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SEMI-PARABOLIC TOOLS FOR HYPERBOLIC HÉNON MAPS AND

CONTINUITY OF JULIA SETS IN C2

REMUS RADU1 AND RALUCA TANASE1

abstract. We prove some new continuity results for the Julia sets J and J+ of the complex
Hénon map Hc,a(x, y) = (x2 + c + ay, ax), where a and c are complex parameters. We look at
the parameter space of dissipative Hénon maps which have a fixed point with one eigenvalue
(1 + t)λ, where λ is a root of unity and t is real and small in absolute value. These maps have a
semi-parabolic fixed point when t is 0, and we use the techniques that we have developed in [RT]
for the semi-parabolic case to describe nearby perturbations. We show that for small nonzero
|t|, the Hénon map is hyperbolic and has connected Julia set. We prove that the Julia sets J
and J+ depend continuously on the parameters as t→ 0, which is a two-dimensional analogue
of radial convergence from one-dimensional dynamics. Moreover, we prove that this family of
Hénon maps is stable on J and J+ when t is nonnegative.
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1. Introduction

Complex analytic maps with a parabolic fixed point or cycle have generated much
interest in dynamics in one complex variable as they play a fundamental role in un-
derstanding the parameter space of rational maps. Moreover, they provide important
models for understanding non-hyperbolic behavior.

In [RT] we studied the family of Hénon maps with a semi-parabolic fixed point or
cycle, and showed that the family has nice stability properties. In this paper we want
to unravel the mystery about how these semi-parabolic maps sit in the parameter space
of Hénon maps and describe the Julia sets of nearby perturbations.

Chapter 2 provides a useful digression to dynamics in one complex variable. Consider
a quadratic polynomial p(x) = x2 + c with a parabolic fixed point and denote by Jp
its Julia set. The parameter c lies in the boundary of the Mandelbrot set. It is well-
known from the work of P. Lavaurs [L] and A. Douady [D] that on a neighborhood
of the parameter c in C the Julia set does not vary continuously in the Hausdorff
topology. Parabolic implosion represents the source of discontinuity and of obtaining
limit Julia sets with enriched dynamics. Using quasiconformal techniques, C. McMullen
[Mc] (and also P. Häıssinsky [Häı]) showed that Jpn converges to Jp when pn converges
to p horocyclically or radially (i.e. non-tangentially with respect to the boundary of
Mandelbrot set in the quadratic case). These tools are harder, if not impossible, to
apply to several complex variables, where an analogue of the Uniformization Theorem
does not exist. We first set out to give a topological proof of the continuity result
for polynomial Julia sets under a stronger radial convergence assumption. The proof
involves recovering the Julia set as the image of the unique fixed point f∗ of a (weakly)
contracting operator in an appropriate function space. In Section 2.5 we prove that f∗

depends continuously on the parameter, and thus the corresponding Julia sets converge
to the Julia set of the parabolic polynomial, in the Hausdorff topology. After gaining
some valuable insight from the study of the one dimensional problem, notably from
Lemma 2.14, we pursue the two-dimensional problem and prove some new continuity
results in Chapter 3 for the Julia sets J and J+ of a complex Hénon map.

We consider the family of complex Hénon maps Hc,a(x, y) = (p(x) + ay, ax), where p
is a quadratic polynomial, p(x) = x2 + c, and a is a complex parameter. When a 6= 0,
this is a polynomial automorphism of C2. The dynamics of Hénon maps bears some
resemblance to the dynamics of 1-D polynomials, however extending results from one to
several variables requires envisioning new techniques and approaches, and in many cases
the emerging picture is substantially different and contains new and thrilling phenomena
not present in the one-dimensional world. In order to describe the dynamics of the Hénon
map, one studies the sets K+ and K− of points which do not escape to infinity under
forward and respectively backward iterations. The topological complements of K± in
C2 are denoted by U± and called the escaping sets. The most interesting dynamics
occurs on the boundary of the sets K± and U± where chaotic behavior is present. The
sets J± = ∂K± = ∂U± and J = J+ ∩ J− are called the Julia sets of the Hénon map.
The sets J and K = K+ ∩ K− are compact, while the sets J± are closed, connected
and unbounded [BS1].

A quadratic Hénon map is uniquely determined by the eigenvalues λ and ν at a fixed
point so we will sometimes write Hλ,ν in place of Hc,a to mark this dependence. The
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precise formula for Hλ,ν is given in at the beginning of Chapter 3. We say that a Hénon
map is semi-parabolic if it has a fixed point (or cycle) with one eigenvalue λ, a root of
unity, and one eigenvalue smaller than one in absolute value. Unlike hyperbolic Hénon
maps, semi-parabolic ones are not stable under perturbations. E. Bedford, J. Smillie
and T. Ueda have described some semi-parabolic bifurcations in C2 for λ = 1 in [BSU].
In particular, they show that at a parameter value with a semi-parabolic fixed point
with the eigenvalues λ = 1 and |ν| < 1, the sets J , J+, K and K+ vary discontinuously
with the parameters, while J− and K− vary continuously with the parameters. The
phenomenon described in [BSU] is a two-dimensional analogue of parabolic implosion
that occurs in complex dimension one.

In order to state our main results, consider a primitive root of unity λ = e2πip/q and
let λt = (1 + t)λ. For t real and small in absolute value, we look at the parameter
space Pλt of complex Hénon maps which have a fixed point with one eigenvalue λt.
The equation of the curve Pλt is given in Proposition 3.2. When t = 0 these maps are
semi-parabolic; when t 6= 0, we regard the maps corresponding to parameters from Pλt
as perturbations of the semi-parabolic ones. We show in Section 3.8 that there exists
δ > 0 such that for (c, a) ∈ Pλt and 0 < |a| < δ, the Julia sets J and J+ depend
continuously on the parameters as t approaches 0. An equivalent formulation is given
in the theorem below. These results can be regarded as a natural extension of the
concept of radial convergence of Julia sets [Mc] to higher dimensions, in the context of
polynomial automorphisms of C2.

Theorem 1.1 (Continuity). There exists δ > 0 such that if |νt| < δ and νt → ν as
t→ 0, then the Julia sets J and J+ depend continuously on the parameters, i.e.

J+
(λt,νt)

→ J+
(λ,ν) and J(λt,νt) → J(λ,ν)

in the Hausdorff topology.

For the set J+ we are taking the Hausdorff topology on the one-point compactification
of C2. What we prove in Theorem 1.1 is the continuity of Julia sets J and J+ as we
approach a semi-parabolic parameter from the interior of a hyperbolic component of
the Hénon connectedness locus, similar to radial convergence from 1-D dynamics. Our
next theorem describes the dynamical nature of the perturbed semi-parabolic maps.

Theorem 1.2 (Hyperbolicity). There exist δ, δ′ > 0 such that in the parametric
region

HRδ,δ′ =
{

(c, a) ∈ Pλt : 0 < |a| < δ and − δ′ < t < δ′, t 6= 0
}

the Julia set Jc,a is connected and the Hénon map Hc,a is hyperbolic.

By definition, the connectedness locus for the Hénon family is the set of parameters
(c, a) ∈ C2 such that the Julia set Jc,a is connected. Theorem 1.2 shows that the
parametric region {(c, a) ∈ Pλ : |a| < δ} of semi-parabolic Hénon maps lies in the
boundary of a hyperbolic component of the Hénon connectedness locus. In fact, when
λ 6= 1, it lies in the boundary of two such hyperbolic components. A mechanism for
loss of hyperbolicty at the boundary of the horseshoe region through the development
of tangencies between stable and unstable manifolds is described by E. Bedford and
J. Smillie in [BS], and more recently by Z. Arai and Y. Ishii in [AI]. In Theorem 1.2
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we describe a different mechanism for loss of hyperbolicity, through the creation of a
semi-parabolic fixed point. We first do a local analysis in Sections 3.1, 3.2 and 3.3,
and show how to deform the local semi-parabolic structure into a hyperbolic structure;
these sections are applicable to holomorphic germs of diffeomorphisms of (C2, 0) with a
semi-parabolic fixed point, and their perturbations. We complete the proof of Theorem
1.2 in Section 3.5.

Theorem 1.2 proves the existence of a larger region of hyperbolicity for complex Hénon
maps than what was previously known. It is in general very hard to exhibit regions of
hyperbolicity for Hénon maps. Z. Arai developed a computer program for detecting
hyperbolicity, that relies on heavy numerical computations. Otherwise, the only Hénon
maps proven to be hyperbolic using only theoretical arguments correspond to the horse-
shoe region and to perturbations of 1-D hyperbolic maps. It is also known from the
early works of J.E. Fornæss and N. Sibony [FS] and J. Hubbard and R. Oberste-Vorth
[HOV1, HOV2] that Hénon maps that come from perturbations of hyperbolic polyno-
mials with connected Julia sets inherit both of these properties. However, the proof
gave no control on the admissible size of perturbations as we approach the boundary of
the Mandelbrot set, i.e. it was not known that the size of the region HRδ,δ′ does not
decrease to 0 as t → 0. Z. Arai [A] gave a computer-assisted proof for the existence of
hyperbolic plateaus for the family of complex Hénon maps Hc,a with both parameters c
and a real. In our language, these regions corresponds to strips on the right/left side of
the real curves Pn±1 ∩ R2, where Pn±1 is the set of parameters (c, a) ∈ C2 for which the
Hénon map Hc,a has a cycle of order n with one eigenvalue ±1. The existence of these
regions is established in Theorem 1.2.

Corollary 1.2.1. There exists an ε > 0 such that the real parametric region{
(c, a) ∈ R× (−ε, ε) : a 6= 0,

(1 + a)2

4
− ε < c <

(1 + a)2

4

}
is a region of hyperbolicity for the Hénon family Hc,a(x, y) = (x2+c−ay, x). The Hénon
map is written in the standard parametrization and has Jacobian a.

To compare our results with [B] and [BSU], suppose λ is 1. Theorems 1.1 and 1.2
answer Questions 3 and 4 of E. Bedford, from [B]. Corollary 1.2.1 is formulated as a
specific answer to Question 3 and the set c = (a+ 1)2/4 from the corollary is simply the
defining equation of parabola P1. When (c, a) ∈ P1, the Hénon map has a double fixed
point with one eigenvalue 1. From the “right” of the real parabola P1 ∩ R2 we have
semi-parabolic implosion described in [BSU]. More specifically, in [BSU] it is shown that
there exists a sequence εn → 0 which converges to 0 tangentially to the positive real axis
(Re(εn) > 0 and Im(εn) < const. |εn|2) such that the Julia set Jcn,a corresponding to
the sequence cn = (a+1)2/4+εn does not converge to the Julia set Jc,a in the Hausdorff
topology. By comparison, Theorem 1.1 shows that we have continuity of J and J+ from
the “left” of the real parabola P1 ∩ R2. When (c, a) ∈ P1 ∩ R2 and 0 < |a| < δ we
get that Jc−ε,a → Jc,a and J+

c−ε,a → J+
c,a as ε → 0+. Note that Theorem 1.1 gives no

information on what happens to the “right” of parabola P1; indeed, when λ = 1, both
curves P1+t and P1−t are to the left of P1. This can be seen from the fact that for
a = 0 and t 6= 0, the polynomial pt has two distinct fixed points, with multipliers 1± t;
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therefore regardless of whether t is positive or negative, pt has an attracting fixed point,
and belongs to the interior of the main cardioid of the Mandelbrot set.

P1P−1P2
−1P4

−1

a

c

Figure 1. The curves P1, P−1, P2
−1, P4

−1 are examples of parametric curves
containing semi-parabolic Hénon maps. There exist regions of hyperbolic-
ity between P1 and P−1 and P−1 and P2

−1 which belong to hyperbolic
components of the Hénon connectedness locus.

This paper is built on previous work done by the authors in [R] and [T]. We use the
tools that we have developed for the study of semi-parabolic germs/Hénon maps in [RT]
to extend the results from [RT] to nearby perturbations of semi-parabolic germs/Hénon
maps. We can actually say more about the stability properties of our family of Hénon
maps when the parameter t is non-negative:

Theorem 1.3 (Stability). The family of complex Hénon maps Pλt 3 (c, a)→ Hc,a is
a structurally stable family on J and J+ for 0 < |a| < δ and 0 ≤ t < δ′.

We say that the family of Hénon maps Pλt 3 (c, a)→ Hc,a is structurally stable on J
when t ∈ [0, δ′) and |a| < δ if for any two pairs (ci, ai) ∈ Pλti , with |ai| < δ and ti ∈ [0, δ′)

for i = 1, 2, we have (Hc1,a1 , Jc1,a1) conjugate to (Hc2,a2 , Jc2,a2). Consequently, the Julia
sets Jc1,a1 and Jc2,a2 are homeomorphic. We explain structural stability on J+ in a
similar way, by replacing J with J+. We complete the proof of Theorem 1.3 in Section
3.8.

Another notion of stability (called weak stability) was introduced by R. Dujardin and
M. Lyubich [DL] for holomorphic families (fz)z∈Λ of moderately dissipative polynomial
automorphisms of C2, where Λ is a connected complex manifold. Weak stability is
defined in terms of branched holomorphic motions of the set J∗ (the closure of the
saddle periodic points), but an equivalent easier definition is the following: the family is
weakly stable if periodic orbits do not bifurcate. The equivalence between weak stability
and continuity of J∗ is discussed in [DL], and the relation between weak stability and
uniform hyperbolicity on J∗ is analyzed by P. Berger and R. Dujardin in [BD]. These
results do not apply to our context, but they are of independent interest.

Acknowledgements. We warmly thank John Hubbard and John Smillie for their guidance
and for many useful discussions about Hénon maps and suggestions on this project.
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2. Continuity of polynomial Julia sets

In this section we focus only on one-dimensional dynamics. We first discuss continuity
of polynomial Julia sets, which will prove useful in understanding continuity of Julia
sets for Hénon maps. This will be treated in Section 3.

Assume that p is a quadratic polynomial. The filled Julia set of the polynomial p is

Kp = {z ∈ C : |p◦n(z)| bounded as n→∞},
and the Julia set of p is Jp = ∂Kp. The filled Julia set Kp is connected iff the orbit of
the unique critical point is bounded. If Kp is connected (or equivalently Jp is connected)
then there exists a unique analytic isomorphism

Ψp : C− D→ C−Kp (1)

such that Ψp(z
2) = p(Ψp(z)) and Ψp(z)/z → 1 as z → ∞. If Jp is locally connected

then Ψp extends to the boundary S1 and defines a continuous surjection (see [Mi])

γp : S1 → Jp. (2)

The Julia set of a hyperbolic or parabolic polynomial is connected and locally connected
(see [DH]). The map Ψ−1

p is the Böttcher coordinate of the polynomial p, while the map
Ψp is called the inverse Böttcher isomorphism (or the Böttcher chart [H]). The boundary
map γp is called the Carathéodory loop of p.

The continuous map Gp : C → R, defined by Gp(z) = log |Ψ−1
p (z)| for z ∈ C − Kp

and Gp(z) = 0 for z ∈ Kp, is called the Green function of the polynomial p. Each level
set of the Green function {z : Gp(z) = log(R)} with R > 1 is called an equipotential for
the polynomial p. This is the image of the circle of radius R under Ψp.

2.1. Horocyclic and radial convergence. The topic of convergence of Julia sets in
the Hausdorff topology (of compact sets in P1) is very vast and has been covered by
many authors (A. Douady [D], P. Lavaurs [L], C. McMullen [Mc], P. Häıssinsky [Häı],
etc.). We only recall here a theorem from [Mc] about horocyclic and radial convergence
of rational maps, and give the simplified form of the theorem for quadratic polynomials.

Definition 2.1 (Hausdorff topology). The compact sets Kn converge to the compact
set K in the Hausdorff topology if the following conditions hold

(a) Every neighborhood of a point x ∈ K meets all but finitely many Kn.
(b) If every neighborhood of x meets infinitely many Kn, then x ∈ K.

Theorem 2.2 ([Mc]). Let f be a geometrically finite rational map and suppose that
fn → f horocyclically (or radially), preserving critical relations. Then Jfn → Jf in the
Hausdorff topology.

Theorem 2.2 can be expressed in a simplified form when we restrict to the family of
quadratic polynomials. Let p be a quadratic polynomial. The sequence of polynomials
pn converges to p algebraically if deg(pn) = deg(p) for all n, and the coefficients of pn
converge to the coefficients of p.

Definition 2.3 (Horocyclic/radial convergence of multipliers). Let λn → 1 in C∗,

λn = eLn+iθn and θn → 0.
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The sequence λn converges to 1 horocyclically if θ2
n/Ln → 0. The sequence λn converges

to 1 radially if θn = O(|Ln|), that is there exists M > 0 such that |θn| ≤MLn for n > 0.

Theorem 2.4. Let p be a quadratic polynomial with a parabolic fixed point α0 with
multiplier e2πip/q. Let pn be a sequence of quadratic polynomials, such that pn → p
algebraically. Assume that each pqn has a fixed point αn, such that αn → α0 and such
that the sequence of multipliers λn = (pqn)′(αn) converges to 1 horocyclically (or radially).
Then

Jpn → Jp

in the Hausdorff topology.

