SEMI-PARABOLIC TOOLS FOR HYPERBOLIC HENON MAPS AND
CONTINUITY OF JULIA SETS IN C?
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ABSTRACT. We prove some new continuity results for the Julia sets J and J* of the complex
Hénon map H, q(z,y) = (2% + ¢ + ay, ax), where a and c are complex parameters. We look at
the parameter space of dissipative Hénon maps which have a fixed point with one eigenvalue
(1+1t)A, where A is a root of unity and ¢ is real and small in absolute value. These maps have a
semi-parabolic fixed point when ¢ is 0, and we use the techniques that we have developed in [RT]
for the semi-parabolic case to describe nearby perturbations. We show that for small nonzero
|t|, the Hénon map is hyperbolic and has connected Julia set. We prove that the Julia sets J
and J* depend continuously on the parameters as t — 0, which is a two-dimensional analogue
of radial convergence from one-dimensional dynamics. Moreover, we prove that this family of
Hénon maps is stable on J and J* when ¢ is nonnegative.
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1. INTRODUCTION

Complex analytic maps with a parabolic fixed point or cycle have generated much
interest in dynamics in one complex variable as they play a fundamental role in un-
derstanding the parameter space of rational maps. Moreover, they provide important
models for understanding non-hyperbolic behavior.

In [RT] we studied the family of Hénon maps with a semi-parabolic fixed point or
cycle, and showed that the family has nice stability properties. In this paper we want
to unravel the mystery about how these semi-parabolic maps sit in the parameter space
of Hénon maps and describe the Julia sets of nearby perturbations.

Chapter [2| provides a useful digression to dynamics in one complex variable. Consider
a quadratic polynomial p(x) = 2 + ¢ with a parabolic fixed point and denote by JIp
its Julia set. The parameter c lies in the boundary of the Mandelbrot set. It is well-
known from the work of P. Lavaurs [L] and A. Douady [D] that on a neighborhood
of the parameter ¢ in C the Julia set does not vary continuously in the Hausdorff
topology. Parabolic implosion represents the source of discontinuity and of obtaining
limit Julia sets with enriched dynamics. Using quasiconformal techniques, C. McMullen
[Mc] (and also P. Haissinsky [Hal|) showed that J,, converges to J, when p, converges
to p horocyclically or radially (i.e. non-tangentially with respect to the boundary of
Mandelbrot set in the quadratic case). These tools are harder, if not impossible, to
apply to several complex variables, where an analogue of the Uniformization Theorem
does not exist. We first set out to give a topological proof of the continuity result
for polynomial Julia sets under a stronger radial convergence assumption. The proof
involves recovering the Julia set as the image of the unique fixed point f* of a (weakly)
contracting operator in an appropriate function space. In Section [2.5| we prove that f*
depends continuously on the parameter, and thus the corresponding Julia sets converge
to the Julia set of the parabolic polynomial, in the Hausdorff topology. After gaining
some valuable insight from the study of the one dimensional problem, notably from
Lemma we pursue the two-dimensional problem and prove some new continuity
results in Chapter |3| for the Julia sets J and J* of a complex Hénon map.

We consider the family of complex Hénon maps H. ,(z,y) = (p(z) + ay, ax), where p
is a quadratic polynomial, p(z) = 22 4 ¢, and a is a complex parameter. When a # 0,
this is a polynomial automorphism of C?. The dynamics of Hénon maps bears some
resemblance to the dynamics of 1-D polynomials, however extending results from one to
several variables requires envisioning new techniques and approaches, and in many cases
the emerging picture is substantially different and contains new and thrilling phenomena
not present in the one-dimensional world. In order to describe the dynamics of the Hénon
map, one studies the sets K and K~ of points which do not escape to infinity under
forward and respectively backward iterations. The topological complements of K+ in
C? are denoted by U* and called the escaping sets. The most interesting dynamics
occurs on the boundary of the sets K+ and U* where chaotic behavior is present. The
sets J* = 9K+ = OU* and J = J* N J~ are called the Julia sets of the Hénon map.
The sets J and K = Kt N K~ are compact, while the sets J* are closed, connected
and unbounded [BS1].

A quadratic Hénon map is uniquely determined by the eigenvalues A and v at a fixed
point so we will sometimes write H) , in place of H., to mark this dependence. The
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precise formula for H) , is given in at the beginning of Chapter [3l We say that a Hénon
map is semi-parabolic if it has a fixed point (or cycle) with one eigenvalue A, a root of
unity, and one eigenvalue smaller than one in absolute value. Unlike hyperbolic Hénon
maps, semi-parabolic ones are not stable under perturbations. E. Bedford, J. Smillie
and T. Ueda have described some semi-parabolic bifurcations in C? for A = 1 in [BSUJ.
In particular, they show that at a parameter value with a semi-parabolic fixed point
with the eigenvalues A = 1 and |v| < 1, the sets J, J7, K and K vary discontinuously
with the parameters, while J~ and K~ vary continuously with the parameters. The
phenomenon described in [BSU] is a two-dimensional analogue of parabolic implosion
that occurs in complex dimension one.

In order to state our main results, consider a primitive root of unity A = e2™#/¢ and
let Ay = (1 +¢)\. For t real and small in absolute value, we look at the parameter
space P,, of complex Hénon maps which have a fixed point with one eigenvalue ;.
The equation of the curve Py, is given in Proposition 8.2 When ¢ = 0 these maps are
semi-parabolic; when ¢ # 0, we regard the maps corresponding to parameters from P},
as perturbations of the semi-parabolic ones. We show in Section [3.8] that there exists
§ > 0 such that for (¢,a) € Py, and 0 < |a| < 4, the Julia sets J and J+ depend
continuously on the parameters as ¢ approaches 0. An equivalent formulation is given
in the theorem below. These results can be regarded as a natural extension of the
concept of radial convergence of Julia sets [Mc] to higher dimensions, in the context of
polynomial automorphisms of C2.

