Welcome to the preprint server of the Institute for Mathematical Sciences at Stony Brook University.

The IMS preprints are also available from the mathematics section of the arXiv e-print server, which offers them in several additional formats. To find the IMS preprints at the arXiv, search for Stony Brook IMS in the report name.
 

PREPRINTS IN THIS SERIES, IN PDF FORMAT.
* Starred papers have appeared in the journal cited.


ims17-07
Jeffrey Brock, Christopher Leininger, Babak Modami, Kasra Rafi
Limit sets of Weil-Petersson geodesics with nonminimal ending laminations
Abstract:

In this paper we construct examples of Weil-Petersson geodesics with nonminimal ending laminations which have 1-dimensional limit sets in the Thurston compactification of Teichmüller space.

rXiv:1711.01663v2

ims17-06
Konstantin Bogdanov, Khudoyor Mamayusupov, Sabyasachi Mukherjee, Dierk Schleicher
Antiholomorphic perturbations of Weierstrass Zeta functions and Green's function on tori
Abstract:

In \cite{BeEr}, Bergweiler and Eremenko computed the number of critical points of the Green's function on a torus by investigating the dynamics of a certain family of antiholomorphic meromorphic functions on tori. They also observed that hyperbolic maps are dense in this family of meromorphic functions in a rather trivial way. In this paper, we study the parameter space of this family of meromorphic functions, which can be written as antiholomorphic perturbations of Weierstrass Zeta functions. On the one hand, we give a complete topological description of the hyperbolic components and their boundaries, and on the other hand, we show that these sets admit natural parametrizations by associated dynamical invariants. This settles a conjecture, made in \cite{LW}, on the topology of the regions in the upper half plane ℍ where the number of critical points of the Green's function remains constant.

arXiv:1612.01244v3

D. Dudko, M. Lyubich, and N. Selinger
Pacman renormalization and self-similarity of the Mandelbrot set near Siegel parameters
Abstract:

In the 1980s Branner and Douady discovered a surgery relating various limbs of the Mandelbrot set. We put this surgery in the framework of "Pacman Renormalization Theory" that combines features of quadratic-like and Siegel renormalizations. We show that Siegel renormalization periodic points (constructed by McMullen in the 1990s) can be promoted to pacman renormalization periodic points. Then we prove that these periodic points are hyperbolic with one-dimensional unstable manifold. As a consequence, we obtain the scaling laws for the centers of satellite components of the Mandelbrot set near the corresponding Siegel parameters.

A. Dudko and S. Sutherland
On the Lebesgue measure of the Feigenbaum Julia set
Abstract:

We show that the Julia set of the Feigenbaum polynomial has Hausdorff dimension less than 2 (and consequently it has zero Lebesgue measure). This solves a long-standing open question.

M. Lyubich and H. Peters
Structure of partially hyperbolic Hènon maps
Abstract:

We consider the structure of substantially dissipative complex Hènon maps admitting a dominated splitting on the Julia set. The dominated splitting assumption corresponds to the one-dimensional assumption that there are no critical points on the Julia set. Indeed, we prove the corresponding description of the Fatou set, namely that it consists of only finitely many components, each either attracting or parabolic periodic. In particular there are no rotation domains, and no wandering components. Moreover, we show that $J = J^\star$ and the dynamics on $J$ is hyperbolic away from parabolic cycles.

M. Martens and B. Winkler
Instability of renormalization
Abstract:

In the theory of renormalization for classical dynamical systems, e.g. unimodal maps and critical circle maps, topological conjugacy classes are stable manifolds of renormalization. Physically more realistic systems on the other hand may exhibit instability of renormalization within a topological class. This instability gives rise to new phenomena and opens up directions of inquiry that go beyond the classical theory. In phase space it leads to the coexistence phenomenon, i.e. there are systems whose attractor has bounded geometry but which are topologically conjugate to systems whose attractor has degenerate geometry; in parameter space it causes dimensional discrepancy, i.e. a topologically full family has too few dimensions to realize all possible geometric behavior.

ims16-05
Araceli Bonifant, John Milnor
On Real and Complex Cubic Curves
Abstract:

An expository description of smooth cubic curves in the real or complex projective plane.

arXiv:1603.09018v2

M. Lyubich and S. Merenkov
Quasisymmetries of the basilica and the Thompson group
Abstract:
We give a description of the group of all quasisymmetric self-maps of the Julia set of $f(z)=z^2-1$ that have orientation preserving homeomorphic extensions to the whole plane. More precisely, we prove that this group is the uniform closure of the group generated by the Thompson group of the unit circle and an inversion. Moreover, this result is quantitative in the sense that distortions of the approximating maps are uniformly controlled by the distortion of the given map.
M. Lyubich, R. Radu, and R. Tanase
Hedgehogs in higher dimensions and their applications
Abstract:

In this paper we study the dynamics of germs of holomorphic diffeomorphisms of $(\mathbb{C}^{n},0)$ with a fixed point at the origin with exactly one neutral eigenvalue. We prove that the map on any local center manifold of $0$ is quasiconformally conjugate to a holomorphic map and use this to transport results from one complex dimension to higher dimensions.

T. Firsova, M. Lyubich, R. Radu, and R. Tanase
Hedgehogs for neutral dissipative germs of holomorphic diffeomorphisms of $(\mathbb{C}^{2},0)$
Abstract:

We prove the existence of hedgehogs for germs of complex analytic diffeomorphisms of $(\mathbb{C}^{2},0)$ with a semi-neutral fixed point at the origin, using topological techniques. This approach also provides an alternative proof of a theorem of Pérez-Marco on the existence of hedgehogs for germs of univalent holomorphic maps of $(\mathbb{C},0)$ with a neutral fixed point.

Pages