⊂ L. Then

vol(R−1X) ≤
∫

Xh

area(Q−1(Xv(u))) d area(u)

≤
∫

Xh

√
areaXv(u)d area(u) ≤

√
areaXh · volX,

where the estimates follow from Fubini, Lemma C.2, and Cauchy-Schwarz respec-
tively. �

Appendix D. Open Problems

Problem D.1 (Existence of Fisher and Lee-Yang-Fisher distributions). Con-
sider a sequence of graphs Γn for which van Hove’s Theorem [vH, R2] justifies ex-
istence of the limiting free energy (2.5). Under what circumstances does the limit
(2.7) exist? As explained in §2.2, this would justify consideration of the limiting
distributions of Lee-Yang-Fisher zeros for more general lattices.

For Zd, existence of the limit (2.7) seems to be open if d ≥ 2.

Problem D.2 (Geometric properties of the Lee-Yang-Fisher current). The
theory of geometric currents has become increasingly useful in complex dynamics,
see [RS, BLS, Du, Di, dT, DDG] as a sample.

The Green current mc is strongly laminar in a neighborhood of B. The structure
is given by the stable lamination of B (see §3.3) together with transverse measure
obtained under holomomy from the Lebesgue measure on B. However, mc is not
strongly laminar in a neighborhood of the topless Lee-Yang “cylinder” C1.

One can see this also follows: a disc within the invariant line Linv centered at
Linv ∩ B is within the stable lamination of B. Therefore, an open neighborhood
within Linv of Linv ∩ C1 would have to be a leaf of the lamination. However, mc

restricts to Linv in a highly non-trivial way, coinciding with the measure of maximal
entropy for R|Linv. (It is supported on the Julia set shown in Figure 1.3).

Does mc have a weaker geometric structure? For example, is it non-uniformly
laminar [BLS, Du] or woven [Di, dT, DDG]?
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Problem D.3 (Support for the measure of maximal entropy). What can be
said about the support of the measure of maximal entropy ν that was discussed in
§4.3? Is the critical fixed point bc ∈ Linv within supp ν? A positive answer to this
question is actually equivalent to C∩supp ν 6= ∅ and also to supp ν∩Linv = JR|Linv

.

Problem D.4 (Fatou Set). In Theorem 4.7 we showed that certain “solid cylinders”
are in Ws(e) and Ws(e′). Computer experiments suggest a much stronger result:

Conjecture. Ws(e) ∪Ws(e′) is the entire Fatou set for R.

Problem D.5 (Julia Set). Proposition 4.2 gives that in a neighborhood of B, JR
is a C∞ 3-manifold. What can be said about the global topology of JR?

Remark D.1. Note that each of the above problems D.2 – D.5 has a natural coun-
terpart for R.
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[AGV] V. I. Arnol’d, S. M. Gusĕın-Zade, and A. N. Varchenko. Singularities of differentiable
maps. Vol. I, volume 82 of Monographs in Mathematics. Birkhäuser Boston Inc., Boston,
MA, 1985. The classification of critical points, caustics and wave fronts, Translated from the
Russian by Ian Porteous and Mark Reynolds.

[BLS] E. Bedford, M. Yu. Lyubich, and J. Smillie. Polynomial diffeomorphisms of C2. IV. The
measure of maximal entropy and laminar currents. Invent. Math., 112(1):77–125, 1993.

[BS] E. Bedford and J. Smillie. Polynomial diffeomorphisms of C2: currents, equilibrium measure
and hyperbolicity. Invent. Math., 103(1):69–99, 1991.

[Be] P. Berger. Persistence of laminations. Bull. Braz. Math. Soc. (N.S.), 41(2):259–319, 2010.
[BLR1] P. Bleher, M. Lyubich, and R. Roeder. Lee-Yang Zeros for the DHL and 2D Rational

Dynamics, I. Foliation of the Physical Cylinder.
Preprint available at: http://arxiv.org/abs/1009.4691

[Br] H. Brolin. Invariant sets under iteration of rational functions. Ark. Mat., 6:103–144 (1965),
1965.

[C] U. Cegrell. Removable singularities for plurisubharmonic functions and related problems.
Proc. London Math. Soc. (3), 36(2):310–336, 1978.

[Da] V. I. Danilov. Algebraic varieties and schemes. In Algebraic geometry, I, volume 23 of En-
cyclopaedia Math. Sci., pages 167–297. Springer, Berlin, 1994.

[DDG] J. Diller, R. Dujardin, and V. Guedj. Dynamics of meromorphic maps with small topo-
logical degree I: from cohomology to currents. Preprint, see arXiv:0803.0955.

[De] J-P. Demailly Complex analytic and algebraic geometry.
Availible at: http://www-fourier.ujf-grenoble.fr/~demailly/books.html.
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