Theorem 1.1 (Continuity). There exists § > 0 such that if || < § and vy — v as
t — 0, then the Julia sets J and J depend continuously on the parameters, i.e.

J(—;N/t) — J(—i)_\,z/) and J()m,/t) — J()\7,j)

in the Hausdorff topology.

For the set JT we are taking the Hausdorff topology on the one-point compactification
of C?. What we prove in Theorem is the continuity of Julia sets J and J* as we
approach a semi-parabolic parameter from the interior of a hyperbolic component of
the Hénon connectedness locus, similar to radial convergence from 1-D dynamics. Our
next theorem describes the dynamical nature of the perturbed semi-parabolic maps.

Theorem 1.2 (Hyperbolicity). There exist 0,0’ > 0 such that in the parametric
Tegion

HRs5 = {(c,a) €EPy, : 0<lal < and —§<t< ¥, t#O}
the Julia set J.q is connected and the Hénon map H., is hyperbolic.

By definition, the connectedness locus for the Hénon family is the set of parameters
(c,a) € C? such that the Julia set J., is connected. Theorem shows that the
parametric region {(c,a) € Py : |a| < d} of semi-parabolic Hénon maps lies in the
boundary of a hyperbolic component of the Hénon connectedness locus. In fact, when
A # 1, it lies in the boundary of two such hyperbolic components. A mechanism for
loss of hyperbolicty at the boundary of the horseshoe region through the development
of tangencies between stable and unstable manifolds is described by E. Bedford and
J. Smillie in [BS], and more recently by Z. Arai and Y. Ishii in [AI]. In Theorem
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we describe a different mechanism for loss of hyperbolicity, through the creation of a
semi-parabolic fixed point. We first do a local analysis in Sections [3.1] -2 and [3:3]
and show how to deform the local semi-parabolic structure into a hyperbolic structure;
these sections are applicable to holomorphic germs of diffeomorphisms of (C2,0) with a
semi-parabolic fixed point, and their perturbations. We complete the proof of Theorem
in Section

Theorem [L.2|proves the existence of a larger region of hyperbolicity for complex Hénon
maps than what was previously known. It is in general very hard to exhibit regions of
hyperbolicity for Hénon maps. Z. Arai developed a computer program for detecting
hyperbolicity, that relies on heavy numerical computations. Otherwise, the only Hénon
maps proven to be hyperbolic using only theoretical arguments correspond to the horse-
shoe region and to perturbations of 1-D hyperbolic maps. It is also known from the
early works of J.E. Fornaess and N. Sibony [ES] and J. Hubbard and R. Oberste-Vorth
[HOV1, [HOV?2] that Hénon maps that come from perturbations of hyperbolic polyno-
mials with connected Julia sets inherit both of these properties. However, the proof
gave no control on the admissible size of perturbations as we approach the boundary of
the Mandelbrot set, i.e. it was not known that the size of the region HRss does not
decrease to 0 as t — 0. Z. Arai [A] gave a computer-assisted proof for the existence of
hyperbolic plateaus for the family of complex Hénon maps H., with both parameters ¢
and a real. In our language, these regions corresponds to strips on the right/left side of
the real curves PL; N R?, where P1, is the set of parameters (c,a) € C? for which the
Hénon map H., has a cycle of order n with one eigenvalue +1. The existence of these
regions is established in Theorem

Corollary 1.2.1. There exists an € > 0 such that the real parametric region

a)? Q)2
{(C,Q)ERX(—E,G) s a#0, (1+4)—6<c<(12)}

is a region of hyperbolicity for the Hénon family H.q(z,y) = (z*+c—ay,x). The Hénon
map 1s written in the standard parametrization and has Jacobian a.

To compare our results with [B] and [BSU]|, suppose A is 1. Theorems and
answer Questions 3 and 4 of E. Bedford, from [B]. Corollary is formulated as a
specific answer to Question 3 and the set ¢ = (a+1)?/4 from the corollary is simply the
defining equation of parabola P;. When (c,a) € P;, the Hénon map has a double fixed
point with one eigenvalue 1. From the “right” of the real parabola P; N R? we have
semi-parabolic implosion described in [BSU]. More specifically, in [BSU] it is shown that
there exists a sequence €, — 0 which converges to 0 tangentially to the positive real axis
(Re(en) > 0 and Im(e,) < const. |€,]?) such that the Julia set J., , corresponding to
the sequence ¢, = (a+1)2/4+¢, does not converge to the Julia set Je,q in the Hausdorff
topology. By comparison, T heorem shows that we have continuity of J and J* from
the “left” of the real parabola P; N R2. When (c,a) € P NR? and 0 < |a| < § we
get that Jo_cq — Jeq and Jj_m — J, as € — 0. Note that Theorem gives no
information on what happens to the “right” of parabola P;; indeed, when A = 1, both
curves P14, and P, are to the left of P;. This can be seen from the fact that for
a =0 and t # 0, the polynomial p; has two distinct fixed points, with multipliers 1 + ¢;
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therefore regardless of whether ¢ is positive or negative, p; has an attracting fixed point,
and belongs to the interior of the main cardioid of the Mandelbrot set.

Figure 1. The curves Py, P_1, P2, P*, are examples of parametric curves
containing semi-parabolic Hénon maps. There exist regions of hyperbolic-
ity between P; and P_; and P_; and P?; which belong to hyperbolic
components of the Hénon connectedness locus.

This paper is built on previous work done by the authors in [R] and [T]. We use the
tools that we have developed for the study of semi-parabolic germs/Hénon maps in [RT]
to extend the results from [RT] to nearby perturbations of semi-parabolic germs/Hénon
maps. We can actually say more about the stability properties of our family of Hénon
maps when the parameter ¢ is non-negative:

Theorem 1.3 (Stability). The family of complex Hénon maps Py, 3 (¢,a) — Heq is
a structurally stable family on J and J* for 0 < |a| < 4§ and 0 <t < ¢'.