The proof of Theorem 2.2 is quite involved and uses quasiconformal theory and it is
not very clear how one could extend it to higher dimensions. We would therefore like
to first outline a more topological proof of continuity in one dimension.

2.2. A topological proof of continuity in dimension one. Let λ = e2πip/q be a
primitive root of unity of order q. Set

λt = (1 + t)λ,

for t real and sufficiently small. Consider the family of quadratic polynomials

pt(x) = x2 + ct, where ct =
λt
2
− λ2

t

4
. (3)

For t > 0 the polynomial pt is hyperbolic and has a repelling fixed point αt = λt/2
of multiplier λt and a q-periodic attractive orbit. For t = 0 the polynomial p0 has a
parabolic fixed point α0 of multiplier λ. The multiplicity of the fixed point α0 as a
solution of the equation p◦q0 (x) = x is q + 1. Finally, when t < 0, pt has an attracting
fixed point αt of multiplier λt and a q-periodic repelling orbit.

We have pt → p0 uniformly as t→ 0. The continuity of the corresponding Julia sets
(that we state below as Theorem 2.5) is an easy consequence of McMullen’s Theorem
2.2. The sequence of multipliers λqt = (1 + t)q has no imaginary part, therefore it
converges horocyclically and radially to 1.

Theorem 2.5. The Julia set Jpt of the polynomial pt depends continuously on the
parameter t, that is Jpt → Jp0 in the Hausdorff topology.

We give a new proof of the continuity result for the family pt which does not use
quasiconformal theory. The proof relies on the techniques developed by Douady and
Hubbard in [DH] for proving the local connectivity of Julia sets of polynomials where
all critical points are attracted to attracting or parabolic cycles. An adaptation of
this technique was also used in [Kw] to build semi-conjugacies between Julia sets of
geometrically finite rational maps.

We build a continuous family of bounded metrics µt on the neighborhood of the
Julia set Jpt , with respect to which the polynomial pt is weakly expanding. Then we
will recover the Julia set Jpt as the image of the unique fixed point f∗t of a weakly
contracting operator Ft in an appropriate function space. We will show that the fixed
point f∗t is continuous with respect to t, and conclude that the Julia sets Jpt converge
in the Hausdorff topology as t→ 0 to the Julia set of the parabolic polynomial.
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We will illustrate the technique for t ≥ 0. The case when t is negative is almost
identical, but it requires a small technical adjustment, which we will discuss in a more
general setting in Chapter 3, where we adapt the construction to a family of polynomial
automorphisms of C2.

2.3. Normalizing coordinates at a repelling fixed point. When t > 0, the poly-
nomial pt is hyperbolic and expanding with respect to the Poincaré metric on a suitable
neighborhood of Jpt . In order to make the choice of metrics continuous with respect
to the parameter t when t → 0, we need to correct the metric µt near the repelling
fixed point αt, which becomes parabolic when t = 0. A naive idea would be to take a
small disk Dt around the repelling point αt on which the polynomial pt is analytically
conjugated to its linear part z → λtz, |λt| > 1, hence naturally expanding with respect
to the Euclidean metric. This is not very helpful however, because the radius of Dt

converges to 0 as t converges to 0. This issue can be dealt with by constructing “nor-
malizing coordinates” around αt, similar to the parabolic case t = 0. We will build a
larger neighborhood Dρ, with ρ independent of t, around αt, on which the polynomial
is not fully linearized, but rather conjugated to a “normal form”.

Let ε0 = tan(2π/9) and ε1 = ε0/
√
ε20 + 1. The meaning of these constants is fully

explained by Equation (30) and the discussion following it.

Proposition 2.6. There exist δ′ > 0 and ρ > 0 such that for all t with |t| < δ′ there
exists a coordinate transformation φt : Dρ′(αt)→ Dρ(0) defined in a neighborhood of the
repelling fixed point αt such that in the new coordinates the polynomial pt can be written
as p̃t(x) = λt(x+ xq+1 + Ctx

2q+1 +O(x2q+2)). Suppose t ∈ [0, δ′]. In the region

∆− = {|x| ≤ ρ : Re(xq) > ε0|Im(xq)|}
the derivative p̃t

′ is expanding, with a factor of

|λt| (1 + (q + 3/2)ε1|x|q) > |λt| ≥ 1.

The compact region
∆+ = {|x| ≤ ρ : Re(xq) ≤ ε0|Im(xq)|}

satisfies ∆+ ⊂ int(Kp̃t) ∪ {0} and p̃t(∆
+) ⊂ int(∆+) ∪ {0}.

Proof. One performs for the family pt the same sequence of coordinate transformations
as the ones done in [BH] or [DH] in the parabolic case. After a global coordinate change
that brings the fixed point αt to the origin, we can assume that pt(x) = λtx + x2.
Suppose by induction that for k ≥ 2 the maps pt have the form

x1 = λtx+ atx
k +O(xk+1)

where at 6= 0 for |t| < δ′.
Consider the coordinate transformation

X = x+ btx
k with inverse x = X − btXk + . . .

In the new coordinate system, we get

X1 = x1 + btx
k
1 = λtx+ (at + btλ

k
t )x

k + . . .

= λt(X − btXk + . . .) + (at + btλ
k
t )(X − btXk + . . .)k + . . .

= λtX + (at + bt(λ
k
t − λt))Xk + . . .
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When t 6= 0, we have |λt| 6= 1, so λt 6= λkt for all k with 2 ≤ k ≤ q. If k is not congruent
to 1 modulo q, then λk0 6= λ0 as well, so we can set

bt =
at

λt − λkt
and eliminate the term atx

k. The transformations x + btx
k are injective on a uniform

neighborhood of 0.
This proves that by successive coordinate transformations of the form Xt = x+ btx

k

we can eliminate terms with powers that are not congruent to 1 modulo q, so the first
term that cannot be eliminated in this way will have a power of the form atx

νq+1, for
some integer ν ≥ 1. The parabolic multiplicity of the fixed point α0 is 1, so ν = 1.

Thus the map takes the form

x1 = λt(x+ atx
q+1 +O(xq+2)) (4)

Of course, when t 6= 0, we could use the same map Xt = x + btx
q+1 to eliminate the

term atx
q+1, however this would require shrinking the domain of injectivity of Xt to 0

as t→ 0, as well as losing the continuity of Xt with respect to t at t = 0.
We can further reduce Equation (4) to

x1 = λt(x+ xq+1 +O(xq+2)). (5)

by considering a linear map X = Atx, where At is a constant chosen such that Aqt = at.
In Equation (5) we can eliminate all terms of the form atx

k, with q+ 1 < k < 2q+ 1,
using the same coordinate transformation as before, Xt = x + btx

k, where bt = at
λt−λkt

.

We thus arrive at the normal form

p̃t(x) = λt(x+ xq+1 + Ctx
2q+1 +O(x2q+2)).

When t = 0 the regions ∆+ and ∆− represent attracting and respectively repelling
sectors for the (normalized) parabolic polynomial p̃0. The attractive sector ∆+ belongs
to the interior of the filled-in Julia set int(Kp̃0)∪{0} and all points in ∆+ converge under
forward iterations to the parabolic fixed point 0, which lies in the Julia set. When t < 0,
the sector ∆+ belongs to the basin of attraction of the attracting fixed point 0. When
t > 0, the sector ∆+ belongs to int(Kp̃t) ∪ {0}, because ∆+ (with 0 removed) is a
trapping region for a q-periodic attractive orbit [BH]. We prove these facts directly for
Hénon maps in Propositions 3.6 and 3.7, and the proofs apply also to the family of
polynomials considered in this lemma.

To show that the derivative p̃t
′ is expanding on ∆− when t > 0, we perform the

same computations as in the parabolic case [DH]. The choice of ε0 and ε1 guarantee
that if Re(xq) > ε0Im(xq), then Re(xq) > ε1|x|q. Consider a constant m so that∣∣p̃t′(x)− λt(1 + (q + 1)xq)

∣∣ < m|x|2q on Dρ. Using the normal form for p̃t, we get

|p̃t′(x)| = |λt|
∣∣1 + (q + 1)xq +O(x2q)

∣∣ ≥ |λt| (∣∣1 + (q + 1)xq
∣∣−m|x|2q)

≥ (1 + t)
(
1 + (q + 1)ε1|x|q −m|x|2q

)
> (1 + t) (1 + (q + 3/2)ε1|x|q) .

for |x| sufficiently small. Hence |p̃t′(x)| > |λt| throughout ∆−, for all t ∈ [0, δ′]. �

Let ∆+
t = φ−1

t (∆+) and ∆−t = φ−1
t (∆−). Recall that αt = φ−1

t (0). By Proposition
2.6, the set ∆+

t − {αt} belongs to the interior of the filled-in Julia set Kpt . Moreover,
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when t > 0, the q-periodic attractive orbit of the polynomial pt is contained in the sector
∆+
t . The Julia set Jpt near αt is completely contained in the repelling sectors:

Jpt ∩ Dρ′(αt) = Jpt ∩∆−t .

When t ∈ [−δ′, δ′], the polynomial pt has connected Julia set; the critical point 0 of
pt is attracted to the q-periodic orbit when t > 0, respectively to the parabolic fixed
point when t = 0, and to the attracting fixed point when t < 0. So there exists a first

iterate nt ∈ N such that p
◦(nt+1)
t (0) ∈ ∆+

t , otherwise said, there exists a first iterate for
which p◦nt

t (ct) ∈ ∆+
t and p◦nt

t (0) /∈ ∆+
t . The function t→ nt is locally constant and we

can assume without loss of generality that when δ′ is small, the number nt is the same
for all t ∈ [−δ′, δ′]. Therefore we can remove the dependence on t and denote nt by N .

Denote further by p−◦Nt (∆+
t ) the connected component of the N th preimage of the set

∆+
t that contains the fixed point αt.

2.4. A continuous family of bounded metrics. For each value of the parameter t
we construct a neighborhood Ut of the Julia set Jpt and a metric µt on Ut with respect
to which the polynomial pt is expanding. The family (Ut, µt) will be continuous with
respect to the parameter t.

∂Ut

∂U �
t where U �

t := p−1
t (Ut)

Dρ��

αt

Figure 2. The polynomial pt has a fixed point at αt. The corresponding
neighborhoods Ut and U ′t are also shown.

The outer boundary of the set Ut is an equipotential of the Julia set Jpt . The inner

boundary is ∂p−◦Nt (∆+
t ), where N is defined above. Formally, choose R > 2 and set

Ut = C− p−◦Nt (∆+
t )− {z ∈ C−Kpt : |Ψ−1

pt (z)| ≥ R}. (6)

Let U ′t = p−1
t (Ut). The set U ′t is contained in Ut by construction, and we can put on U ′t

the Poincaré metric of Ut. The map pt : U ′t → Ut is a covering map, hence expanding:

|(z, ξ)|Ut < |(z, ξ)|U ′t = |(p(z), p′(z)ξ)|Ut for z ∈ U ′t and ξ ∈ TzU ′t .
However U ′t is not relatively compact in Ut because ∂U ′t ∩ ∂Ut = {αt}, so there is no
constant of uniform expansion. On the repelling sectors ∆−t , one can define a metric
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µ∆−t
as the pull-back of the Euclidean metric from the normalizing coordinates ∆−.

|(z, ξ)|∆−t := |φ′t(z)ξ| for z ∈ ∆−t and ξ ∈ Tz∆−t ,
where the latter length is the modulus of the complex number φ′t(z)ξ.

Definition 2.7. Let µt = inf(µUt ,Mµ∆−t
), where M is a positive real number and

M > sup

{
2µUt(z, ξ)

µ∆−t
(pt(z), p′t(z)ξ)

: z ∈ p−1
t (∆−t ), z /∈ ∆−t and t ∈ [0, δ′]

}
.

By choosing M sufficiently large, one can assure that on the boundary of Vt the
infimum is attained by the Poincaré metric µUt . So the metric µt is continuous on
U ′t . Note also that the Poincaré metric is infinite at αt while the Euclidean metric is
bounded; therefore there exists a neighborhood of αt, uniform with respect to t, for
which the infimum in Definition 2.7 is attained by the Euclidean metric Mµ∆−t

.

Lemma 2.8. The family of metrics µt depends continuously on the parameter t and it
is dominated above and below by the Euclidean metric. There exist m1 > 0 and m2 > 0
such that

m1|x− y| < dµt(x, y) < m2|x− y|, for any x, y ∈ U ′t .

Proof. By construction, the neighborhood Ut and the repelling sectors ∆−t depend
continuously on t. Let ρt denote the density function of the Poincaré metric on Ut,
µUt(z, dz) = ρt(z)|dz|. The map ρt is positive, C∞-smooth on U ′t and continuous with
respect to t. Hence µUt is bounded below by the Euclidean metric on U ′t . The metric
µUt on this set is also bounded above on U ′t , except on a small neighborhood of the fixed
point αt ∈ ∂Ut.

The metric µ∆−t
is the pull-back of the Euclidean metric by a holomorphic injec-

tive map φt, continuous with respect to t. We have µ∆−t
(z, dz) = |φ′t(z)||dz|, where

|φ′t(z)| > 0 is bounded above and below on ∆−t . Therefore the infimum metric µt is
bounded above and below with respect to the Euclidean metric. �

Lemma 2.9. The polynomial pt is strictly expanding with respect to the metric µt on
the set U ′t when t > 0.

Proof. Let z, z′ ∈ U ′t and ξ ∈ TzU ′t , ξ′ ∈ Tz′U ′t such that z′ = pt(z) and ξ′ = p′t(z)ξ.
We will show that for each t > 0 there exists a constant kt > 1 such that

µt(z
′, ξ′) > kt · µt(z, ξ).

There are four cases to consider:

(a) µt(z, ξ) = µUt(z, ξ) and µt(z
′, ξ′) = µUt(z

′, ξ′).
This happens only if both z and z′ are outside a small neighborhood of the point
αt. Outside this neighborhood, the set U ′t is compactly contained in Ut, so pt
expands strongly with respect to the Poincaré metric. For all t ∈ [0, δ′] there
exists κt > 1 such that

µUt(z
′, ξ′) > κt · µUt(z, ξ). (7)
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The constant κt depends only on the distance between the boundaries ∂Ut and
∂U ′t outside a disk of fixed size around the fixed point αt, so inf

t∈[0,δ′]
κt > 1.

(b) µt(z, ξ) = Mµ∆−t
(z, ξ) and µt(z

′, ξ′) = Mµ∆−t
(z′, ξ′).

The normalized polynomial p̃t expands with respect to the Euclidean metric, so
by Proposition 2.6 we have

µ∆−t
(z′, ξ′) > (1 + t) · µ∆−t

(z, ξ).

Notice that the constant of expansion is 1 if and only if t → 0 and φt(z) → 0
(that is, z approaches the parabolic fixed point α0).

(c) µt(z, ξ) = Mµ∆−t
(z, ξ) and µt(z

′, ξ′) = µUt(z
′, ξ′).

Similar to case (a), the point z′ cannot be too close to the fixed point αt, so

µUt(z
′, ξ′) > κt · µUt(z, ξ) ≥ κt ·Mµ∆−t

(z, ξ).

(d) µt(z, ξ) = µUt(z, ξ) and µt(z
′, ξ′) = Mµ∆−t

(z′, ξ′).

There are two sub-cases to consider
(i) If z ∈ p−1

t (∆−t ) ∩∆−t , then

Mµ∆−t
(z′, ξ′) > (1 + t) ·Mµ∆−t

(z, ξ) > (1 + t) · µUt(z, ξ).

(ii) If z ∈ p−1
t (∆−t ) but z /∈ ∆−t , then the conclusion follows from the choice of

the constant M , as shown below:

2µUt(z, ξ) =
2µUt(z, ξ)

µ∆−t
(z′, ξ′)

· µ∆−t
(z′, ξ′) < Mµ∆−t

(z′, ξ′).

Set kt := min (1 + t, κt). From estimates (a),(b),(c) and (d) we can easily see that

µt(z
′, ξ′) > kt · µt(z, ξ).

We get uniform expansion when t > 0 because kt is strictly greater than 1. �

The metric µt induces a natural path metric on U ′t . If η : [0, 1] → U ′t is a rectifiable
path, then its length with respect to the metric µt is given by the formula

`µt(η) =

∫ 1

0
µt
(
η(s), η′(s)

)
ds. (8)

The distance between two points x and y from U ′t with respect to the metric µt is

dµt(x, y) = inf `µt(η), (9)

where the infimum is taken after all rectifiable paths η : [0, 1] → U ′t with η(0) = x and
η(1) = y.

2.5. Contraction in the space of functions. For each value of the parameter t,
we will construct a sequence of equipotentials in the complement of the filled Julia set
Kpt and show that they converge to the Julia set Jpt , uniformly with respect to t. In

our setting, the filled Julia set Kpt is connected. Let Ψpt : C − D → C − Kpt be the
inverse Böttcher isomorphism of the polynomial pt as in (1) and let γt : S1 → Jpt be the
Carathéodory loop of pt as in (2) (i.e. the continuous extension of Ψpt to the boundary).
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We write γt instead of γpt to simplify notations. By the definition of the isomorphism

Ψpt we have Ψpt(z
2) = pt(Ψpt(z)), for z ∈ C− D.