We say that the family of Hénon maps Py, 3 (¢,a) — H., is structurally stable on J
when ¢ € [0,6") and |a| < ¢ if for any two pairs (¢;, a;) € Py, , with [a;| < d and t; € [0,4)
for i = 1,2, we have (He¢, q,, Jey 0, ) conjugate to (He, g, Jes,a). Consequently, the Julia
sets Jg,a; and Je, 4, are homeomorphic. We explain structural stability on J* in a
similar way, by replacing J with J*. We complete the proof of Theorem in Section
B3

Another notion of stability (called weak stability) was introduced by R. Dujardin and
M. Lyubich [DL] for holomorphic families (f,).ca of moderately dissipative polynomial
automorphisms of C?, where A is a connected complex manifold. Weak stability is
defined in terms of branched holomorphic motions of the set J* (the closure of the
saddle periodic points), but an equivalent easier definition is the following: the family is
weakly stable if periodic orbits do not bifurcate. The equivalence between weak stability
and continuity of J* is discussed in [DL], and the relation between weak stability and
uniform hyperbolicity on J* is analyzed by P. Berger and R. Dujardin in [BD]. These
results do not apply to our context, but they are of independent interest.

Acknowledgements. We warmly thank John Hubbard and John Smillie for their guidance
and for many useful discussions about Hénon maps and suggestions on this project.
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2. CONTINUITY OF POLYNOMIAL JULIA SETS

In this section we focus only on one-dimensional dynamics. We first discuss continuity
of polynomial Julia sets, which will prove useful in understanding continuity of Julia
sets for Hénon maps. This will be treated in Section [3|

Assume that p is a quadratic polynomial. The filled Julia set of the polynomial p is

K,={2€C : [p°"(z)| bounded as n — oo},

and the Julia set of p is J, = 0K,. The filled Julia set K, is connected iff the orbit of
the unique critical point is bounded. If K, is connected (or equivalently J, is connected)
then there exists a unique analytic isomorphism

v,:C-D—C-K, (1)

such that ¥, (2?) = p(¥,(2)) and ¥,(z)/z — 1 as 2 — oo. If J, is locally connected
then W, extends to the boundary S! and defines a continuous surjection (see [Mi])

Yp: St — Jp. (2)

The Julia set of a hyperbolic or parabolic polynomial is connected and locally connected
(see [DH]). The map ¥, 1is the Béttcher coordinate of the polynomial p, while the map
U, is called the inverse Bittcher isomorphism (or the Bottcher chart [H]). The boundary
map 7, is called the Carathéodory loop of p.

The continuous map G : C — R, defined by G,(z) = log |\IJ;1(2)\ for . € C - K,
and G,(z) =0 for z € K, is called the Green function of the polynomial p. Each level
set of the Green function {z : G,(2) = log(R)} with R > 1 is called an equipotential for
the polynomial p. This is the image of the circle of radius R under V.

2.1. Horocyclic and radial convergence. The topic of convergence of Julia sets in
the Hausdorff topology (of compact sets in P!) is very vast and has been covered by
many authors (A. Douady [D], P. Lavaurs [L], C. McMullen [Mc|, P. Haissinsky [Hai],
etc.). We only recall here a theorem from [Mc| about horocyclic and radial convergence
of rational maps, and give the simplified form of the theorem for quadratic polynomials.

Definition 2.1 (Hausdorff topology). The compact sets K, converge to the compact
set K in the Hausdorff topology if the following conditions hold

(a) Every neighborhood of a point z € K meets all but finitely many K.
(b) If every neighborhood of x meets infinitely many K,, then z € K.

Theorem 2.2 ([Mc]). Let f be a geometrically finite rational map and suppose that
fn = [ horocyclically (or radially), preserving critical relations. Then Jy, — Jy in the
Hausdorff topology.

Theorem can be expressed in a simplified form when we restrict to the family of
quadratic polynomials. Let p be a quadratic polynomial. The sequence of polynomials
pn, converges to p algebraically if deg(p,) = deg(p) for all n, and the coefficients of p,,
converge to the coefficients of p.

Definition 2.3 (Horocyclic/radial convergence of multipliers). Let A, — 1 in C*,

Ap = elntifn and 0,, — 0.
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The sequence ), converges to 1 horocyclically if #2 /L,, — 0. The sequence \,, converges
to 1 radially if 6,, = O(|Ly,|), that is there exists M > 0 such that |0,,| < M L,, for n > 0.

Theorem 2.4. Let p be a quadratic polynomial with a parabolic fived point oy with
multiplier €2™P/9.  Let p,, be a sequence of quadratic polynomials, such that p, — p
algebraically. Assume that each ph has a fived point o, such that o,, — oo and such
that the sequence of multipliers A, = (p)'(cwn) converges to 1 horocyclically (or radially).
Then

Ipn = JIp
in the Hausdorff topology.

The proof of Theorem is quite involved and uses quasiconformal theory and it is
not very clear how one could extend it to higher dimensions. We would therefore like
to first outline a more topological proof of continuity in one dimension.

2.2. A topological proof of continuity in dimension one. Let A = €27/7 be a
primitive root of unity of order ¢q. Set

A= (141N,
for ¢ real and sufficiently small. Consider the family of quadratic polynomials
2 e A
pe(x) = % + ¢4, where ¢; = 5 1 (3)

For t > 0 the polynomial p; is hyperbolic and has a repelling fixed point ay = A¢/2
of multiplier \; and a g¢-periodic attractive orbit. For ¢ = 0 the polynomial py has a
parabolic fixed point g of multiplier A. The multiplicity of the fixed point g as a
solution of the equation p?(z) = z is ¢ + 1. Finally, when ¢ < 0, p; has an attracting
fixed point oy of multiplier Ay and a g-periodic repelling orbit.

We have p; — po uniformly as ¢ — 0. The continuity of the corresponding Julia sets
(that we state below as Theorem is an easy consequence of McMullen’s Theorem
The sequence of multipliers A7 = (1 + ¢)? has no imaginary part, therefore it
converges horocyclically and radially to 1.

Theorem 2.5. The Julia set Jp, of the polynomial p; depends continuously on the
parameter t, that is J,, — Jp, in the Hausdorff topology.

We give a new proof of the continuity result for the family p; which does not use
quasiconformal theory. The proof relies on the techniques developed by Douady and
Hubbard in [DH] for proving the local connectivity of Julia sets of polynomials where
all critical points are attracted to attracting or parabolic cycles. An adaptation of
this technique was also used in [Kw] to build semi-conjugacies between Julia sets of
geometrically finite rational maps.

We build a continuous family of bounded metrics p; on the neighborhood of the
Julia set J,,, with respect to which the polynomial p; is weakly expanding. Then we
will recover the Julia set J,, as the image of the unique fixed point f; of a weakly
contracting operator F} in an appropriate function space. We will show that the fixed
point f{ is continuous with respect to ¢, and conclude that the Julia sets J,, converge
in the Hausdorff topology as t — 0 to the Julia set of the parabolic polynomial.
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We will illustrate the technique for ¢ > 0. The case when t is negative is almost
identical, but it requires a small technical adjustment, which we will discuss in a more
general setting in Chapter [3, where we adapt the construction to a family of polynomial
automorphisms of C2.

2.3. Normalizing coordinates at a repelling fixed point. When ¢ > 0, the poly-
nomial p; is hyperbolic and expanding with respect to the Poincaré metric on a suitable
neighborhood of J,,. In order to make the choice of metrics continuous with respect
to the parameter t when ¢ — 0, we need to correct the metric y; near the repelling
fixed point oy, which becomes parabolic when ¢ = 0. A naive idea would be to take a
small disk D; around the repelling point oy on which the polynomial p; is analytically
conjugated to its linear part z — A;z, |\¢| > 1, hence naturally expanding with respect
to the Euclidean metric. This is not very helpful however, because the radius of Dy
converges to 0 as t converges to 0. This issue can be dealt with by constructing “nor-
malizing coordinates” around ay, similar to the parabolic case t = 0. We will build a
larger neighborhood D,, with p independent of ¢, around oy, on which the polynomial
is not fully linearized, but rather conjugated to a “normal form”.

Let ¢g = tan(27/9) and €; = €p/+/€5 + 1. The meaning of these constants is fully
explained by Equation and the discussion following it.

Proposition 2.6. There exist &' > 0 and p > 0 such that for all t with |t| < ¢ there
ezists a coordinate transformation ¢; : Dy (ay) — D,(0) defined in a neighborhood of the
repelling fixed point oy such that in the new coordinates the polynomial p; can be written
as py(z) = M(z + 297 + Cya?d+ + O(2%4%2)). Suppose t € [0,6']. In the region

A7 ={|z| < p: Re(z?) > eo|Im(z?)|}
the derivative p;' is expanding, with a factor of
Al (14 (g +3/2)er|x|?) > | M| > 1.

The compact region
A+ = {Ja] < p: Re(w?) < eolIm(a?)}
satisfies AT C int(Kp) U {0} and p;(A™1) C int(AT) U {0}.

Proof. One performs for the family p; the same sequence of coordinate transformations
as the ones done in [BH] or [DH] in the parabolic case. After a global coordinate change
that brings the fixed point a; to the origin, we can assume that p;(z) = Mz + 22
Suppose by induction that for k£ > 2 the maps p; have the form

z1 = Mz + agz® + O(mkH)

where a; # 0 for |t| < 4.
Consider the coordinate transformation

X =z + bz with inverse z=X —bXF+ ...
In the new coordinate system, we get
X, = z1+ btxlf =Nz + (ap + bt)\f)a:k + ...
= MX =0 XF 4+ )+ (a0 (X — b X)L
MX + (ag + b NF = X)) XF+ ..
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When t # 0, we have |\¢| # 1, so Ay # \F for all k with 2 < k < ¢. If k is not congruent
to 1 modulo ¢, then )\]g % )\ as well, so we can set
ag

b= — "
VDY

and eliminate the term a;z*. The transformations z + byz* are injective on a uniform
neighborhood of 0.

This proves that by successive coordinate transformations of the form X; = = + byz*
we can eliminate terms with powers that are not congruent to 1 modulo ¢, so the first
term that cannot be eliminated in this way will have a power of the form a;2*9t!, for
some integer v > 1. The parabolic multiplicity of the fixed point g is 1, so v = 1.

Thus the map takes the form

71 = M(z + apx?t + O(2912)) (4)

Of course, when t # 0, we could use the same map X; = = + bz?t! to eliminate the
term a;297!, however this would require shrinking the domain of injectivity of X; to 0
as t — 0, as well as losing the continuity of X; with respect to ¢t at ¢t = 0.

We can further reduce Equation (4]) to

z1 = M(z + 29T + O(2972)). (5)

by considering a linear map X = A;x, where A; is a constant chosen such that Af = a;.
In Equation we can eliminate all terms of the form a;z*, with ¢ +1 < k < 2¢+ 1,

using the same coordinate transformation as before, X; = z + bz, where b, = X ‘“/\,C.
t— ¢

We thus arrive at the normal form
Pi(@) = M@+ 29 4 Gt 4 O0(a12)),

When t = 0 the regions AT and A~ represent attracting and respectively repelling
sectors for the (normalized) parabolic polynomial py. The attractive sector At belongs
to the interior of the filled-in Julia set int(K,)U{0} and all points in A™ converge under
forward iterations to the parabolic fixed point 0, which lies in the Julia set. When ¢ < 0,
the sector A™ belongs to the basin of attraction of the attracting fixed point 0. When
t > 0, the sector AT belongs to int(Kp,) U {0}, because AT (with 0 removed) is a
trapping region for a g-periodic attractive orbit [BH]. We prove these facts directly for
Hénon maps in Propositions and and the proofs apply also to the family of
polynomials considered in this lemma.