Let R > 2 be a fixed constant, chosen as in Equation (6). For each t ∈ [0, δ′], consider
the space of functions

Ft =
{
γt,n : S1 → U ′t : γt,n(s) = Ψpt

(
R1/2n+1

e2πis
)
, n ∈ N

}
.

For each t, the space Ft is just a sequence of parametrized equipotentials {γt,n}n≥0,
corresponding to the polynomial pt. The Green function Gpt of the polynomial pt is
continuous with respect to t and z. Therefore each map (t, s) 7→ γt,n(s) is continuous
with respect to t and s. The polynomial pt maps each equipotential γt,n to the equipo-

tential γt,n−1 by a two-to-one covering map. We can select a branch of p−1
t by using the

inverse Böttcher isomorphism and setting

p−1
t

(
Ψpt

(
R1/2ne2πi (2s)

))
:= Ψpt

(
R1/2n+1

e2πis
)

for s ∈ S1 and n ≥ 1.

Therefore, the space Ft comes with a natural operator p−1
t : Ft → Ft, given by the rule

p−1
t (γt,n−1(2s)) = γt,n(s), s ∈ S1, n ≥ 1. (10)

Endow the function space Ft with the supremum metric

dµt(γt,n, γt,k) = sup
s∈S1

dµt (γt,n(s), γt,k(s))

and let F t be the completion of Ft with respect to the supremum metric dµt . Notice
also that the metric dµt is bounded, by Lemma 2.8.

Theorem 2.10 (Browder [Br],[KS]). Let (X, d) be a complete metric space and suppose
f : X → X satisfies

d(f(x), f(y)) < h(d(x, y)) for all x, y ∈ X,
where h : [0,∞)→ [0,∞) is increasing, continuous from the right, and h(s) < s for all
s > 0. Then f has a unique fixed point x∗ and fn(x)→ x∗ for each x ∈ X.

Definition 2.11. We will call a function h that verifies the hypothesis of Theorem 2.10
a Browder function.

Remark 2.12. Assume that the space X from Theorem 2.10 is bounded. The rate
of convergence to the fixed point is controlled by the function h, namely if we choose
L > 0 such that L− h(L) > diam(X), then the following estimate holds

d(f◦n(x), x∗) < h◦n(L), for any x ∈ X, n ∈ N.

We apply Browder’s Theorem to the complete metric space (F t, dµt) with the operator

p−1
t , to show that for each t ≥ 0, the sequence {γt,n}n≥0 converges uniformly as n→∞

to a continuous function γt. As a consequence of the same Theorem 2.10 and Remark
2.12 , we obtain the continuity of the map t→ γt with respect to the parameter t.

For each t ∈ [0, δ′], consider the function ht : [0,∞)→ [0,∞) given by

ht(s) := sup
{
dµt(x, y) : x, y ∈ p−1

t (U ′t) and dµt(pt(x), pt(y)) ≤ s
}
.

Clearly ht is increasing (i.e. s1 < s2 ⇒ ht(s1) ≤ ht(s2)) and satisfies the inequality

dµt(γt,n+1, γt,k+1) < ht(dµt(γt,n, γt,k)), k, n ∈ N.
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The family of metrics µt is continuous with respect to t, so the map t→ ht is continuous
with respect to t ∈ [0, δ′]. Moreover, by Lemma 2.9, when t > 0 we have

ht(s) <
s

kt
for s > 0. (11)

Inequality (11) implies that p−1
t is strictly contracting with respect to the metric dµt

when t > 0. Banach Fixed Point Theorem assures that for each t > 0, the operator p−1
t

has a unique fixed point γt : S1 → U ′t , and the sequence γt,n converges to γt as n→∞.
In [DH] (and also in [H]) it is shown that the function h0 verifies the hypothesis

of Theorem 2.10, hence the sequence γ0,n converges to the unique fixed point of the

operator p−1
0 : F0 → F0, that is to a continuous function γ0 : S1 → U ′0. The image of γ0

is invariant under the parabolic polynomial p0 and it parametrizes its Julia set Jp0 .
Notice that the constant kt goes to 1 when t goes to 0, so we haven’t obtained any

information yet about the continuity of the map t→ γt with respect to t when t = 0.
To provide a unified approach to the hyperbolic and parabolic cases, we define a new

map h : [0,∞)→ [0,∞), h(s) := sup
t∈[0,δ′]

ht(s).

Lemma 2.13. The map h is increasing and h(s) < s for all s > 0.

Proof. When t = 0, it is proven in [DH] and [H] that h0(s) < s for all s > 0. When
t > 0, Inequality (11) yields that ht(s) < s for all s > 0. For a fixed s ∈ R+, the map
t → ht(s) is continuous with respect to t, thus it attains its supremum on [0, δ′], so
h(s) < s. For each t, the function ht is increasing, by definition. It is obvious then that
the function h is also increasing. �

The function h is increasing, so h(s+) = limε→0+ h(s+ε) is well defined. The function
h+ : s 7→ h(s+) is right continuous and the following lemma holds:

Lemma 2.14. The function h+ : [0,∞)→ [0,∞) is a Browder function, i.e. it is right
continuous, increasing, and h+(s) < s for all s > 0. Moreover

dµt(γt,n+1, γt,k+1) < h+(dµt(γt,n, γt,k)) for all t ∈ [0, δ′] and k, n ∈ N.

Proof. The only non-trivial property to check is the fact that h(s+) < s for all s > 0.
By Lemma 2.13 we know that h(s) < s for all s > 0, so h(s+) ≤ s for all s > 0.

Suppose that h(s+) = s for some s > 0. Let εn ↘ 0 be a decreasing sequence of
positive numbers such that h(s+) = limεn→0 h(s+ εn). From the definition of h we have

h(s+ εn) = sup
t∈[0,δ′]

ht(s+ εn).

From the definition of the supremum, for every n > 0 there exists tn ∈ [0, δ′] such that

htn(s+ εn) > sup
t∈[0,δ′]

ht(s+ εn)− εn = h(s+ εn)− εn (12)

The function htn satisfies

htn(s+ εn) < (s+ εn) · 1

ktn
< s+ εn. (13)
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The sequence tn is bounded, so after passing to a convergent subsequence, we may
assume that tn → τ for some τ ∈ [0, δ′]. Let us show that τ = 0. Assume that τ 6= 0.
From inequalities (12) and (13) we know that

h(s+ εn)− εn < htn(s+ εn) <
1

ktn
· (s+ εn).

Taking the limit as n→∞, we get

s = h(s+) ≤ 1

kτ
· s.

Since s > 0 we get kτ ≤ 1. Then τ = 0, otherwise we would have kτ > 1.
Pick m an integer, and let n be any integer n ≥ m. The sequence εn is decreasing,

so εn < εm. The function htn is increasing, so

htn(s+ εn) ≤ htn(s+ εm), for any n ≥ m. (14)

From the inequalities (12) and (14) we obtain

h(s+ εn)− εn < htn(s+ εm), for any n ≥ m.
After passing to the limit as n → ∞ and using the continuity of ht with respect to t,
we get

s = h(s+) ≤ h0(s+ εm), for every m ∈ N.
Letting m → ∞ we get s ≤ h0(s+). In the parabolic case h0(s+) < s for every s > 0.
This yields s = 0, which is a contradiction. �

Remark 2.15. Lemma 2.14 is very important, because it provides a reduction of the
hyperbolic case to the parabolic case, hence allowing a uniform treatment of both cases.
Lemma 2.14 uses only minimum information about the parabolic case, that is, the
fact that h0(s+) < s for all s > 0. Another remark is that in the one-dimensional
setting, one could presumably prove that the maps ht are already right continuous,
so ht(s) = ht(s+). However, we will apply this lemma in higher dimensions (where
the maps ht will not necessarily be right continuous), so the existence of the Browder
function h+ from Lemma 2.14 bypasses this problem and is central for the application
of Browder’s Fixed Point Theorem.

Theorem 2.16. For each t, the sequence γt,n converges to a fixed point γt : S1 → U ′t of

the operator p−1
t . The rate of convergence to the fixed point is uniform in t.

Proof. By Lemma 2.14, we can use the same Browder function h+ for any parameter
t ∈ [0, δ′] and apply Theorem 2.10 to show the existence of a unique fixed point γt for

the operator p−1
t . Each map γt : S1 → U ′t is continuous.

We show that γt,n converges to γt uniformly with respect to t ∈ [0, δ′]. By Lemmas
2.14 and 2.8 and Remark 2.12 there exists L > 0 such that

m1‖γt,n − γt‖ < dµt (γt,n, γt) ≤ (h+)◦n(L)↘ 0, for any t ∈ [0, δ′],

so the rate of convergence of γt,n to the fixed point γt is bounded by the rate at which
the sequence (h+)◦n(L) decreases to 0. Therefore the sequence of functions t → γt,n
converges as n→∞ to γt, uniformly with respect to t. �
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In Theorem 2.16, we have constructed a sequence of functions γt,n, continuous with
respect to t, and proved that it converges uniformly as n → ∞ to γt. Hence the limit
function γt is continuous with respect to t on [0, δ]. The continuity of the Julia sets Jpt
from Theorem 2.5 follows immediately as Jpt = Im(γt).

3. Continuity of Julia sets for Hénon maps

Inspired by the one-dimensional setting from Chapter 2, we now turn back to dynamics
in two complex variables and prove a continuity result in Theorem 1.1 for Hénon maps
with a semi-parabolic fixed point. We will consider the Hénon map written in the form

Hc,a (x, y) = (p(x) + ay, ax) , where p(x) = x2 + c.

When a 6= 0, this map is a biholomorphism of constant Jacobian −a2, whose inverse is

H−1
c,a (x, y) = (y/a, (x− p(y/a))/a) .

As in [HOV1], for r > 0 large enough, the dynamical space C2 can be divided into
three regions: the bidisk Dr × Dr = {(x, y) : |x| ≤ r, |y| ≤ r},

V + = {(x, y) : |x| ≥ max(|y|, r)} and V − = {(x, y) : |y| ≥ max(|x|, r)}. (15)

The escaping sets U± can be described in terms of V ± as follows: U+ =
⋃
k≥0H

−◦k(V +)

and U− =
⋃
k≥0H

◦k(V −). By taking their complements in C2 we obtain K+ = C2−U+,

the set of points that do not escape to infinity in forward time, and K− = C2 − U−,
the set of points that do not escape to infinity in backward time. The Julia set J+ is
the common boundary of K+ and U+. Similarly J− is the common boundary of K−

and U−. In fact, in the dissipative case, J− = K− (see [FM]). The sets J = J+ ∩ J−
and K = K+ ∩K− are contained in Dr × Dr.

Definition 3.1. Let q be a fixed point of H and λ and ν be the two eigenvalues of
DHq. The fixed point q is called:

(a) hyperbolic if |ν| < 1 and |λ| > 1;

(b) semi-parabolic if |ν| < 1 and λ = e2πip/q;
(c) attracting if |ν| < 1 and |λ| < 1.

Let λ = e2πip/q be a root of unity of order q and set λt := (1 + t)λ. In Section 2.2 we
considered the family pt of polynomials, pt(x) = x2 + ct, with a fixed point αt = λt/2 of
multiplier λt. The exact formula for the coefficient ct is given by Proposition 3.2 below.
In Theorem 2.5 we showed that the Julia sets Jpt converge to the Julia set Jp0 as t→ 0.

In 1-D, the multiplier of a fixed point of a quadratic polynomial uniquely identifies
the polynomial. The following proposition provides a description of the parameter space
of Hénon maps for which one eigenvalue of the fixed point is known.

Proposition 3.2. The set Pλt of parameters (c, a) ∈ C2 for which the Hénon map Hc,a

has a fixed point with one eigenvalue λt is a curve of equation

c = (1− a2)

(
λt
2
− a2

2λt

)
−
(
λt
2
− a2

2λt

)2

. (16)
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Notations and conventions. The curve Pλt has degree 4 in the variable a, and degree
2 as a function of the Jacobian, which is −a2. For this reason, we will sometimes call
the curves Pλt complex parabolas. When t = 0, the curve Pλ contains the Hénon maps
that have a semi-parabolic fixed point with one eigenvalue λ, a root of unity.

For the rest of the paper, we denote by ct(a) the right hand side of Equation (16).
The Hénon map is completely determined by the choice of a and t, so we will use Ha,t

in place of Hct(a),a when there is no danger of confusion. We write

Ha,t (x, y) =
(
x2 + ct(a) + ay, ax

)
=
(
x2 + ct + a2w + ay, ax

)
, (17)

where the residual term w is bounded and depends only on a and λt,

w :=
−1 + λt − λ2

t

2λt
+

a2

2λt

(
1− 1

2λt

)
.

The Hénon map is also determined by the eigenvalues λ and ν at a fixed point and
we will sometimes write Hλ,ν in place of Hc,a to stress this dependency. The formula
for Hλ,ν is the following:

Hλ,ν(x, y) =
(
x2 + (λ+ ν)(2 + 2λν − λ− ν)/4± i

√
λν y,±i

√
λν x

)
.

It may seem that there are two choices, but they are in fact conjugated by the affine
change of variables (x, y) 7→ (x,−y).

A simple analysis shows that any constant r > 3 works in the definition of sets V ±

from (15) for the whole family of Hénon maps Ha,t for |a| and |t| small. From now on,
we assume that r > 3 is a fixed constant. Moreover, we assume that |t| < 1/(2q) and
|a| < 1/2 as minimal requirements and we will specify other restrictions when necessary.

Let qa,t denote the fixed point of Ha,t which has one eigenvalue λt. Suppose |a| and
|t| are sufficiently small. We will see that the following bifurcation occurs:

(a) if t = 0 then Ha,0 has a semi-parabolic fixed point qa,0 of multiplicity q + 1.
(b) if t > 0 then Ha,t has a hyperbolic fixed point qa,t and a q-periodic attractive

orbit.
(c) if t < 0 then Ha,t has an attracting fixed point qa,t and a q-periodic hyperbolic

cycle.

In the degenerate case when a = 0, the fixed point q0,t is just (αt, 0), where αt is the
fixed point of the polynomial pt. The Hénon maps becomes H0,t (x, y) = (pt(x), 0). The
Julia set of the Hénon map H0,t is just the Julia set of the polynomial pt, so we write
J0,t = Jpt . Moreover J+

0,t = Jpt × C.

3.1. Local Dynamics – Perturbed Normal Forms. In this section we give a normal
form for perturbations of semi-parabolic germs with semi-parabolic multiplicity 1. This
provides an analogue of Proposition 2.6 for the two dimensional setting. Proposition 3.4
is more general. Theorem 3.5 is specialized to the case of Hénon maps Ha,t that come
from perturbations of the family of polynomials pt discussed in the previous chapter.

Definition 3.3. Let H be a holomorphic germ of (C2,q) whose eigenvalues at the fixed
point q are λ and ν, with 0 < |ν| < 1 and |ν| < |λ|. The strong stable manifold of the
fixed point q corresponding to the eigenvalue ν is

W ss(q) = {z ∈ C2 : lim
n→∞

|ν|−ndist(H◦n(z),q) = const.}. (18)
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We refer to [S] and [MNTU] for a consistent treatment of strong stable manifolds.
For the Hénon map Ha,t, the strong stable manifold W ss(qa,t) contains points that get
attracted to the fixed point qa,t at an exponential rate |νa,t|n. When qa,t is hyperbolic or
semi-parabolic, W ss(qa,t) lives in J+. When the fixed point is attracting, or semi-Siegel,
W ss(qa,t) belongs to the interior of K+. Note also that when a = 0, W ss(q0,t) = q0,t×C.

We will denote by W ss
loc(qa,t) the local strong stable manifold of qa,t relative to the

polydisk Dr×Dr that is, the connected component of W ss(qa,t)∩Dr×Dr that contains
the point qa,t.

Let H be a semi-parabolic germ of transformation of (C2, 0), with an isolated fixed

point at 0 with eigenvalues |ν| < 1 and λ = e2πip/q. The multiplicity of 0 as a solution
of the equation H◦q(x) = x is a number congruent to 1 modulo q. Suppose therefore
that x = 0 is a fixed point of H◦q of multiplicity mq + 1; we call m the semi-parabolic
multiplicity of H.

Proposition 3.4. Let {Ht}|t|<δ′ be an analytic family of germs of diffeomorphisms

of (C2, 0) whose eigenvalues at 0 are λt = (1 + t)λ and νt, with |νt| < min(1, |λt|)
and |νt||λt|2q < 1. If the semi-parabolic multiplicity of H0 is 1 then there exist local
coordinates (x, y) in which Ht has the form Ht(x, y) = (x1, y1), with{

x1 = λt(x+ xq+1 + Cx2q+1 + a2q+2(y)x2q+2 + . . .)
y1 = νty + xh(x, y)

(19)

where C is a constant depending on t, and ai(·) and h(·, ·) are germs of holomorphic
functions from (C, 0) to C, respectively from (C2, 0) to C, such that a1(0) = λt and
h(0, 0) = 0. The coordinate transformations depend smoothly on t.