To show that the derivative p;’ is expanding on A~ when t > 0, we perform the
same computations as in the parabolic case [DH|. The choice of ¢y and €; guarantee
that if Re(z9) > epIm(z9), then Re(z9) > €1]|z|?. Consider a constant m so that
D¢’ (z) = Ae(1 + (¢ + 1)x%)| < m||*® on D,. Using the normal form for p;, we get

5/ (@) = [Nl[L+ (g + Dzt + O@@?)| = |Ae] (|1 + (g + 1)a?| — mlz[*)
> (1) (1+ (g + Derfol? — mfof) > (14 8) (1 + (g + 3/2)e1[2]9).
for |z| sufficiently small. Hence |p;'(z)| > |A¢| throughout A=, for all ¢ € [0, d’]. O

Let A} = ¢, '(AT) and A; = ¢; '(A™). Recall that ay = ¢; *(0). By Proposition
the set A" — {ay} belongs to the interior of the filled-in Julia set K,. Moreover,
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when ¢t > 0, the g-periodic attractive orbit of the polynomial p; is contained in the sector
Af. The Julia set Jp, near oy is completely contained in the repelling sectors:

Ty Dy (ar) = Jp, N A

When t € [—§,8’], the polynomial p; has connected Julia set; the critical point 0 of
p¢ is attracted to the g-periodic orbit when ¢ > 0, respectively to the parabolic fixed
point when ¢ = 0, and to the attracting fixed point when ¢t < 0. So there exists a first
iterate n; € N such that pf (m+1)(0) € Af , otherwise said, there exists a first iterate for
which py" (¢;) € A and p;"(0) ¢ A;F. The function t — n is locally constant and we
can assume without loss of generality that when ¢’ is small, the number n; is the same
for all t € [—4,8]. Therefore we can remove the dependence on ¢ and denote n; by N.
Denote further by p; oV (A}) the connected component of the N** preimage of the set

Af that contains the fixed point «y.

2.4. A continuous family of bounded metrics. For each value of the parameter ¢
we construct a neighborhood U; of the Julia set J,, and a metric p; on U; with respect
to which the polynomial p; is expanding. The family (U, p) will be continuous with
respect to the parameter t.

Figure 2. The polynomial p; has a fixed point at a;. The corresponding
neighborhoods U; and U] are also shown.

The outer boundary of the set U; is an equipotential of the Julia set J,,. The inner
boundary is dp; oV (A;F ), where N is defined above. Formally, choose R > 2 and set

Uy =C—p V(A7) — {2 € C— K, : |9;,'(2)] > R). (6)

Let U} = p; (U;). The set U/ is contained in Uy by construction, and we can put on U}
the Poincaré metric of U;. The map p; : U/ — Uy is a covering map, hence expanding:

‘(275)’% < |(27§)‘Ut’ - |(p(z),p’(z)§)]Ut for z € Ué and § € TZUt/

However U] is not relatively compact in U; because OU} N 0U; = {ou}, so there is no
constant of uniform expansion. On the repelling sectors A; , one can define a metric
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fia; as the pull-back of the Euclidean metric from the normalizing coordinates A~.
|(z,§)|At_ = [¢(2)¢| for z € A; and € € T,A[,

where the latter length is the modulus of the complex number ¢}(z)E&.

Definition 2.7. Let p; = inf(uy,, MNA;)7 where M is a positive real number and

2py, (2,6)
pay (Pe(2), Pi(2)€)

M>sup{ : zEptl(At),zgéAtanth[O,é’]}.

By choosing M sufficiently large, one can assure that on the boundary of V; the
infimum is attained by the Poincaré metric pp,. So the metric p; is continuous on
U/. Note also that the Poincaré metric is infinite at «; while the Euclidean metric is

bounded; therefore there exists a neighborhood of a4, uniform with respect to ¢, for
which the infimum in Definition [2.7)is attained by the Euclidean metric M, -

Lemma 2.8. The family of metrics u; depends continuously on the parameter t and it
1s dominated above and below by the Euclidean metric. There exist m1 > 0 and mg > 0
such that

milz —y| < dy,(z,y) < ma|lz —y|, for any z,y € UJ.

Proof. By construction, the neighborhood U; and the repelling sectors A, depend
continuously on t. Let p; denote the density function of the Poincaré metric on Uy,
uu, (z,dz) = pi(z)|dz|. The map p; is positive, C*°-smooth on U] and continuous with
respect to t. Hence uy, is bounded below by the Euclidean metric on U;. The metric
wy, on this set is also bounded above on Uy, except on a small neighborhood of the fixed
point oy € AU;.

The metric p A7 is the pull-back of the Euclidean metric by a holomorphic injec-
tive map ¢, continuous with respect to t. We have 0N (z,dz) = |¢i(2)||dz|, where

|¢}(2)] > 0 is bounded above and below on A; . Therefore the infimum metric p; is
bounded above and below with respect to the Euclidean metric. O

Lemma 2.9. The polynomial p; is strictly expanding with respect to the metric p; on
the set U, when t > 0.

Proof. Let z,2/ € U/ and ¢ € T,U/, & € T..U] such that 2’ = p;(z) and & = p}(2)¢&.
We will show that for each ¢ > 0 there exists a constant k; > 1 such that
pe(2',€) > k- (2, €).
There are four cases to consider:
(a) /‘Lt(z7 5) = KU, (Z, 6) and Mt(zla 6/) = KU, (Zla 5/)
This happens only if both z and 2’ are outside a small neighborhood of the point
ay¢. Outside this neighborhood, the set U] is compactly contained in Uy, so p;

expands strongly with respect to the Poincaré metric. For all t € [0,0’] there
exists k¢ > 1 such that

220 (Z,? 5/) > Kt U, (Z, g) (7)
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The constant x; depends only on the distance between the boundaries 0U; and
U/ outside a disk of fixed size around the fixed point «y, so inf(s ke > 1.
t /

€[0,6']
(b) (=€) = Mpn-(2.6) and (&) = Mpy—(.€)).
The normalized polynomial p; expands with respect to the Euclidean metric, so
by Proposition [2.6| we have

Har (Z/’gl) > (1+1) “Har (2,6).

Notice that the constant of expansion is 1 if and only if ¢ — 0 and ¢¢(z) — 0
(that is, z approaches the parabolic fixed point ayg).

(©) me(z,8) = Mpp-(2,€) and pu(2',¢') = po, (2, ).
Similar to case (a), the point 2’ cannot be too close to the fixed point vy, so

:u’Ut(z/7£/) > Kt - uUt(z7£) > Kt - MMA;(Zag)

(d) pe(2,€) = po,(2,€) and py(2',8) = Mup- (2, €).
There are two sub-cases to consider
(i) If z € p; ' (A7) N A7, then

Mytsr (2,€) > (14 0)- Mpy-(2,6) > (1) g (5,6,
(ii) If z € p; Y(A7) but 2z ¢ A;, then the conclusion follows from the choice of
the constant M, as shown below:
2MUz (Zaé) .
ERS
Set k¢ := min (1 + ¢, k). From estimates (a),(b),(c) and (d) we can easily see that
(2 €) > ke - (2, 6).

We get uniform expansion when t > 0 because k; is strictly greater than 1. O

2/1,Ut(2:,£) = NA; (Z/7§/) < MILLA; (2/751).

The metric p; induces a natural path metric on U]. If 5 : [0,1] — U] is a rectifiable
path, then its length with respect to the metric y; is given by the formula

1
e (n) = /0 pe (n(s),n'(s)) ds. (8)
The distance between two points x and y from U/ with respect to the metric p; is

d,ut (.1', y) = inf E,Uaz (77)7 (9)
where the infimum is taken after all rectifiable paths 7 : [0,1] — U/ with n(0) =  and
n(1) =y.

2.5. Contraction in the space of functions. For each value of the parameter t,
we will construct a sequence of equipotentials in the complement of the filled Julia set
K, and show that they converge to the Julia set J,,, uniformly with respect to ¢. In
our setting, the filled Julia set K, is connected. Let ¥,, : C — D — C — K,, be the
inverse Bottcher isomorphism of the polynomial p; as in and let 7 : St — Jp, be the
Carathéodory loop of p; as in (i.e. the continuous extension of ¥, to the boundary).
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We write v; instead of 7,, to simplify notations. By the definition of the isomorphism
W, we have Uy, (22) = pt(¥,,(2)), for z € C —D.

Let R > 2 be a fixed constant, chosen as in Equation (). For each ¢ € [0, '], consider
the space of functions

Fio= {%,n :SY = U yn(s) = U, <R1/2n+162’”'3) , neE N} )

For each t, the space F; is just a sequence of parametrized equipotentials {7;» }n>0,
corresponding to the polynomial p;. The Green function G), of the polynomial p; is
continuous with respect to ¢ and z. Therefore each map (t,s) — :,(s) is continuous
with respect to ¢ and s. The polynomial p; maps each equipotential -, to the equipo-
tential v; ,—1 by a two-to-one covering map. We can select a branch of p,” ! by using the
inverse Bottcher isomorphism and setting

it (‘I’pt (Rl/zne%i (28)>) =V, <R1/2n+1e2m5> for s € S' and n > 1.

Therefore, the space F; comes with a natural operator p, L. F, — F, given by the rule

P (tno1(25)) = Yen(s), s €S, n> 1. (10)

Endow the function space F; with the supremum metric

d,U«t (’Yt,na fYt,k) = Sugli dut (fyt,n(s)7 ’Yt,k(s))
sE

and let F; be the completion of F; with respect to the supremum metric d,,. Notice
also that the metric d,, is bounded, by Lemma

Theorem 2.10 (Browder [Br],[KS]). Let (X,d) be a complete metric space and suppose
f: X — X satisfies

d(f(x), f(y)) < h(d(z,y)) forall z,ye€ X,

where h : [0,00) — [0,00) is increasing, continuous from the right, and h(s) < s for all
s> 0. Then f has a unique fized point z* and f"(x) — x* for each x € X.

Definition 2.11. We will call a function h that verifies the hypothesis of Theorem [2.10
a Browder function.

Remark 2.12. Assume that the space X from Theorem is bounded. The rate
of convergence to the fixed point is controlled by the function h, namely if we choose
L > 0 such that L — h(L) > diam(X), then the following estimate holds

d(f"(x),z*) < h°*(L), for any x € X, n € N.
We apply Browder’s Theorem to the complete metric space (F, d,,,) with the operator
p; *, to show that for each t > 0, the sequence {Vt,n }n>0 converges uniformly as n — oo
to a continuous function ;. As a consequence of the same Theorem [2.10] and Remark