Proof. The case λ = 1 and t = 0 was proved by Ueda [U] and Hakim [Ha]. In [RT,

Proposition 3.3], this was stated for any primitive root of unity λ = e2πip/q and t = 0.
By straightening the local strong stable manifold of the fixed point 0 we can assume

that Ht is written in the form:{
x1 = a1(y)x+ a2(y)x2 + . . .
y1 = νty + xh(x, y)

, (20)

where aj(·) and h(·, ·) are holomorphic functions with a1(0) = λt and h(0, 0) = 0.
One can make a holomorphic change of coordinates to make the first 2q+1 coefficients

of the power series in the first coordinate constants. We proceed in three steps. In the
first two steps we show that there exist local coordinates (x, y) in which the map Ht

has the form:{
x1 = λtx+ a2x

2 + . . .+ a2q+1x
2q+1 + a2q+2(y)x2q+2 + . . .

y1 = νty + xh(x, y)
(21)

where a2, . . . , a2q+1 are constants. In the third step we show how to eliminate the terms

akx
k for 2 ≤ k ≤ 2q + 1, k not congruent to 1 modulo q, and obtain Equation (19).

(1) Reduction to a1(y) = λt. Consider as in [Ha] and [U] a coordinate transformation{
X = u(y)x
Y = y

with inverse

{
x = X/u(Y )
y = Y
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where u is a germ of analytic functions from (C, 0) to C with u(0) = λt. We need to
find u such that

X1 = u(y1)x1 = u(νty + xh(x, y))
(
a1(y)x+ a2(y)x2 + . . .

)
= u(νtY +X/u(Y )h(X/u(Y ), Y ))

(
a1(Y )X/u(Y ) + a2(Y )(X/u(Y ))2 + . . .

)
=

u(νtY )a1(Y )

u(Y )
X +O(X2) = λtX +O(X2).

Let b1(Y ) = a1(Y )/λt. The map u satisfies the equation u(Y ) = u(νtY )b1(Y ). We
successively substitute νtY instead of Y in this equation and obtain the unique solution

u(Y ) =
∞∏
n=0

b1(νnt Y ).

This product converges in a neighborhood of 0 since |νt| < 1 and b1(Y ) = 1 +O(Y ).

(2) Reduction to ak(y) constants for 2 ≤ k ≤ 2q + 1. We proceed by induction on k.
The base case k = 1 was discussed above. Suppose that k ≥ 2 and that there exist local
coordinates (x, y) in which Ht has the form{

x1 = λtx+ a2x
2 + . . .+ ak−1x

k−1 + ak(y)xk + . . .
y1 = νty + xh(x, y),

with a2, . . . , ak−1 constant. We would like to find local coordinates so that ak(y) is also
constant. Consider the transformation{

X = x+ v(y)xk

Y = y
with inverse

{
x = X − v(Y )Xk + . . .
y = Y

where v is a germ of analytic functions from (C, 0) to C with v(0) = 0. Using the
coordinates given by this transformation we get

X1 = x1 + v(y1)xk1

= λtx+ a2x
2 + . . .+ ak−1x

k−1 +
(
ak(y) + λkt v(νty)

)
xk +O(xk+1)

= λtX + . . .+ ak−1X
k−1 +

(
ak(Y ) + λkt v(νtY )− λtv(Y )

)
Xk +O(Xk+1)

We need v such that the coefficient of Xk is constant. This gives the functional equation
λtv(Y )−λkt v(νtY ) = ak(Y )−ak(0). We successively substitute νtY instead of Y in this
equation and obtain

λtv(Y ) =

∞∑
n=0

(ak (νnt Y )− ak(0))λ
n(k−1)
t .

The series converges in a neighborhood of 0 if |νt||λt|k−1 < 1. This is clearly achieved
when |λt| ≤ 1 since |νt| < 1. If |λt| > 1 then |νt||λt|k−1 ≤ |νt||λt|2q < 1 and the later
inequality is true by hypothesis. Therefore Ht can be written as in Equation (21).

(3) Suppose 2 ≤ k ≤ 2q + 1 is not congruent to 1 modulo q. Assume by induction on k
that Ht can be written as{

x1 = λtx+ akx
k + . . .+ a2q+1x

2q+1 + a2q+2(y)x2q+2 + . . .
y1 = νty + xh(x, y).
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Let b = ak
λt−λkt

and consider the coordinate transformation{
X = x+ bxk

Y = y
with inverse

{
x = X − bXk + . . .
y = Y

(22)

In the new coordinate system, we get

X1 = x1 + bxk1 = (λtx+ akx
k + . . .) + b(λtx+ akx

k + . . .)k

= λtx+ (ak + bλkt )x
k + . . .

= λt(X − bXk + . . .) + (ak + bλkt )(X − bXk + . . .)k + . . .

= λtX + (ak + b(λkt − λt))Xk + . . .

By this procedure, the term containing Xk has been eliminated. The first monomial
that cannot be eliminated in this way will be amq+1X

mq+1 for some integer m. If we
assume that the parabolic multiplicity of the semi-parabolic germ is 1, then aq+1 6= 0
for t = 0 (hence also for small t) and aq+1X

q+1 will be the first term that we cannot
eliminate by the above procedure. We can further reduce the normal form to aq+1 = 1
by considering a linear transformation of the form X = Ax, Y = y, where A is a constant
such that Aq = aq+1. We can therefore assume that the Hénon map can be written as{

x1 = λt(x+ xq+1 + akx
k + . . .+ a2q+1x

2q+1 + a2q+2(y)x2q+2 + . . .)
y1 = µy + xh(x, y).

By repeating the coordinate transformations (22), we can eliminate all monomials akx
k

with q + 1 < k < 2q + 1. By abuse of notation we still denote by ak the term λtak. In
the new coordinate system, we get

X1 = x1 + bxk1 = (λt(x+ xq+1) + akx
k + . . .) + b(λt(x+ xq+1) + akx

k + . . .)k

= λt(x+ xq+1) + (ak + bλkt )x
k + . . .

= λt(X − bXk + (X − bXk)q+1 + . . .) + (ak + bλkt )(X − bXk + . . .)k + . . .

= λt(X +Xq+1) + (ak + b(λkt − λt))Xk + . . .

therefore the term containing Xk has been eliminated. �

This following theorem is a generalization of [RT, Theorem 6.2].

Theorem 3.5. Let r > 3 be a fixed constant. There exist δ, δ′ > 0 such that for any
(c, a) ∈ Pλt with |a| < δ and |t| < δ′ there exists a coordinate transformation φa,t from
a tubular neighborhood B = Dρ′(αt)×Dr of the local strong stable manifold of the fixed
point qa,t

φa,t : B → Dρ × Dr+O(|a|)

in which Ha,t has the form H̃a,t(x, y) = (x1, y1), with{
x1 = λt(x+ xq+1 + Ca,tx

2q+1 + a2q+2(y)x2q+2 + . . .)
y1 = νa,ty + xha,t(x, y)

(23)

and Ca,t is a constant (depending on a and t) and xha,t(x, y) = O(a). Moreover the
transformations φa,t are analytic in a and t, and

lim
a→0

φa,t = (φt(x), y),
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uniformly with respect to t. The map φt : Dρ′(αt) → Dρ is the change of coordinates
from Lemma 2.6 for the polynomial pt with a fixed point αt of multiplier λt and

φt ◦ pt ◦ φ−1
t (x) = λt(x+ xq+1 + Ctx

2q+1 +O(x2q+2)).

Proof. We choose δ small enough so that the local strong stable manifold W ss
loc(qa,t)

has no foldings inside Dr×Dr and it can therefore be straightened using a holomorphic
change of coordinates. The first part of the proof follows directly from Proposition 3.4.
We need to verify the conditions imposed on the eigenvalues at the fixed point. We
have |λt| ∈ (1 − δ′, 1 + δ′) and |νa,t| = |a|2/|λt| ∈ [0, δ2/(1 − δ′)). The bounds δ and δ′

are chosen small enough so that δ � 1 − δ′. It follows that |νa,t| � |λt| and |νa,t| < 1.
Then |λt||νa,t|2q < (1 + δ′)δ4q(1 − δ′)−2q < 1. This inequality is not so restrictive. For
example, it is verified for δ′ < 1/(2q) and δ < 1/2. The convergence of the coordinate
transformation φa,t as a → 0 follows immediately by comparing the coordinate trans-
formations done in Proposition 3.4 to those done in Proposition 2.6. �

It is also worth mentioning that the change of coordinates function φa,t from Theorem
3.5 maps horizontal curves to horizontal curves, that is

φa,t(Dρ′(αt)× {y1}) ⊂ C× {y2}, (24)

which will be useful later on.

3.2. Attracting and repelling sectors. In this section we continue the analysis of the
local dynamics of holomorphic germs of diffeomorphisms of (C2, 0) with a semi-parabolic
fixed point and their nearby perturbations. Consider the set

∆R =

{
x ∈ C :

(
Re(xq) +

1

2R

)2

+

(
|Im(xq)| − 1

2R

)2

<
1

2R2

}
.

in the complex plane. There are q connected components of ∆R, which we denote ∆R,j ,
for 1 ≤ j ≤ q. Define PR,r = ∆R × Dr and let PR,r,j = ∆R,j × Dr be the connected
components of PR,r.
Proposition 3.6. For R large enough and r small enough there exists a positive number
δ′ such that for all t ∈ (−δ′, δ′)

Ha,t(PR,r,j) ⊂ PR,r,j+p ∪ {0} × Dr for 1 ≤ j ≤ q.
In particular Ha,t(PR,r) ⊂ PR,r ∪ {0} × Dr.

Proof. Assume that R is large enough and r is small enough so that the map Ha,t is
well defined and has the expansion from Theorem 3.5:{

x1 = λt(x+ xq+1 + Ca,tx
2q+1 + a2q+2(y)x2q+2 + . . .)

y1 = νa,ty + xh(x, y)
.

Define the region UR := {X ∈ C | R/q −Re(X) < |Im(X)|} and set WR,r := UR ×Dr.
Suppose (x, y) ∈ PR,r,j . The transformation X = −1/(qxq), Y = y maps each petal

PR,r,j toWR,r. ThusX ∈ UR and |Y | < r. Let Ĥ(X,Y ) = (X1, Y1) be the corresponding
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map in the new coordinates:

X1 = − 1

qxq1
=

X

λqt (1 + xq + Ca,tx2q + a2q+2(y)x2q+1 + . . .)q

=
X

λqt

(
1− q(xq + Ca,tx

2q + . . .) +
q(q + 1)

2
x2q + . . .

)
=

1

λqt

(
X + 1 +

A

X
+OY

(
1

|X|1+1/q

))
, where A :=

1

q

(
q + 1

2
− Ca,t

)
;

Y1 = νa,ty + xh(x, y) = νa,tY +OY
(

1

|X|1/q
)
.

The notation OY (|X|α) represents a holomorphic function of (X,Y ) in WR,r which is
bounded by K|X|α for some constant K.

One can easily check that |X| > R
q
√

2
throughout the region UR. Clearly |λt|q > 1/2

for small |t|. There exist constants K ′,K ′′ and K1 = 2K ′q
√

2, K2 = K ′′(q
√

2)1/q such
that ∣∣∣∣X1 −

1

λqt
(X + 1)

∣∣∣∣ ≤ K ′

|λt|q|X|
<
K1

R

|Y1 − νa,tY | ≤
K ′′

|X|1/q <
K2

R1/q
.

Choose R large enough and r small enough so that
K1

R
<

1

4
K2

R1/q
< (1− |νa,t|)r .

(25)

The second condition immediately gives

|Y1| ≤ |Y1 − νa,tY |+ |νa,t||Y | <
K2

R1/q
+ |νa,t|r < r.

The first condition of (25) implies that∣∣∣∣X1 −
1

λqt
(X + 1)

∣∣∣∣ < 1

4
. (26)

In our case λqt = (1 ± t)q is a real positive number. Hence inequality (26) yields the
following estimates:

Re(X1) >
1

(1± t)qRe(X) +
1

(1± t)q −
1

4

|Im(X1)| >
1

(1± t)q |Im(X)| − 1

4
.

Using these estimates and the fact that X ∈ UR, we get

|Im(X1)| > R/q + 1

(1± t)q −
1

2
−Re(X1) > R/q −Re(X1),
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provided that |t| is small enough so that

R+ q

R+ q/2
> (1± t)q. (27)

The constant δ′ > 0 is chosen so that this inequality holds for all 0 ≤ t < δ′. It follows

that Ĥ(WR,r) ⊂WR,r. �

Since the dynamics is different, we will treat the cases t < 0 and t > 0 separately. We
begin with the latter case, so suppose R, r and t > 0 are as in Proposition 3.6. We show
that points in PR,r are attracted by an attractive orbit of period q under iterations by
Ha,t. Each region PR,r,j contains a point of this orbit. The fixed point 0 is hyperbolic.

Suppose ρt > 0 is a small enough radius such that ρt ≤ q
√
t/(2q). The number ρt is

just a local variable which will be used in the proposition below. Define

DR,r,t = PR,r −
{

(x, y) ∈ C2 : |x|q ≤ ρt, |y| < r
}

and let DR,r,t,j with 1 ≤ j ≤ q, be the connected components of DR,r,t (see Figure 3).

Proposition 3.7 (Trapping regions – t positive). For R large enough and r small
enough there exists a positive number δ′ such that for all t ∈ (0, δ′)

Ha,t(DR,r,t,j) ⊂ DR,r,t,j+p for 1 ≤ j ≤ q.
In particular Ha,t(DR,r,t) ⊂ DR,r,t and all points of DR,r,t are attracted to an attractive
orbit of period q under iterations by Ha,t.

Proof. We make a change of variables X = −1/(qxq), Y = y and analyze the situation
at infinity. This transformation maps each DR,r,t,j to a region WR,r,t := UR,t×Dr, where

UR,t :=

{
X ∈ C : R/q −Re(X) < |Im(X)| and |X| < 1

qρqt

}
.

From Equation (26) from the proof of the previous proposition we have

|X1| −
1

(1 + t)q
|X| − 1

(1 + t)q
≤
∣∣∣∣X1 −

1

(1 + t)q
(X + 1)

∣∣∣∣ < 1

4

which gives

|X1| <
1

q(1 + t)qρqt
+

1

(1 + t)q
+

1

4
<

1

qρqt
.

The last inequality holds because

qρqt <
t

2
<

(1 + t)q − 1

(1 + t)q/4 + 1
,

based on our assumption on t and our choice of ρt. With this choice we showed that

Ĥ(WR,r,t) ⊂ WR,r,t and all points of WR,r,t are attracted to an attractive orbit under

iterations by Ĥ. The existence of this orbit follows immediately since we have a nested
intersection of compact sets. �

By choosing a smaller ρt as necessary we can show that all points in PR,r are attracted
by the q-periodic attractive orbit under forward iterations by Ha,t. Moreover, every
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Figure 3. (case t > 0) The image of DR,r,t under the map x 7→ xq at a
height y = const. A small disk of radius ρt is removed around the origin.

point that is attracted to this orbit must eventually land in the interior of one of the
regions PR,r,j for 1 ≤ j ≤ q.

Let ε0 = tan(2π/9). In order to simplify notation, define ρ such that ρq := 1−ε0
R
√

1+ε20
.

The number ρ measures the distance between the origin and one of the points of inter-
section of the lines Re(xq) = ε0|Im(xq)| with the boundary of ∆R.

Define the attractive sectors

∆+ := {x ∈ C : Re(xq) ≤ ε0|Im(xq)| and |xq| < ρq} , (28)

and the repelling sectors

∆− := {x ∈ C : Re(xq) > ε0|Im(xq)| and |xq| < ρq} . (29)

Let W+ := ∆+ × Dr ⊂ PR,r and W− := ∆− × Dr.
We will call W− repelling because as we will see, the Hénon map expands horizontally

when the Jacobian is small enough. We will call W+ attractive because points in W+

are attracted to the q-periodic attractive orbit as we have shown above. There are q
components of W± which we denote W±j for 1 ≤ j ≤ q.

In the regions ∆− and W− we have

Re(xq) > ε1|x|q, where ε1 :=
ε0√

1 + ε20
>

3

5
. (30)

The constants ε0 and ε1 are chosen such that the image of ∆− under x 7→ xq has an
angle opening of 5π/9 (see Figure 4).

The definition of the sectors W± for t > 0 is the same as in the case t = 0 [RT,
Section 4]. However, when t < 0, we need to modify the definition of the repelling
sector W− so that we have a good horizontal expansion for the Hénon map. Suppose
therefore that t < 0.

Remark 3.8. When λ = 1 the parametric paths described by λt = 1± t are in fact the
same, so we can assume that q ≥ 2.
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Figure 4. (case t ≥ 0) Repelling and attractive sectors near the semi-
parabolic/hyperbolic fixed point. The attracting sector ∆+ is shown in red
and the repelling sector ∆− is shown in green. The angle of the green sector
is 5π/9.

Assumption on t. Suppose t is sufficiently small so that |t| < 1
24q+12 . A restriction

on t of this form is needed for the local dynamics, but the choice for this bound will
become clear later on. Let

Rt :=
|t|

(q + 1/3)ε1
(31)

be fixed from now on. The constant ε1 > 3/5 is the same as in Equation (30). Suppose
further that |t| is small enough so that Rt < 1/(9R), where R is as in Proposition 3.6.