[2.12], we obtain the continuity of the map ¢ — ~; with respect to the parameter t.
For each t € [0, ], consider the function h; : [0,00) — [0, 00) given by

hi(s) == sup {dy, (z,y) : 2,y € p, ' (U}) and dy,, (pe(2), pi(y)) < s} .
Clearly h; is increasing (i.e. s1 < s2 = h(s1) < hy(s2)) and satisfies the inequality

d,ut ("Yt,n+17fyt,k+1) < ht<dut (’Yt,m'Yt,k))a ]C,TL € N.
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The family of metrics p; is continuous with respect to ¢, so the map ¢ — h; is continuous
with respect to t € [0,¢']. Moreover, by Lemma when t > 0 we have
he(s) < k‘i for s > 0. (11)
¢
Inequality implies that p,” ! is strictly contracting with respect to the metric dy,
when ¢t > 0. Banach Fixed Point Theorem assures that for each ¢t > 0, the operator p; !
has a unique fixed point v; : S' — U/, and the sequence 7;,, converges to v as n — oo.
In [DH] (and also in [H]) it is shown that the function hq verifies the hypothesis
of Theorem hence the sequence 7, converges to the unique fixed point of the
operator p, L. Fy — Fo, that is to a continuous function o : S' — 76. The image of g
is invariant under the parabolic polynomial py and it parametrizes its Julia set J,,.
Notice that the constant k; goes to 1 when ¢ goes to 0, so we haven’t obtained any
information yet about the continuity of the map ¢t — ¢ with respect to ¢ when ¢t = 0.
To provide a unified approach to the hyperbolic and parabolic cases, we define a new
map h: [0,00) — [0,00), h(s) := sup h(s).
t€[0,6']

Lemma 2.13. The map h is increasing and h(s) < s for all s > 0.

Proof. When ¢ = 0, it is proven in [DH] and [H] that ho(s) < s for all s > 0. When
t > 0, Inequality yields that h:(s) < s for all s > 0. For a fixed s € RT, the map
t — h(s) is continuous with respect to ¢, thus it attains its supremum on [0,4'], so
h(s) < s. For each ¢, the function h; is increasing, by definition. It is obvious then that
the function h is also increasing. O

The function h is increasing, so h(s+) = lim,_,o+ h(s+e) is well defined. The function
Rt : s~ h(s+) is right continuous and the following lemma holds:

Lemma 2.14. The function h™ : [0,00) — [0,00) is a Browder function, i.e. it is right
continuous, increasing, and h*(s) < s for all s > 0. Moreover

Ay (Vent1, Ve k1) < h+(d#t (Yen>vek))  for allt €0, &'l and k,n € N.

Proof. The only non-trivial property to check is the fact that h(s+) < s for all s > 0.

By Lemma [2.13| we know that h(s) < s for all s > 0, so h(s+) < s for all s > 0.
Suppose that h(s+) = s for some s > 0. Let €, N\, 0 be a decreasing sequence of

positive numbers such that h(s+) = lim,, 0 h(s+€y,). From the definition of A we have

h(s+en) = sup hi(s+e).
te[0,6’]

From the definition of the supremum, for every n > 0 there exists t,, € [0,0’] such that

hi, (s +€,) > sup hi(s+e€,) — e, =h(s+€,) — €, (12)
te€[0,0']

The function hy, satisfies

1
hi, (s + €n) < (S+en)'k— < S+ €. (13)
tn
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The sequence t, is bounded, so after passing to a convergent subsequence, we may
assume that t,, — 7 for some 7 € [0,¢']. Let us show that 7 = 0. Assume that 7 # 0.
From inequalities and we know that

h(s+€n) —€n < hy, (s +€n) < (s + €n).

1
kr,,
Taking the limit as n — oo, we get

s=h(s+) < i-5.
kT
Since s > 0 we get k. < 1. Then 7 = 0, otherwise we would have k, > 1.
Pick m an integer, and let n be any integer n > m. The sequence ¢, is decreasing,
SO €, < €. The function hy, is increasing, so

hi, (s + €n) < hy, (s + €n), for any n > m. (14)
From the inequalities and we obtain
h(s+ €n) — €n < hy, (s + €), for any n > m.

After passing to the limit as n — oo and using the continuity of h; with respect to t,
we get,

s = h(s+) < ho(s + €y), for every m € N.
Letting m — oo we get s < ho(s+). In the parabolic case ho(s+) < s for every s > 0.
This yields s = 0, which is a contradiction. ]

Remark 2.15. Lemma is very important, because it provides a reduction of the
hyperbolic case to the parabolic case, hence allowing a uniform treatment of both cases.
Lemma uses only minimum information about the parabolic case, that is, the
fact that ho(s+) < s for all s > 0. Another remark is that in the one-dimensional
setting, one could presumably prove that the maps h; are already right continuous,
so hi(s) = hy(s+). However, we will apply this lemma in higher dimensions (where
the maps h; will not necessarily be right continuous), so the existence of the Browder
function At from Lemma bypasses this problem and is central for the application
of Browder’s Fixed Point Theorem.

Theorem 2.16. For each t, the sequence i, converges to a fived point v : St — Ft’ of
the operator p{l. The rate of convergence to the fized point is uniform in t.

Proof. By Lemma we can use the same Browder function A™ for any parameter
t € [0,4'] and apply Theorem to show the existence of a unique fixed point ~; for
the operator p;, ! Each map ~; : S! — Ut’ is continuous.

We show that 7, converges to ; uniformly with respect to ¢ € [0,6’]. By Lemmas
and 2.8 and Remark there exists L > 0 such that

m1H’Yt,n - ’Yt” < th (’Yt,n,%) < (h+)on(L) N0, for any t € [07 5/]7

so the rate of convergence of 7;, to the fixed point v; is bounded by the rate at which
the sequence (h™)°"(L) decreases to 0. Therefore the sequence of functions t — v,
converges as n — o0 to 7y, uniformly with respect to t. ([l
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In Theorem we have constructed a sequence of functions 7, continuous with
respect to ¢, and proved that it converges uniformly as n — oo to . Hence the limit
function ; is continuous with respect to ¢ on [0, 6]. The continuity of the Julia sets J,,
from Theorem follows immediately as Jp,, = Im(7;).