Define

Dr,t =
{

(x, y) ∈ C2 : |x|q ≤ Rt, |y| < r
}
.

Proposition 3.9 (Attracting region – t negative). For R large enough and r small
enough there exists a positive number δ′ such that Ha,t(Dr,t) ⊂ Dr,t and all points of
Dr,t are attracted to the origin under iterations by Ha,t for all t ∈ (−δ′, 0).

Proof. We make the change of variables X = −1/(qxq), Y = y and analyze the

situation at infinity. Let Ĥ be the map written in these coordinates. This transformation
maps Dr,t to the region

Wr,t :=

{
X ∈ C : |X| ≥ 1

qRt

}
× Dr.

Let (X1, Y1) = Ĥ(X,Y ) for (X,Y ) ∈ Wr,t. Note that λt = 1 − |t|, as t is negative.
Similar to Equation (26) we have that∣∣∣∣X1 −

1

(1− |t|)qX
∣∣∣∣ < 1

4
.
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This gives

1

(1− |t|)q |X| −
1

(1− |t|)q − |X1| ≤
∣∣∣∣X1 −

1

(1− |t|)q (X + 1)

∣∣∣∣ < 1

4

and, after rearranging the terms, we want to obtain the following estimate

|X1| >
1

(1− |t|)q |X| −
1

(1− |t|)q −
1

4
> |X|+ 1

40
.

The last inequality is equivalent to

|X|
(

1

(1− |t|)q − 1

)
>

1

(1− |t|)q +
11

40
.

Note that 1
(1−|t|)q − 1 > q|t| for small |t|. Using the fact that |X| ≥ (qRt)

−1 and the

particular choice of Rt we get that

|X|
(

1

(1− |t|)q − 1

)
> (q + 1/3) ε1 ≥

7

5
>

1

(1− |t|)q +
11

40
,

which is true whenever (1 − |t|)q > 8/9. This condition is satisfied because, based on
our assumption on t, we have

(1− |t|)q >
(

1− 1

24q + 12

)q
≥
(

59

60

)2

>
8

9
.

Note that the function x 7→ (1− 1/(24x+ 12))x is increasing on [2,∞) and that is why
we can use the middle inequality. We have therefore shown that |X1| > |X| + 1/40.

Let (Xn, Yn) = Ĥ(Xn−1, Yn−1) for some (X0, Y0) ∈ Wr,t. By induction we get that
|Xn| > |X0| + n/40. It follows that all points in Wr,t are attracted to (∞, 0). In order
to prove that indeed Yn → 0 as n→∞ we need to do a similar analysis as in [RT]; we
leave the details to the reader. �

When t < 0, we define the repelling sectors as follows

∆−Rt
:= {x ∈ C : Re(xq) > ε0|Im(xq)| and Rt < |xq| < ρq} , (32)

where Rt is given in (31). The excluded region belongs to the basin of attraction of
0 (see Figure 5). Set as before W−Rt

:= ∆−Rt
× Dr . The definition of the set W+ is

the same as in the case when t is positive, i.e. W+ = ∆+ × Dr, where ∆+ is given in
Equation (28). Also, ∆−Rt

is a subset of ∆−, defined in Equation (29). When t → 0−,

the sets ∆−Rt
converge to ∆−, so the definition of W− when t = 0 is the same as in [RT].

By choosing t small enough so that Rt <
1

9R < ρq we made sure that the excluded
region {x ∈ C | |x|q < Rt} ∩∆R is contained in ∆+.

Let B = Dρ′(αt) × Dr be the polydisc from Theorem 3.5 and φa,t the coordinate
transformation defined on B. We define attractive and repelling sectors relative to B.

Definition 3.10. Let W+
B := φ−1

a,t (W
+) for t ≥ 0 and W+

B := φ−1
a,t (Dρ × Dr −W−Rt

) for

t < 0 be the attractive sectors inside B. Similarly, let W−B := φ−1
a,t (W

−) for t ≥ 0 and

W−B := φ−1
a,t (W

−
Rt

) for t < 0 be the repelling sectors inside B.
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Figure 5. (case t < 0) The repelling sector ∆−Rt
is shown in green. The

angle of the green sector is 5π/9. The red region belongs to the basin of
attraction of 0.

Proposition 3.11 (Local dynamics).

a) If t ≥ 0 then the compact region W+
B satisfies Ha,t(W

+
B ) ⊂ int(K+

a,t)∪W ss
loc(qa,t).

b) If t < 0 then the compact region W+
B lies in the interior of K+

a,t.

Proof. Using the definitions from 3.10, the proof follows directly from Propositions
3.6 and 3.9. �

3.3. Deforming the local semi-parabolic structure into a hyperbolic structure.
In the parabolic case we have shown in [RT, Propositions 6.8, 9.2] that in the repelling
sectors W− near a semi-parabolic fixed point, the Hénon map is weekly expanding in
horizontal cones and strongly contracting in vertical cones, with respect to the Euclidean
metric. We will reuse these cones and show that when t is nonzero, the Hénon map is
strongly expanding in horizontal cones and strongly contracting in vertical cones, and
therefore has a local hyperbolic structure. In this section we only use the local normal
form of the map, so all results are applicable to holomorphic germs of diffeomorhisms
of (C2, 0) with a semi-parabolic fixed point at 0.

Definition 3.12. Define the vertical cone at a point (x, y) from the set Dρ × Dr as

Cv(x,y) =
{

(ξ, η) ∈ T(x,y)Dρ × Dr, |ξ| ≤ |x|2q|η|
}
.

Define the horizontal cone at a point (x, y) from the set Dρ × Dr to be

Ch(x,y) =
{

(ξ, η) ∈ T(x,y)Dρ × Dr, |ξ| ≥ |η|
}
.

We consider the interior of a cone to be its topological interior together with the origin.

Consider the Hénon map H̃a,t : Dρ × Dr → C2 written in the normal form given

in Equation (23). We write H̃a,t whenever we want to stress the dependency on the

parameters a and t, but otherwise we simply write H̃. We have

H̃a,t (x, y) =
(
λt(x+ xq+1 + ga,t(x, y)), νa,ty + xha,t(x, y)

)
,
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where

ga,t(x, y) = Ca,tx
2q+1 + a2q+2(y)x2q+2 + . . .

ha,t(x, y) = b1(y) + . . .+ bk(y)xk + . . .

and ga,t(x, y) = g0,t(x) + O(a) and ha,t(x, y) = O(a). Here the term O(a) is in fact a
holomorphic function in both a and t.

When a = 0, H̃0,t(x, y) = (p̃t(x), 0), where p̃t(x) = λt(x+ xq+1 + g0,t(x)) and

g0,t(x) = C0,tx
2q+1 + a2q+1x

2q+2 + . . . .

The function g0,t depends only on x and t, hence ∂yg0,0(x, y) ≡ 0. For |a| < δ and
|t| < δ′ we can assume that there exists a constant Ma,t with 0 < Ma,t < 1 such that∣∣∂yga,t(x, y)

∣∣ < Ma,t|x|2q+2. (33)

When a = 0 we also know that xh0,t(x, y) ≡ 0. Moreover, by the construction of
the normalizing coordinates, we have xha,t(x, y) = O(a). There exists a constant Na,t,
depending on a, with 0 < Na,t < 1 such that when |a| < δ the following bounds hold∣∣∂x(xha,t)(x, y)

∣∣ < Na,t and
∣∣∂y(xha,t)(x, y)

∣∣ < Na,t. (34)

Let ∂xga,t(x, y) = x2qβa,t(x, y), for some function βa,t. As usual, ∂x denotes the partial
derivative with respect to the variable x. Denote by m the supremum of |βa,t(x, y)| on
the set W−, where the supremum is taken after all |a| < δ and |t| < δ′. Thus

m := sup
(x,y)∈W−, |a|<δ, |t|<δ′

|βa,t(x, y)| (35)

and so
∣∣∂xga,t(x, y)

∣∣ < m|x|2q for all (x, y) ∈ W−. The repelling sectors ∆− and
W− = ∆− × Dr are defined in Equation (29).

By eventually reducing the radius ρ > 0 from the definition of the set ∆−, we can
assume that

|1 + (q + 1)xq| −m|x2q| > 1 + (q + 2/3)ε1|x|q > 1, for all x ∈ ∆−, (36)

where ε1 is given in Equation (30). Consider the polynomial p̃t as in Lemma 2.6 with its
corresponding repelling sector ∆−Rt

(see Equations (29) and (32)). The estimate above

allows us to show that |p̃t′(x)| > |λt|(1+(q+2/3)ε1|x|q) for all x ∈ ∆−Rt
. The polynomial

p̃t
′ is clearly expanding if t is nonnegative since |λt| = 1 + t ≥ 1, but Lemma 3.15 shows

that it is also expanding on ∆−Rt
for negative t.

Proposition 3.13 (Vertical cones). Consider (x, y) and (x1, y1) in the repelling sec-

tors W− ⊂ Dρ × Dr (respectively in W−Rt
for t < 0) such that H̃(x, y) = (x1, y1). Then

DH̃−1
(x1,y1)

(
Cv(x1,y1)

)
⊂ Int Cv(x,y)

and
∥∥DH̃−1

(x1,y1)(ξ
′, η′)

∥∥ ≥ (|νa,t|+ 3/2Na,t)
−1‖(ξ′, η′)‖ for (ξ′, η′) ∈ Cv(x1,y1).

Proof. Let (ξ′, η′) ∈ Cv(x1,y1) with (ξ′, η′) 6= (0, 0), and set (ξ, η) = DH̃−1
(x,y)(ξ

′, η′). We

need to show that (ξ, η) ∈ Cv(x,y). A direct computation gives

DH̃(x,y) =

(
λt(1 + (q + 1)xq + ∂xga,t(x, y)) λt∂yga,t(x, y)

∂x(xha,t)(x, y) νa,t + x∂yha,t(x, y)

)
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and so

ξ′ = λt (1 + (q + 1)xq + ∂xga,t(x, y)) ξ + λt∂yga,t(x, y)η (37)

η′ = ∂x(xha,t)(x, y)ξ + (νa,t + ∂y(xha,t)(x, y)) η. (38)

Using the bounds from Equations (34) and (33) we get

|ξ′| ≥ |λt|
(
|1 + (q + 1)xq| −m|x|2q

)
|ξ| − |λt|Ma,t|x|2q+2|η| (39)

|η′| ≤ Na,t|ξ|+ (|νa,t|+Na,t) |η|. (40)

Since (ξ′, η′) belongs to the vertical cone at (x1, y1), we also know that

|ξ′| ≤ |x1|2q|η′| ≤ |λt|2q|x|2q|1 + xq + ga,t(x, y)/x|2q|η′|
≤ |λt|2q|x|2qM2q

1 |η′|,
where M1 is the supremum of |1 + xq + ga,t(x, y)/x| on the repelling sectors W− of the
tubular neighborhood Dρ × Dr, that is

M1 := sup
(x,y)∈W−,
|a|<δ, |t|<δ′

∣∣1 + xq + ga,t(x, y)/x
∣∣.

Since Re(xq) > ε1|x|q on W− we can take M1 > 1, but any constant M1 > 0 would
suffice. We have assumed that |t| < 1/(2q), so |λt|2q < 3|λt| and

|ξ′| < 3|λt||x|2qM2q
1 |η′|. (41)

By combining estimates (39), (40), and (41) we get

|λt|
(
|1 + (q + 1)xq| −m|x|2q

)
|ξ| − |λt|Ma,t|x|2q+2|η| ≤ |ξ′| <

< 3|λt||x|2qM2q
1 |η′| ≤ 3|λt|M2q

1 Na,t|x|2q|ξ|+ 3|λt|M2q
1 (|νa,t|+Na,t)|x|2q|η|.

After regrouping the terms, we write

|ξ| < A2

A1
|x|2q|η|,

where A1 and A2 are defined as follows

A1 := |1 + (q + 1)xq| − (m+ 3M2q
1 Na,t)|x|2q

A2 := 3M2q
1 (|νa,t|+Na,t) +Ma,t|x|2.

Since x is chosen from the repelling sectors we have |1 + (q + 1)xq| −m|x|2q > 1. The
quantities Na,t, Ma,t and νa,t = −a2/λt depend on a and on t, and they tend to 0 as
a → 0, uniformly with respect to t. For |a| and |t| small we can therefore assume that
A1 > 2/3 and A2 < 1/3. Hence (ξ, η) ∈ Cv(x,y), so

DH̃−1
(x1,y1)

(
Cv(x1,y1)

)
⊂ Int Cv(x,y).

We now show that inside the vertical cones the derivative DH̃−1 is expanding with
respect to the Euclidean metric. We have

|η′| ≤ Na,t|ξ|+ (|νa,t|+Na,t) |η| < Na,t
A2

A1
|x|2q|η|+ (|νa,t|+Na,t) |η|

<

(
1

2
Na,t|x|2q + |νa,t|+Na,t

)
|η| <

(
|νa,t|+

3

2
Na,t

)
|η|,
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provided that |x| < 1 (which is already assumed since ρ < 1). By definition, as both
(ξ, η) and (ξ′, η′) are taken from the vertical cones, we have

‖(ξ, η)‖ = max(|ξ|, |η|) = |η| and ‖(ξ′, η′)‖ = max(|ξ|′, |η′|) = |η′|.
We obtain ‖(ξ, η)‖ > (|νa,t|+ 3/2Na,t)

−1‖(ξ′, η′)‖. �

For |a| and |t| sufficiently small the expansion factor (|νa,t|+ 3/2Na,t)
−1 can be easily

made larger than 1. Hence DH̃−1 expands in the vertical cones with a factor strictly
greater than 1.

Proposition 3.14 (Horizontal cones). Consider (x, y) and (x1, y1) in the repelling

sectors W− ⊂ Dρ × Dr (respectively in W−Rt
for t < 0) such that H̃(x, y) = (x1, y1).

Then

DH̃(x,y)

(
Ch(x,y)

)
⊂ Int Ch(x1,y1)

and
∥∥DH̃(x,y)(ξ, η)

∥∥ ≥ |λt| (1 + (q + 1/2)ε1|x|q) ‖(ξ, η)‖ for (ξ, η) ∈ Ch(x,y).

Proof. Consider (ξ, η) ∈ Ch(x,y), (ξ, η) 6= (0, 0), and let (ξ′, η′) = DH̃(x,y)(ξ, η). We first

need to show that (ξ′, η′) ∈ Ch(x1,y1). Consider ξ′ and η′ written as in Equations (37) and

(38), from the proof of the previous proposition. Since (ξ, η) belongs to the horizontal
cone at (x, y), we know that |ξ| ≥ |η|. As before, by using Equations (33), (34), and
(35), we get the following estimates

|ξ′| ≥ |λt|
(
|1 + (q + 1)xq| −m|x|2q

)
|ξ| − |λt|Ma,t|x|2q+2|η|

≥ |λt|
(
|1 + (q + 1)xq| −m|x|2q −Ma,t|x|2q+2

)
|ξ| (42)

|η′| ≤ Na,t|ξ|+ (|νa,t|+Na,t) |η| ≤ (2Na,t + |νa,t|)|ξ|
In the final analysis we obtain

|η′| ≤ B2

B1
|ξ′|,

where B1 and B2 are defined in the obvious way

B2 := 2Na,t + |νa,t|
B1 := |λt|

(
|1 + (q + 1)xq| −m|x|2q −Ma,t|x|2q+2

)
.

The bounds Na,t, Ma,t and |νa,t| tend to 0 as a→ 0, uniformly with respect to t, so one
can assume that for |a| and |t| small enough we have B2 < 1/2. Moreover, using the
bound from Equation (36), we can assume that

B1 > |λt| (1 + (q + 1/2)ε1|x|q) . (43)

Clearly, B1 is bounded below by |λt| > 1− 1/(2q). In conclusion, we get

|η′| < q

2q − 1
|ξ′|,

which implies that (ξ′, η′) ∈ Int Ch(x′,y′). The norm of the two vectors from the horizontal

cones are ‖(ξ′, η′)‖ = max(|ξ′|, |η′|) = |ξ′| and ‖(ξ, η)‖ = max(|ξ|, |η|) = |ξ|. We have
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already shown in Equation (42) that |ξ′| ≥ B1|ξ|. Together with the lower bound on B1

from Equation (43) this yields

‖(ξ′, η′)‖ > |λt| (1 + (q + 1/2)ε1)|x|q) |ξ| = |λt| (1 + (q + 1/2)ε1)|x|q) ‖(ξ, η)‖,
which is what we needed to prove. �

We now analyze the expansion factor |λt| (1 + (q + 1/2)ε1|x|q) in the horizontal cones
from Proposition 3.14. If t = 0, then |λt| = 1 and the expansion factor reduces to

1 + (q+ 1/2)ε1|x|q. In this case DH̃ expands strictly, but not strongly in the horizontal
cones. The expansion factor goes to 1 when x → 0, i.e. when we approach the local
strong stable manifold of the semi-parabolic fixed point.

If t is positive then |λt| > 1 and DH̃ expands strongly in the horizontal cones, by a
factor of (1 + t) (1 + (q + 1/2)ε1|x|q) ≥ (1 + t). If t is negative, then |λt| < 1 and we
need to use the definition of the repelling sector W−Rt

to get a good expansion. The
repelling sectors were carefully defined in Equation (32), from the previous section.
We use the fact that |x|q > Rt for the choice of Rt from Equation (31) to make the
product |λt| ·(1 + (q + 1/2)ε1|x|q) strictly greater than 1 throughout ∆−Rt

. So we use the
particular choice of Rt to make the second term dominate |λt|, which is in fact smaller
than 1. The following technical lemma deals with this situation.

Lemma 3.15 (Expansion estimate). If t ∈ (−δ′, 0), then

|λt| (1 + (q + 1/2)ε1|x|q) > (1 + ε2|t|)
(

1 +
ε1
16
|x|q
)
,

for all x ∈ ∆−Rt
, where ε2 := 1

16(q+1) . The inequality is also true for t ∈ [0, δ′) and

x ∈ ∆−.

Proof. The proof is straightforward if t is nonnegative. Suppose that t is negative.
Note that |λt| = 1− |t|. We first show that for all x ∈ ∆−Rt

|λt| (1 + (q + 1/2)ε1|x|q) = (1− |t|) (1 + (q + 1/2)ε1|x|q) > 1 +
ε1
8
|x|q,

which is equivalent to showing that |x|q ((1− |t|)(q + 1/2)ε1 − ε1/8) > |t|. On ∆−Rt
we

have that |x|q > Rt for Rt = |t|
(q+1/3)ε1

, so

|x|q ((1− |t|)(q + 1/2)ε1 − ε1/8) >
|t|

(q + 1/3)
((1− |t|)(q + 1/2)− 1/8) > |t|.

This is verified for |t| < 1
24q+12 , which is one of the bounds already imposed on t.

We then show by direct computation that

1 +
ε1
8
|x|q > (1 + ε2|t|)

(
1 +

ε1
16
|x|q
)
,

for all x ∈ ∆−Rt
and some constant ε2. We take ε2 = 1

16(q+1) , but the choice is not

optimal. The computational details are left to the reader. �
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3.4. Global analysis of the Julia set. We would first like to show that the corre-
sponding Hénon map is hyperbolic on its Julia set Ja,t. We must show that the derivative
of the Hénon map has appropriate contraction and expansion in a family of vertical,
respectively horizontal cones. We have already shown this to be true locally around the
fixed point qa,t in Section 3.3.

If we look at the form of the Hénon map, Ha,t(x, y) = (pt(x) + a2w+ ay, ax) given in
Equation (17), we notice that the presence of the multiplicative factor a in the second
coordinate implies that the derivative of the Hénon map is strongly contracting in the
“vertical direction”, or equivalently, DH−1 is expanding in the “vertical direction”. If
we analyze the first coordinate, we notice that the expanding properties of DH in the
horizontal direction are closely related to the expanding properties of the polynomial pt
on a neighborhood of its Julia set. We will construct a neighborhood V of J+

a,t for the
Hénon map Ha,t inside a polydisk Dr×Dr, and put a metric on it with respect to which
the derivative of the Hénon map is expanding in the “horizontal direction”.

For the Hénon map Ha,t, the construction of the neighborhood V will be similar to
the construction of the neighborhood U ′t in the polynomial case in Section 2.4 (see also
[RT, Section 7] for the construction of the neighborhood in the semi-parabolic case).

Let αt be a fixed point for the polynomial pt. For |a| < δ consider the normalizing
coordinates of the Hénon map Ha,t on the tubular neighborhood B = Dρ′(αt) × Dr as
defined in Theorem 3.5. Let qa,t denote the hyperbolic/semi-parabolic/attracting fixed
point. Let W+

B and W−B be the attractive, respectively repelling sectors inside B from

Definition 3.10. By Proposition 3.11, the set W+
B belongs to int(K+

a,t)∪W ss
loc(qa,t). The

set H−1
a,t (B) ∩ Dr × Dr has two connected components, so let us denote by

B′ :=
(
H−1
a,t (B)−B

)
∩ Dr × Dr (44)

the component disjoint from B. Let W+
B′ be the preimage of the attractive sectors W+

B

in B′ that is, W+
B′ := H−1

a,t (W+
B ) ∩B′.

We start by defining a box neighborhood U ′t×Dr, where U ′t is constructed as in the one
dimensional case (see Definition 6). Recall that the set U ′t was defined as U ′t = p−1

t (Ut),
where

Ut := C− p−◦Nt (Satt)− {z ∈ C−Kpt : |Ψ−1
pt (z)| ≥ R}.

We choose R > 2 large enough so that the outer boundary of Ut is in the set V + defined
in (15) (and implicitly in the escaping set U+).

The only difference will be that instead of removing the attractive sectors p−◦Nt (∆+
t ),

we want to remove a little bit less. Construct attractive sectors Satt ⊂ ∆+
t associated

with the polynomial pt in Dρ′(αt), thin enough along the attractive axes so that(
p
−◦(N+1)
t (Satt) ∩A

)
× Dr ⊂W+

B .

We denoted by A the annulus between the disk of radius ρ′ and the disk of radius
ρ′′ < ρ′/2 centered at αt, so A = Dρ′(αt) − Dρ′′(αt). Otherwise said, in the annular

region A, we want the small attractive sectors p
−◦(N+1)
t (Satt) of the polynomial pt to be

compactly contained in the attractive sectors W+
B of the Hénon map. As in Section 2.4,

when writing p−◦Nt (Satt) we do not take into account all preimages of Satt, but rather
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only the preimage of Satt that is contained in the immediate Fatou components of the
fixed point αt and has αt in the boundary.

Inside the tubes B and B′, we forget all together about the polynomial dynamics. So
we take out the tubes completely and put back in only the repelling sectors W−B and

W−B′ . We can now finally define the set V as

V :=
(
U ′t × Dr − (B ∪B′)

)
∪
(
W−B ∪W−B′

)
. (45)

Remark 3.16. Note that the set B′ (and consequently W−B′) is contained in the bigger
set Ut × Dr and its projection on the first coordinate is compactly contained in Ut and
bounded away from the critical point 0 of the polynomial pt. Denote by B′′ the polydisk
Dρ′′(αt)×Dr. When |a| is small, the set B′′ should be thought of as a small neighborhood
of the local stable manifold W ss

loc(qa,t) of the fixed point qa,t. By the construction above,

the set difference W−B −B′′ is contained in U ′t×Dr. Hence V −B′′ is a subset of Ut×Dr.

For t ≥ 0, let V denote the set V together with the local stable manifold W ss
loc(qa,t)

and together with H−1(W ss
loc(qa,t)) ∩ B′. When t < 0 there is no need to add the two

stable manifolds as they belong to the interior of K+
a,t. However, to preserve notation,

we set V = V in this case.

Lemma 3.17. J+
a,t ∩ V = J+

a,t ∩Dr ×Dr. Moreover, the Julia set Ja,t is contained in V
and

Ja,t =
⋂
n≥0

H◦n(J+
a,t ∩ V ).

Proof. The outer boundary of the set V is an equipotential of the polynomial pt
cross Dr, which belongs to the escaping set U+

a,t. From the tubular neighborhood B

of the local stable manifold we have removed only the attractive sectors W+
B , which

are contained in the interior of K+
a,t when t < 0 and in the interior of K+

a,t union the

local stable manifold W ss
loc(qa,t) when t ≥ 0. From B′ we only removed the attractive

sectors W+
B′ which are contained in the interior of K+

a,t when t < 0, and respectively in

the interior of K+
a,t union a preimage of the local stable manifold H−1(W ss

loc(qa,t)) ∩B′
when t ≥ 0. Outside of B ∪ B′, we have removed a vertical tube p

−◦(N+1)
t (Satt) × Dr

which belongs to the interior of K+
a,t. Therefore, when t < 0, the set J+

a,t ∩ (Dr × Dr) is
contained in the set V . When t ≥ 0, in our construction process of the neighborhood V ,
we have lost from J+

a,t ∩ (Dr × Dr) only two local stable manifolds. These local stable

manifolds are no longer in V , but they lie in the larger set V ,

J+
a,t ∩ (Dr × Dr) ⊂ V when t ≥ 0.

Any point in J+
a,t ∩ V remains in V under forward iterates of the Hénon map, so the

Julia set Ja,t is contained in V . �

3.5. Vertical and horizontal cones in the product metric. We construct an in-
variant family of horizontal and vertical cones on the set V defined in (45), such that
the derivative of the Hénon map expands in the horizontal cones, and contracts in the
vertical cones.
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In Section 3.3 we have already constructed such an invariant family of cones in the
repelling sectors of the fixed point qa,t. These cones live only in a small neighborhood
of qa,t, where the map is conjugate to the normal form (3.4).

In this section we define a family of cones on the set V away from a small neighborhood
of qa,t. At the end of this section, we show how to patch together these two types of
cones, from Sections 3.3 and 3.5, to get an invariant family on the entire set V .

The set Ut × Dr comes equipped with the product metric µUt × µE of the Poincaré
metric µUt of the set Ut and the regular Euclidean metric µE on the vertical disk Dr.
Tangent vectors (ξ, η) from T(x,y)C2 will be measured with respect to the product metric

‖(ξ, η)‖ := max(µUt(x, ξ), |η|),
where |η| is the absolute value of the complex number η.

By Remark 3.16, the set V − B′′ is a subset of Ut × Dr, and we can endow V − B′′
with the product metric that we have just constructed on the set Ut × Dr. Denote by
U ′′t the projection of V on the first coordinate, which is equal to U ′t ∪ pr1(W−B′). The
set U ′′t − Dρ′′(αt) is compactly contained in Ut, so the Poicaré metric µUt is bounded
above and below by the Euclidean metric on the set U ′′t − Dρ′′(αt), that is, there exist
two positive constants m1 and m2 such that

m1 < ρUt(x) < m2, (46)

for any t ∈ [−δ′, δ′] and any x ∈ U ′′t −Dρ′′(αt). Therefore, the product metric is bounded
on the set V −B′′. If we let ρUt be the density function of the metric µUt ,

µUt(x, ξ) = ρUt(x)|ξ|
then ρUt is positive and C∞-smooth on U ′′t − Dρ′′(αt).

The sets U ′′t , |t| < δ′, avoid a neighborhood of fixed size of the critical point of the
polynomial pt. Hence there exists a lower bound r1 > 0 such that

r1 < |p′t(x)|, for any x ∈ U ′′t . (47)

Definition 3.18. Let τ < 1. Let the vertical cone at a point (x, y) from V −B′′ be

Cv(x,y) =
{

(ξ, η) ∈ T(x,y)C2, µUt(x, ξ) ≤ τ · |η|
}
.

Define the horizontal cone at a point (x, y) from the set U ′t × Dr to be

Ch(x,y) =
{

(ξ, η) ∈ T(x,y)C2, µUt(x, ξ) ≥ |η|
}
.

We will show that the vertical cones are invariant under DH−1
a,t and that the horizontal

cones are invariant under DHa,t.

Proposition 3.19 (Vertical cones). Consider (x, y) and (x′, y′) in V −B′′ such that
H(x′, y′) = (x, y). Then

DH−1
(x,y)

(
Cv(x,y)

)
⊂ Int Cv(x′,y′)

and
∥∥DH−1

(x,y)(ξ, η)
∥∥ ≥ |a|−1‖(ξ, η)‖ for (ξ, η) ∈ Cv(x,y).

Proof. Let (ξ, η) ∈ Cv(x,y) and (ξ′, η′) = DH−1
(x,y)(ξ, η). From the formula of the inverse

of the Hénon map (
x′, y′

)
=

(
y

a
,
x− pt(y/a)− a2w

a

)
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we find ξ′ = 1
aη and η′ = 1

a

(
ξ − 2x′

a η
)

. Assume (ξ, η) 6= (0, 0), otherwise the proof is

trivial. The vector (ξ, η) belongs to the vertical cone, so µUt(x, ξ) = ρUt(x)|ξ| ≤ τ |η|.
This implies that

|ξ| < τ

m1
|η|. (48)

We can evaluate

µUt(x
′, ξ′) = ρUt(x

′)
|η|
|a| ≤

m2

|a| |η|. (49)

Next, by using inequality (48), we compute

|η′| = 1

|a|

∣∣∣∣ξ − 2x′

a
η

∣∣∣∣ > 1

|a|

( |2x′|
|a| −

τ

m1

)
|η|. (50)

The point x′ belongs to U ′′t , so |2x′| > r1 by Equation (47). Choose |a| small so that
r1
|a| − τ

m1
> max

(
2m2
τ , 1

)
. Combining Equations (49) and (50) gives µUt(x

′, ξ′) < τ
2 |η|.

Therefore DH−1
(x,y)

(
Cv(x,y)

)
⊂ Int Cv(x′,y′), which proves the cone invariance. Inequality

(50) shows that DH−1 expands in the vertical cone as |η′| > |a|−1|η|. By definition,
since both (ξ, η) and (ξ′, η′) belong to vertical cones, we have

‖(ξ, η)‖ = max (µUt(x, ξ), |η|) = |η| and ‖(ξ′, η′)‖ = max
(
µUt(x

′, ξ′), |η′|
)

= |η′|.
We therefore obtain ‖(ξ, η)‖ > |a|−1‖(ξ′, η′)‖, as claimed. �

Remark 3.20. When dealing with vertical cones, it is not really necessary to measure
the horizontal component of vectors with respect to the Poincaré metric. Any bounded
metric in the horizontal direction would work, because we can always choose |a| small
to get the invariance of the vertical cone field and the strong expansion of DH−1 in the
vertical cones. The choice of the Poincaré metric is essential however to show expansion
of DH in the horizontal cones.

The scalar 0 < τ < 1 in the definition of the vertical cone will typically be chosen
less than (ρ/2)2q, so that on a neighborhood of the boundary of B, the vertical cones
Cv(x,y) from Definition 3.18 are contained in the pull-back by Dφa,t of the vertical cones

from 3.12 defined in the normalized coordinates.

Proposition 3.21 (Horizontal cones). Let (x, y) and (x′, y′) in V − B′′ such that
H(x, y) = (x′, y′). Then we have

DH(x,y)

(
Ch(x,y)

)
⊂ Int Ch(x′,y′)

and
∥∥DH(x,y)(ξ, η)

∥∥ ≥ k‖(ξ, η)‖ for (ξ, η) ∈ Ch(x,y).

Proof. Let (ξ, η) ∈ Ch(x,y) with (ξ, η) 6= (0, 0) and let (ξ′, η′) = DH(x,y)(ξ, η). We first

need to show that (ξ′, η′) ∈ Int Ch(x′,y′). Since DH(x,y)(ξ, η) = (2xξ + aη, aξ), we find

ξ′ = 2xξ + aη and η′ = aξ. The vector (ξ, η) belongs to the horizontal cone at (x, y), so

|η| ≤ µUt(x, ξ) = ρUt(x)|ξ| < m2|ξ|. (51)
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Using (x′, y′) =
(
pt(x) + a2w + ay, ax

)
we evaluate

µUt(x
′, ξ′) = ρUt

(
pt(x) + a2w + ay

)
|2xξ + aη|. (52)

Since ρUt is C∞-smooth, its derivative ρ′Ut
is also bounded on U ′′t − Dρ′′(αt). There

exists a constant c > 0 (which just a local variable) such that∣∣ρUt

(
pt(x) + a2w + ay

)
− ρUt (pt(x))

∣∣
|a| ≤ |aw + y| · sup ρ′Ut

· ρUt(pt(x))

inf ρUt

< c · ρUt (pt(x)) . (53)

The polynomial pt is expanding with respect to the Poincaré metric µUt . As in Lemma
(7) part (a), there exists κt > 1 with inf

t∈[−δ′,δ′]
κt > 1 such that

ρUt (pt(x)) |p′t(x)ξ| > κt · ρUt(x)|ξ|, (54)

whenever x, pt(x) ∈ U ′′t −Dρ′′(αt). We now turn back to relation (52). Using (53), (54),
(51) and (47) one gets

µUt(x
′, ξ′) > (1− c|a|) · ρUt (pt(x)) |2xξ| · |2xξ + aη|

|2xξ|

> (1− c|a|) · κt · ρUt(x)|ξ| ·
(

1− |a| |η||2x||ξ|

)
> κt · (1− c|a|) ·

(
1− |a|m2

r1

)
· ρUt(x)|ξ|. (55)

The constant κt is bigger than 1 for all t ∈ [−δ′, δ′]. We write the dependence on t to
preserve notations from Lemma (7), but we could drop the dependence on t by working
with inf

t∈[−δ′,δ′]
κt which is also strictly bigger than 1. The factors 1− c|a| and 1− |a|m2

r1

are independent of t, and they can be made arbitrarily close to 1 by reducing |a|. In
conclusion, for |a| sufficiently small we can assume that

k := inf
t∈[−δ′,δ′]

κt · (1− c|a|) ·
(

1− |a|m2

r1

)
> 1. (56)

From relation (55), we obtain

µUt(x
′, ξ′) > k · ρUt(x)|ξ| = k · µUt(x, ξ),

which shows that DH expands in the horizontal cones. Also from (55) we infer that

|a| · µUt(x
′, ξ′) > k · ρUt(x)|aξ| > k ·m1 · |η′|,

which proves that DH(x,y)

(
Ch(x,y)

)
⊂ Int Ch(x′,y′), so the horizontal cones are invariant. �

On the set V −B′′ we have one family of horizontal/vertical cones, Ch(x,y) and Cv(x,y),

defined in 3.18. On W−B we have another family of horizontal/vertical cones

Dφ−1
a,t |φa,t(x,y)(Chφa,t(x,y)) and Dφ−1

a,t |φa,t(x,y)(Cvφa,t(x,y))

defined in 3.12 with respect to the Euclidean metric in the normalized coordinates given
by φa,t. For those points (x, y) ∈ W−B where both types of cones are defined, we take
the horizontal/vertical cone to be their intersection.
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3.6. Combining infinitesimal metrics. On the neighborhood V defined in 45 we
have given two infinitesimal metrics. On the set V −B′′, where B′′ ⊂ B was defined in
Remark 3.16, we put the product of the Poincaré metric µUt with the Euclidean metric
on Dr,

µP ((x, y), (ξ, η)) := max (µUt(x, ξ), |η|) , (57)

where (x, y) ∈ V −B′′ and (ξ, η) ∈ T(x,y)V −B′′.
In the repelling sectors W−B of the tubular neighborhood B of the local strong stable

manifold of the hyperbolic/semi-parabolic/attractive fixed point (see Definition 3.10),
we have the pull-back Euclidean metric from the normalizing coordinates φa,t : W−B →
W− ⊂ Dρ × Dr. Let

µB((x, y), (ξ, η)) := max
(
|ξ̃|, |η̃|

)
,

where (ξ̃, η̃) = Dφa,t
∣∣
(x,y)

(ξ, η) and φa,t : B → Dρ × Dr is the change of coordinate

function from Theorem 3.5.
Just like in the polynomial case, we can define an infinitesimal pseudo-norm on V ,

µ := inf (MµB, µP ) , (58)

where M is a positive real number, chosen so that the derivative of the Hénon map is
still expanding in the horizontal cones when we map from the repelling sectors W−B′ of

B′ (see Definition (44)) into the repelling sectors W−B of B. We take M so that

M > sup
(x,y)∈W−

B′
(ξ,η)∈Ch

(x,y)
−{(0,0)}

2µP ((x, y), (ξ, η))

µB

(
H(x, y), DH(x,y)(ξ, η)

) . (59)

The supremum from Equation (59) is bounded, because µP ((x, y), (ξ, η)) = µUt(x, ξ) for
(x, y) ∈W−B′ , (ξ, η) ∈ Ch(x,y), and the Poincaré metric on B′ is bounded.

Let (x, y) be any point in V . Let (ξ, η), (ξ′, η′) be any vectors from the two dimensional
tangent space T(x,y)V .

Notice that µ is homogeneous that is, µ((x, y), α(ξ, η)) = |α|µ((x, y), (ξ, η)), for all
complex numbers α, as both µP and µB are homogeneous metrics. It also satisfies the
relation µ((x, y), (ξ, η)) ≥ 0, with equality if and only if (ξ, η) = (0, 0). However, µ does
not necessarily satisfy the triangle inequality µ((x, y), (ξ+ξ′, η+η′)) ≤ µ((x, y), (ξ, η))+
µ((x, y), (ξ′, η′)). Nonetheless, µ induces a regular path metric on horizontal curves
between points in V (see Definitions (8) and (9)) by integration. If g : [0, 1] → V is a
horizontal rectifiable path g(s) = (g1(s), y), then its length with respect to µ is given

by the formula `µ(g) =
∫ 1

0 µ (g(s), (g′1(s), 0)) ds. The distance between two points (x, y)
and (x′, y) from V with respect to the induced metric µ is

dµ
(
(x, y), (x′, y)

)
= inf `µ(g), (60)

where the infimum is taken after all horizontal rectifiable paths g : [0, 1] → V with
pr2(g) = y, g(0) = (x, y) and g(1) = (x′, y).

Another way to combine the two metrics is by defining a true product metric, where
the second coordinate is measured with respect with the Euclidean metric, and the first
coordinate is an infimum of two metrics. Choose (x, y) ∈ U ′t × Dr ∩W−B and nonzero
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(ξ, η) ∈ T(x,y)U
′
t × Dr ∩W−B as before. Using Remark (24), let (

˜̃
ξ, 0) = Dφa,t

∣∣
(x,y)

(ξ, 0)

and define

µ′((x, y), (ξ, η)) := max

(
inf

(
µUt(x, ξ),M |

˜̃
ξ|
)
, |η|
)
.

The constant M is greater than sup

(
2µUt (x, ξ) /|˜̃ξ1|

)
, where (ξ1, η1) = DH(x,y)(ξ, η)

and the supremum is taken after all (x, y) ∈W−B′ and nonzero vectors (ξ, η) ∈ Ch(x,y).

If we let φa,t = (φ1, φ2), then
˜̃
ξ = ∂xφ1(x, y)ξ. Also µUt(x, ξ) = ρUt(x)ξ, where

ρUt is the density function of the Poincaré metric of Ut. In conclusion, if we define
m(x, y) := inf(ρUt(x),M |∂xφ1(x, y)|) we get

µ′((x, y), (ξ, η)) := max (m(x, y)|ξ|, |η|) .
With this definition it is easy to see that the triangle inequality is satisfied and µ′ is

an infinitesimal metric, i.e. a norm. Notice also that µ and µ′ coincide when restricted
to horizontal curves, and they induce the same horizontal path metric.

Lemma 3.22. Let t ∈ [−δ′, δ′] and |a| < δ. Let k be chosen as in Proposition 3.21 and
the constant ε2 as in Lemma 3.15. There exists a constant kt ≥ min(1 + ε2|t|, k) > 1,
independent of a, such that

µ
(
Ha,t(x, y), DHa,t

∣∣
(x,y)

(ξ, η)
)
> kt · µ ((x, y), (ξ, η)) , (61)

for any (x, y) ∈ V and any nonzero tangent vector (ξ, η) in the horizontal cone at (x, y).
If t = 0 and |a| < δ, there exists k0(x, y) > 1 such that

µ
(
Ha,t(x, y), DHa,t

∣∣
(x,y)

(ξ, η)
)
> k0(x, y) · µ ((x, y), (ξ, η)) , (62)

and k0(x, y) goes to 1 precisely when (x, y) tends to the local stable manifold W ss
loc(qa,0)

of the semi-parabolic fixed point.
Moreover, the inequalities (61) and (62) hold true for µ′ instead of µ.

Proof. The proof is identical to the proof of Lemma 2.9. We use the estimates in
the horizontal cones from Propositions 3.14 and 3.21. The choice of the constant M in
Definition 59 is useful when dealing with the analogue of case (d)(i), from Lemma 2.9.
The case t = 0 is given by [RT, Theorem 8.7]. �

A larger region of hyperbolicity. The following theorem is a classical result on
dominated splitting.

Theorem 3.23 ([KH]). A compact f -invariant set Λ is hyperbolic if there exists β0 <
1 < β1 such that for every x ∈ Λ there is a decomposition TxM = Sx ⊕ Tx, a family of
horizontal cones Chx ⊃ Sx, and a family of vertical cones Cvx ⊃ Tx associated with that
decomposition such that

DfxChx ⊂ Int Chf(x), Df−1
x Cvf(x) ⊂ Int Cvx,

‖Dfx ξ‖ ≥ β1‖ξ‖ for ξ ∈ Chx and ‖Df−1
x ξ‖ ≥ β−1

0 ‖ξ‖ for ξ ∈ Cvx.

We now have all the ingredients to prove the hyperbolicity part of Theorem 1.2.



SEMI-PARABOLIC TOOLS FOR HYPERBOLIC HÉNON MAPS 39

Theorem 3.24 (Hyperbolicity). There exist δ, δ′ > 0 such that in the parametric
region

HRδ,δ′ =
{

(c, a) ∈ Pλt : 0 < |a| < δ and − δ′ < t < δ′, t 6= 0
}

the Julia set Jc,a is connected and the Hénon map Hc,a is hyperbolic.

Proof. In Section 3.5, we built a family of horizontal and vertical cones, invariant
under DH, respectively under DH−1, such that DH expands with a factor of β1 > 1
inside the horizontal cones, and DH−1 expands with a factor of 1/β0 > 1 inside the
vertical cones. The expansion is measured with respect to the metric µ′ from Lemma
3.22. The proof follows from Propositions 3.13, 3.14, 3.19 and 3.21 and Lemma 3.15 by
taking β0 = max(|a|, |νa,t|+ 3/2Na,t)� 1 and β1 = kt > 1 for t 6= 0. The constant kt is

given in Lemma 3.22. We then apply Theorem 3.23 for the set Λ := V , which includes
J+ ∩ Dr × Dr, by Lemma 3.17. The set V was constructed in Section 3.4.

The fact that this hyperbolic region is inside a component of the connectedness locus
follows from Corollary 3.31.1. �

It is worth mentioning that J = J∗ (the closure of the saddle periodic points) through-
out the parametric region defined by (c, a) ∈ Pλt , 0 < |a| < δ and −δ′ < t < δ′. This
follows from Theorem 3.24 and [BS1] for t 6= 0 and [RT] for t = 0.

Period doubling. Let P2n
−1 be the set of parameters (c, a) ∈ C2 for which the Hénon

map Hc,a has a cycle of period 2n with one multiplier λ = −1. Theorem 3.24 can
be generalized to show that there are regions of hyperbolicity to the left and to the
right of the real curve P2n

−1 ∩ R2 (see Figure 1). Moreover, for each n, there is a region

of hyperbolicity connecting P2n
−1 ∩ R2 to P2n+1

−1 ∩ R2 of “vertical” size (the size of the
parameter a) δn > 0. Presumably δn → 0 as we approach the Feigenbaum parameter.

3.7. The function space F . We will do the same construction as in Section 2.5. Let
R be fixed as in Equation (6). Recall that

γt,0 : S1 → U ′t , γt,0(s) = Ψpt

(
R1/2e2πis

)
is the equipotential of pt that defines the outer boundary of the neighborhood U ′t con-
structed in Section 2.4. Define f0 : S1 × Dr → V as

f0(s, z) = (γt,0(s), z).

The image of f0 is thus a solid torus contained in the escaping set U+ that represents
the outer boundary of the set V .

Definition 3.25. Consider the space of functions:

Fa,t =
{
fn : S1 × Dr → V : f0(s, z) = (γt,0(s), z), fn(s, z) = Fa,t ◦ fn−1(s, z) for n ≥ 1

}
,

where the graph transform Fa,t : Fa,t → Fa,t is defined as Fa,t(f) = f̃ , where the map

f̃ is continuous with respect to s, holomorphic with respect to z, and f̃
∣∣
s×Dr

is the

reparametrization f̃(s, z) = (ϕs(z), z) of one of the two vertical-like disk components of

H−1
a,t (f(2s× Dr)) ∩ V

as a graph of a function over the second coordinate, via the Inverse Function Theorem.
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Remark 3.26. The maps fn are essentially reparametrizations of the backward iterates
of f0 (inside V ) under the Hénon map. The picture to keep in mind is the following:
The image of the map fn ∈ Fa,t, n ≥ 0, is a solid torus Tn contained in the escaping set
U+. In the s-coordinate, the Hénon map behaves like angle doubling, whereas in the
vertical z-coordinate, it behaves like a strong contraction. Therefore, the Hénon map
maps Tn+1 to another solid torus, wrapped around two times inside Tn.

We say that a complex disk is vertical-like if any tangent vector to it belongs to the
vertical cones 3.18 and 3.12 if both of them are defined, or to the one that is defined. The
invariance of vertical cones (Propositions 3.19 and 3.13) and the fact that the Hénon
map has degree 2 imply that the preimage of a vertical-like complex disk contained
in the set V ∩ U+ consists of two vertical-like complex disks. Assume by induction
on n ≥ 0, that we have fn(s, z) = (ϕns (z), z), where fn is injective, continuous with
respect to s and holomorphic with respect to z, and for any s ∈ S1, L = fn(2s × Dr)
is a vertical-like disk in the escaping set U+. Let us show how to construct fn+1. The
projection ∆ of L on the first coordinate is almost constant and bounded away from 0,
the critical point of pt, so the preimage H−1

a,t (L) ∩ V is a disjoint union of two vertical-
like disks that we would like to first label as s and s + 1/2 and then parametrize as
graphs over the second coordinate. As in the polynomial case, there are exactly two
possible choices of labelings that would make the function fn+1 continuous with respect
to s ∈ S1. There are two holomorphic branches of the backward iterate of the polynomial
pt defined on ∆. Let now (ϕn2s(z), z) be any point of L such that H−1

a,t (ϕn2s(z), z) ∈ V .

In particular, by analyzing the second coordinate of H−1
a,t (ϕn2s(z), z), we see that the

condition |(ϕn2s(z)− p(z/a)− a2w)/a| < r must be satisfied, which means exactly that
the first coordinate z/a is O(a) close to one of the two preimages of ϕn2s(z) under the
polynomial pt. The curves fn+1(s×Dr) and fn+1((s+1/2)×Dr) correspond to different
choices of the branch of p−1

t (see also Section 2.5, Equation 10). The Inverse Function
Theorem can be used to write the two vertical-like disks as graphs of functions over
the second coordinate. Thus fn+1(s, z) = (ϕn+1

s (z), z) where ϕn+1
s is a holomorphic

function, continuous with respect to s. The map fn+1 is injective.

Remark 3.27. This procedure can be used to define external rays for the Hénon map.
External rays are very useful tools, because they give combinatorial models for the Julia
set. In [BS6] and [BS7] it was shown that external rays for polynomial diffeomorphisms
of C2 can be defined when J is connected. A priori we do not know that our family
has connected J , but this will be shown to be true as a result of our construction, in
Corollary 3.31.1. The construction of the space F and of the operator F for t = 0 is
given in [RT, Section 11] and is identical for t real and small.

On the set V we use the modified metric dµ from Definition 58. On the function
space Fa,t we consider the metric

d(f, g) = sup
s∈S

sup
z∈Dr

dµ (f(s, z), g(s, z)) , (63)

where dµ (f(s, z), g(s, z)) is defined in (60) as the infimum of the length of horizontal
rectifiable paths γ : [0, 1] → V with γ(0) = f(s, z) and γ(1) = g(s, z). The length is
measured with respect to the metric µ.



SEMI-PARABOLIC TOOLS FOR HYPERBOLIC HÉNON MAPS 41

Theorem 3.28. Suppose that t ∈ [−δ′, δ′] and |a| < δ. If t 6= 0, then the operator
Fa,t : Fa,t → Fa,t is a strong contraction, i.e. there exists a constant Kt > 1, which
depends on t, such that

d(Fa,t(f), Fa,t(g)) <
1

Kt
d(f, g), for any f, g ∈ Fa,t.

Proof. We can use the expanding properties of the infinitesimal pseudo metric µ
constructed in (58) to show that the operator Fa,t contracts distances between vertical-
like disks with respect to the induced metric dµ. We show that there exists Kt > 1 such
that

d (Fa,t ◦ f(s× Dr), Fa,t ◦ g(s× Dr)) <
1

Kt
d (f(2s× Dr), g(2s× Dr)) , (64)

for all f, g ∈ Fa,t and s ∈ S1.
We first discuss the strategy in the semi-parabolic case t = 0, which is harder and

treated in [RT]. When t = 0 we showed a similar inequality in [RT, Proposition 11.9]:
for f, g ∈ Fa,0 and s ∈ S1 there exists a constant 0 ≤ C(f, g, s) < 1 such that

d (Fa,0 ◦ f(s× Dr), Fa,0 ◦ g(s× Dr)) < C(f, g, s)d (f(2s× Dr), g(2s× Dr)) .

The contraction factor C(f, g, s) depends only on the distance from the fibers f(2s×Dr),
g(2s×Dr) to W ss

loc(qa,0) and goes to 1 precisely when these fibers approach W ss
loc(qa,0),

the local stable manifold of the semi-parabolic fixed point qa,0.
We briefly explain how the factor C(f, g, s) is obtained when t = 0. When the

disks f(2s × Dr), g(2s × Dr) are close to W ss
loc(qa,0), they become almost vertical (the

vertical cones have angle opening of ≈ |x|2q, where |x| measures the distance to the
stable manifold W ss

loc(qa,0) and is close to 0). Meanwhile, by [RT, Proposition 6.8], the
expansion factor of the derivative of the Hénon map in the horizontal direction is at
least (1 + ε1

16 |x|q) > 1. By using the fact that |x|q dominates |x|2q when |x| is small, we
showed in [RT, Theorem 10.2] that the factor C(f, g, s) is strictly smaller than 1 and
goes to 1 precisely when x→ 0. When the disks f(2s× Dr), g(2s× Dr) do not belong
to a small neighborhood of W ss

loc(qa,0) we proved in [RT, Proposition 11.9] that in fact
we have a strong contraction factor C(f, g, s) < 1/(k+O(|a|)) < 1. The constant k > 1
is defined in Equation (56).

We now return to the proof of inequality (64). When t 6= 0, the same proof as outlined
above works, but the computations are greatly simplified, because the expansion factor
from Lemma 3.22 is at least min (1 + ε2|t|, k), hence strictly greater than 1.

In a small neighborhood of W ss
loc(qa,t), the disks f(2s × Dr), g(2s × Dr) are almost

vertical. Indeed, by Definition 3.12 and the invariance of vertical cones from Proposi-
tion 3.13, the vertical cones in the repelling sectors W−B have a narrow angle opening
≈ |x|2q when x is close to 0. By Proposition 3.14 and Lemma 3.15, the derivative DHa,t

expands horizontally by a factor of (1 + ε2|t|)
(
1 + ε1

16 |x|q
)
, so the operator Fa,t con-

tracts the distance between vertical-like disks by a factor of (1 + ε2|t|)C(f, g, s). Away
from the local stable manifold W ss

loc(qa,t), we have the same strong contraction factor
1/(k+O(|a|)) as in the case t = 0. Let Kt be min (1 + ε2|t|, k +O(|a|)). In conclusion,
when t 6= 0, we have a strong contraction factor 1/Kt, strictly less than 1. �
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As in the polynomial case, we can reduce the hyperbolic case t ∈ [−δ′, δ′] to the
semi-parabolic case by considering

h : [0,∞)→ [0,∞), h(s) := sup
t∈[−δ′,δ′]

ht(s),

where

ht(s) := sup
|a|≤δ

sup
{
d(Fa,t ◦ f(θ × Dr), Fa,t ◦ g(θ × Dr)) : f, g ∈ Fa,t and θ ∈ S1

and d (f(2θ × Dr), g(2θ × Dr)) ≤ s} .
By definition, for each t, the function ht : [0,∞)→ [0,∞) is increasing and satisfies

d(Fa,t(f), Fa,t(g)) < ht (d(f, g)) , for any f, g ∈ Fa,t.
By Theorem 3.28 we know that for t 6= 0, ht(s) <

1
Kt
s < s for all s > 0. When t = 0, we

know a bit more: by [RT, Theorem 11.10], h0(s+) < s for all s > 0. We can therefore
apply Lemma 2.14 and conclude that the function h+ : s 7→ h(s+) is a Browder function
that works for all t ∈ [−δ′, δ′]. This proves that the construction can be done uniformly
with respect to t and a. Uniformity with respect to |a| < δ was already shown in the
semi-parabolic case t = 0 [RT]. Now Browder’s Theorem 2.10 proves the existence of a
unique fixed point f∗a,t : S1 × Dr → V of the operator Fa,t. We summarize below some
basic properties of the fixed point f∗a,t, which are direct consequences of our construction.

Proposition 3.29. The operator Fa,t has a unique fixed point f∗a,t : S1×Dr → J+
a,t∩V ,

f∗a,t(s, z) = (ϕt,s(z), z). The map f∗a,t is surjective, continuous with respect to t and s,
and holomorphic with respect to a and z.

3.8. Stability and continuity of J and J+. The Julia sets J and J+ depend lower-
semicontinuously on the parameters, and discontinuities can occur at a parameter for
which the Hénon map has a semi-parabolic fixed point [BSU]. In Theorem 3.32 we prove
that in our family of complex Hénon maps Ha,t the sets J and J+ depend continuously
on the parameters as t→ 0.

We begin by analyzing the properties of the fixed point f∗a,t in more detail. The
analysis is similar to [RT, Section 12], but the role of the parameter t is different. By
Proposition 3.29, f∗a,t(s, z) = (ϕt,s(z), z), where ϕt,s(z) is continuous with respect to

s ∈ S1 and analytic with respect to z ∈ Dr. The map ϕt,s depends analytically on
the parameter a as well, but we choose to disregard this to simplify notations. We will
point out the dependency on a when needed. For each t, let σa,t : S1 × Dr → S1 × Dr
be defined by

σa,t(s, z) = (2s, aϕt,s(z)) . (65)

By Proposition 3.30 below, for sufficiently small |t| and |a| 6= 0, the map σa,t is well-
defined, open, and injective.

As in [RT, Lemma 12.2], for each t, the map ϕt,s has the following expansion

ϕt,s(z) = γt(s)−
az

2γt(s)
+ a2βt(s, z, a), (66)

where γt : S1 → Jpt is the Carathéodory loop associated to the polynomial pt. Recall
that γt is continuous, surjective, and does not vanish on S1 since the critical point of
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the polynomial pt does not belong to the Julia set Jpt . The tail βt(s, z, a) is bounded
with respect to a and t.

Proposition 3.30. For sufficiently small |t| < δ′ and 0 < |a| < δ the map σa,t is open
and injective. Moreover σa,t(S1 × Dr) ⊂ S1 × D|a|r′, for some r′ < r.

Proof. Since the critical point of pt is far away from the Julia set Jpt , there exists
ε > 0 such that |γt(s)− γt(s+ 1/2)| > ε for all s ∈ S1 and t ∈ [−δ′, δ′]. The expansion
from (66) shows that there exist constants Mt > 0 such that |ϕt,s(z) − γt(s)| < |a|Mt

for all s ∈ S1 and z ∈ Dr. The constant M := sup|t|<δ′Mt does not depend on t. Then

for |a| < ε
2M the map σt is injective. It is open because locally it is a homeomorphism. �

The following theorem is a direct consequence of our construction so far.

Theorem 3.31. Let λ = e2πip/q and λt = (1 + t)λ. There exists δ, δ′ > 0 such that

• for all −δ′ < t < δ′ and
• for all parameters (c, a) ∈ Pλt with 0 < |a| < δ

the diagram commutes:

S1 × Dr
f∗a,t−−−−→ J+ ∩ Dr × Dr

σa,t

y yHc,a

S1 × Dr
f∗a,t−−−−→ J+ ∩ Dr × Dr

Proof. The existence of the fixed point f∗a,t has already been established in the previous
section 3.7. By construction, we have that H ◦ f∗a,t(s × Dr) is compactly contained in
f∗a,t(2s× Dr). Thus we can write

H ◦ f∗a,t(s, z) =
(
pt(ϕt,s(z)) + a2w + az, aϕt,s(z)

)
= (ϕt,2s(aϕt,s(z)), aϕt,s(z)) = f∗a,t ◦ σa,t(s, z).

The last equality follows from the fact that

f∗a,t ◦ σa,t(s, z) = f∗a,t(2s, aϕt,s(z)) = (ϕt,2s(aϕt,s(z)), aϕt,s(z)) .

Therefore f∗a,t semiconjugates H on J+ ∩ V to σa,t on S1 × Dr, as claimed. The fact

that J+ ∩ V = J+ ∩ Dr × Dr follows from Lemma 3.17. �

Corollary 3.31.1. The Julia set J is connected.

Proof. By Theorem 3.31 and Lemma 3.17, we get

J = f∗a,t

⋂
n≥0

σ◦na,t
(
S1 × Dr

) . (67)

By Proposition 3.30, the intersection above is a nested intersection of connected, rela-
tively compact sets, hence connected. Then J is connected, since f∗a,t is continuous. See
Figure 6 for parameter space pictures of the connectivity region. �
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The Hénon map Ha,t has a fixed point qa,t with eigenvalues λt and νt. The product
of the eigenvalues equals the Jacobian of the map, so |λt||νt| = |a|2. We write J(λt,νt)

and J+
(λt,νt)

to denote the dependency of the Julia sets J and J+ on the eigenvalues,

rather than on the parameters a and t.

Theorem 3.32 (Continuity). There exists δ > 0 such that if |νt| < δ and νt → ν as
t→ 0, then the Julia sets J and J+ depend continuously on the parameters, i.e.

J+
(λt,νt)

→ J+
(λ,ν) and J(λt,νt) → J(λ,ν)

in the Hausdorff topology.

Proof. By Theorem 3.31, Lemma 3.17, and Proposition 3.29 we know that

J+
(λt,νt)

∩ Dr × Dr = f∗a,t
(
S1 × Dr

)
(68)

and f∗a,t is continuous with respect to t and holomorphic in a. Therefore

J+
(λt,νt)

∩ Dr × Dr → J+
(λ,ν) ∩ Dr × Dr

in the Hausdorff topology, as t→ 0. Let H = H(λt,νt) be the Hénon map corresponding

to a pair of eigenvalues (λt, νt). Clearly H−1 is continuous with respect to t. Let n be
a positive integer. Taking H−◦n in Equation (68) gives

H−◦n
(
J+

(λt,νt)
∩ Dr × Dr

)
= H−◦nf∗t

(
S1 × Dr

)
,

which converge in the Hausdorff topology, as t → 0. We have accounted for all of J+,
because globally the set J+ is

⋃
n≥0H

−◦n(J+ ∩ Dr × Dr).
The Julia set J(λt,νt) can be written as in Equation (67). The maps f∗a,t and σa,t are

continuous in a and t, so J(λt,νt) converges to J(λ,ν) in the Hausdorff topology. �

Remark 3.33. We have established a continuity result for real values of t, but the
situation is much more general, similar to the one-dimensional case. If t is real, then the
local attractive/repelling sectors from Section 3.2 are “straight”, as in the semi-parabolic
case t = 0. If we allow t to be complex, then we need to adapt the computations from
Sections 3.2 and 3.5 to construct “spiralling petals” for the Hénon map.

Suppose t is fixed. For each s ∈ S1, f∗a,t(s×Dr) is a vertical-like holomorphic disk. Any
two such disks corresponding to distinct angles s1 and s2 are either disjoint or coincide
(since they were obtained as a uniform limit of disjoint holomorphic disks fn(s1 × Dr)
and fn(s2 × Dr)). In the latter case, their parametrizing maps coincide, i.e.

f∗a,t(s1, z) = (ϕs1(z), z) = (ϕs2(z), z) = f∗a,t(s2, z)

for all z ∈ Dr. The fixed point f∗a,t is holomorphic with respect to a, so we can determine

the equivalence classes of f∗a,t by letting a→ 0. When a = 0, we have J+∩V = Jpt×Dr
so all the identifications are given by the polynomial pt. An application of Hurwitz’s
theorem (see [RT, Propositions 12.4-12.6]) gives

f∗a,t(s1, z1) = f∗a,t(s2, z2) if and only if γt(s1) = γt(s2) and z1 = z2.
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Definition 3.34. We define an equivalence relation ∼ on S1 × Dr as follows:

(s1, z) ∼ (s2, z) whenever γt(s1) = γt(s2).

We obtain ϕt,s1(z) = ϕt,s2(z) iff γt(s1) = γt(s2). By Equation (66) this also gives
βt(s1, z, a, t) = βt(s2, z, a, t) whenever γt(s1) = γt(s2). The relation ∼ is clearly closed.
Moreover, since all polynomials pt have the same Thurston lamination for t ∈ [0, δ′)
hence the same combinatorial model (see [Th]), the equivalence relation ∼ does not
depend on t when t ∈ [0, δ′). Thus, in 1-D, the polynomial pt acting on Jpt is conjugate
to the parabolic polynomial p0 on Jp0 , for all t ∈ [0, δ′). Note that this is not true
for all t ∈ (−δ′, δ′). For example, if λ = −1, the Julia set of p1−t is a quasi-circle
and the associated Thurston lamination is empty. However, the Julia set of p1+t is
homeomorphic to the Julia set of z 7→ z2−3/4 (the “fat Basilica”) and the corresponding
lamination is non-empty. The same situation is true in 2-D as we will show below.

Theorem 3.35 (Stability). The family of complex Hénon maps Pλt 3 (c, a) → Hc,a

is a structurally stable family on J and J+ for 0 < |a| < δ and 0 ≤ t < δ′.

Proof. In view of Equation (66), the map σa,t : S1 × Dr → S1 × Dr has the form

σa,t(s, z) =

(
2s, aγt(s)−

a2z

2γt(s)
+O(a3)

)
. (69)

By Theorem 3.31, the map Ha,t on J+
a,t ∩ Dr × Dr is semiconjugate to σa,t on S1 × Dr.

For 0 < |a| < δ and t ∈ [0, δ′) small enough, the maps σa,t are conjugate to each other.
The proof of this fact is the same as that of [RT, Lemmas 12.7, 12.8] stated below.

Lemma 3.36 ([RT]). Suppose 0 < |a| < δ and t = 0.

a) The map σa,0 : S1×Dr → S1×Dr is conjugate to the map σ′a,0 : S1×Dr → S1×Dr,
defined by σ′a,0(s, z) =

(
2s, aγ0(s)− a2z

2γ0(s)

)
.

b) The maps σ′a,0 are conjugate to σ′ε,0 for some ε > 0 independent of a.

It is important to note that in each fiber {s} × Dr the image of σa,t consists of two
disjoint disks. This follows from Proposition 3.30 as γt(s) and γt(s + 1/2) are at least
ε-apart, for some ε > 0 independent of a and t.

Suppose 0 < |a| < δ and t ∈ [0, δ′). The equivalence classes of f∗a,t are exactly
the ones given by the equivalence relation ∼, in the sense that (s1, z) ∼ (s2, z) iff
f∗a,t(s1, z) = f∗a,t(s2, z). Moreover, by Definition 3.34 and the discussion following it, if
(s1, z) ∼ (s2, z) then σa,t(s1, z) ∼ σa,t(s1, z). Hence, f∗a,t and σa,t are well defined on the

quotient S1 × Dr/∼ and f∗a,t : S1 × Dr/∼ → J+
a,t ∩ Dr × Dr is bijective. The equivalence

relation does not depend on t or a. We get that (Ha,t, J
+
a,t ∩ Dr × Dr) is conjugate to

(σa,t,S1 × Dr/∼), which are conjugate to each other and to (σ′ε,0,S1 × Dr/∼), for all

0 < |a| < δ and t ∈ [0, δ′). Stability on J and J+ follows from these observations. �

Using the same arguments as in the previous theorem, we also have that the family
Pλt 3 (c, a) → Hc,a is a structurally stable family on J and J+ for 0 < |a| < δ and
t ∈ (−δ′, 0). However, this is not so surprising: by Theorem 3.24 this family of maps is
hyperbolic and has connected Julia set J , so the family belongs to the same hyperbolic
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component of the Hénon connectedness locus. As in the polynomial case presented
earlier, stability does not hold for all parameters t ∈ (−δ′, δ′).

Using the equivalence relation from Definition 3.34 we can identify the quotient space
S1×Dr/∼ with Jpt ×Dr and the map σa,t : S1×Dr → S1×Dr defined in Equation (65)
with a similar map ψa,t : Jpt × Dr → Jpt × Dr of the form

ψa,t(ζ, z) =

(
pt(ζ), aζ − a2z

2ζ
+O(a3)

)
. (70)

The following theorem is a direct consequence of the construction above and provides
concrete model maps for the Hénon family. The corollaries following the theorem are
immediate consequences.

Theorem 3.37. Let λ = e2πip/q and λt = (1 + t)λ. Suppose pt(x) = x2 + ct is a
polynomial with a fixed point of multiplier λt. There exists δ, δ′ > 0 such that

• for all t ∈ (−δ′, δ′) and
• for all parameters (c, a) ∈ Pλt with 0 < |a| < δ

there exists a homeomorphism Φa,t : Jpt ×Dr → J+ ∩Dr×Dr which makes the diagram

Jpt × Dr
Φa,t−−−−→ J+ ∩ Dr × Dr

ψt

y yHc,a

Jpt × Dr
Φa,t−−−−→ J+ ∩ Dr × Dr

commute, where

ψt(ζ, z) =

(
pt(ζ), εζ − ε2z

2ζ

)
, (71)

for some ε > 0 independent of a and t.

Proof. Most of the work has already been done. The idea of the proof is the same
as in [RT, Theorem 1.1]. As in [RT, Lemma 12.7] we can construct a homeomorphism
ha,t : Jpt × Dr → Jpt × Dr conjugating the map ψa,t from Equation (70) to the map
ψt from Equation (71), for some ε > 0, independent of a and t. The map Φa,t is just
a composition between the homeomorphism ha,t and the map f∗a,t from Theorem 3.31. �

Corollary 3.37.1. The Julia set J is homeomorphic to
⋂
n≥0 ψ

◦n
t (Jpt × Dr).

Corollary 3.37.2. Passing to the inductive limit we obtain a global model for the Julia

set J+. The map Φa,t extends naturally to a homeomorphism qΦa,t which makes the
following diagram

lim−→(Jpt × Dr, ψt)
qΦa,t−−−−→ J+

qψt

y yHc,a

lim−→(Jpt × Dr, ψt)
qΦa,t−−−−→ J+

commute.
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• 0

(a) t = 0.25

• 0

(b) t = 0.1

• 0

(c) t = 0.025

• 0

(d) t = 0

• 0

(e) t = −0.025

• 0

(f) t = −0.1

Figure 6. Parameter plots inside the curves P(1+t)λ for λ = −1 and several
values of t. In each picture, the large region in the center contains the disk
|a| < δ. The black region represents a rough approximation of the set of
parameters (c, a) ∈ P(1+t)λ for which the Julia set Jc,a is connected. Here

the Hénon map is written in the standard form Hc,a(x, y) = (x2 +c−ay, x).
The pictures were generated using FractalStream.
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[L] P. Lavaurs, Systèmes dynamiques holomorphiques: explosion de points périodiques, Thèse, Uni-
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