3. CONTINUITY OF JULIA SETS FOR HENON MAPS

Inspired by the one-dimensional setting from Chapter [2| we now turn back to dynamics
in two complex variables and prove a continuity result in Theorem [I.1] for Hénon maps
with a semi-parabolic fixed point. We will consider the Hénon map written in the form

Heq (2,y) = (p(x) + ay,az), where p(z) = 2> +c.
When a # 0, this map is a biholomorphism of constant Jacobian —a?, whose inverse is
H_, (z,y) = (y/a, (z — p(y/a))/a).

As in [HOVI], for » > 0 large enough, the dynamical space C? can be divided into
three regions: the bidisk D, x D, = {(z,y) : |z| <, |y| <7},

VT ={(z,y) : 2| z max(|y|,r)} and V™ ={(z,y):[y| > max(|z],r)}.  (15)

The escaping sets U can be described in terms of V' as follows: Ut = (J;~o H °*(V1)
and U~ = (J»o H¥(V ™). By taking their complements in C? we obtain K+ = C2-UT,
the set of points that do not escape to infinity in forward time, and K~ = C? — U~,
the set of points that do not escape to infinity in backward time. The Julia set JV is
the common boundary of K and U*. Similarly J~ is the common boundary of K~
and U~ . In fact, in the dissipative case, J~ = K~ (see [FM]). The sets J = Jt N J~
and K = KT N K~ are contained in D, x D,.

Definition 3.1. Let q be a fixed point of H and A and v be the two eigenvalues of
DHg. The fixed point q is called:

(a) hyperbolic if |v| < 1 and |A| > 1;
(b) semi-parabolic if |v| < 1 and \ = e>™#/4;
(c) attracting if |v| < 1 and |\| < 1.

Let A\ = e?™P/4 he a root of unity of order ¢ and set \; := (14 t)\. In Section we
considered the family p; of polynomials, p;(x) = 22 + ¢;, with a fixed point oy = \;/2 of
multiplier A;. The exact formula for the coefficient ¢; is given by Proposition below.
In Theorem [2.5] we showed that the Julia sets .J,, converge to the Julia set Jp, as t — 0.

In 1-D, the multiplier of a fixed point of a quadratic polynomial uniquely identifies
the polynomial. The following proposition provides a description of the parameter space
of Hénon maps for which one eigenvalue of the fixed point is known.

Proposition 3.2. The set Py, of parameters (c,a) € C? for which the Hénon map H.,
has a fixed point with one eigenvalue Ay is a curve of equation
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Notations and conventions. The curve P,, has degree 4 in the variable a, and degree
2 as a function of the Jacobian, which is —a?. For this reason, we will sometimes call
the curves Py, complex parabolas. When ¢ = 0, the curve Py contains the Hénon maps
that have a semi-parabolic fixed point with one eigenvalue A, a root of unity.

For the rest of the paper, we denote by ¢;(a) the right hand side of Equation (16]).
The Hénon map is completely determined by the choice of a and ¢, so we will use H, ¢
in place of H,,(4),, When there is no danger of confusion. We write

Hyi(x,y) = (m2 + ci(a) + ay, a:n) = ($2 + ¢ + d*w + ay, aa:) , (17)
where the residual term w is bounded and depends only on a and A,

—1+)\t—)\% CL2 1
=t (11— ).
20 20 2N

The Hénon map is also determined by the eigenvalues A and v at a fixed point and
we will sometimes write H) , in place of H,., to stress this dependency. The formula
for H) , is the following:

Hy,(z,y) = (x2 + (A )2+ 20— A — u)/4ii\/A7y,ii\/Ex> .

It may seem that there are two choices, but they are in fact conjugated by the affine
change of variables (z,y) — (x, —y).

A simple analysis shows that any constant r > 3 works in the definition of sets V*
from for the whole family of Hénon maps H, for |a| and |¢| small. From now on,
we assume that » > 3 is a fixed constant. Moreover, we assume that [t| < 1/(2¢) and
|a| < 1/2 as minimal requirements and we will specify other restrictions when necessary.

Let qq,¢+ denote the fixed point of H,; which has one eigenvalue A;. Suppose |a| and
|t| are sufficiently small. We will see that the following bifurcation occurs:

(a) if t = 0 then H, has a semi-parabolic fixed point qq of multiplicity ¢ + 1.

(b) if t > 0 then H,; has a hyperbolic fixed point q,; and a g-periodic attractive
orbit.

(c) if t < 0 then H,; has an attracting fixed point q,; and a g-periodic hyperbolic
cycle.

In the degenerate case when a = 0, the fixed point qo is just (ay,0), where oy is the
fixed point of the polynomial p;. The Hénon maps becomes Ho; (x,y) = (pt(z),0). The
Julia set of the Hénon map Hy; is just the Julia set of the polynomial p;, so we write
Jo,t = Jp,. Moreover Jgft = Jp, x C.

3.1. Local Dynamics — Perturbed Normal Forms. In this section we give a normal
form for perturbations of semi-parabolic germs with semi-parabolic multiplicity 1. This
provides an analogue of Proposition for the two dimensional setting. Proposition
is more general. Theorem is specialized to the case of Hénon maps H,; that come
from perturbations of the family of polynomials p; discussed in the previous chapter.

Definition 3.3. Let H be a holomorphic germ of (C2?, q) whose eigenvalues at the fixed
point g are A and v, with 0 < |v| < 1 and |v| < |\|. The strong stable manifold of the
fixed point q corresponding to the eigenvalue v is

W*(q) = {z € C%: le |v|"dist(H"(z),q) = const.}. (18)
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We refer to [S] and [MNTU] for a consistent treatment of strong stable manifolds.
For the Hénon map H,, the strong stable manifold W*%(q,¢) contains points that get
attracted to the fixed point qq ¢ at an exponential rate |vq¢|". When q,  is hyperbolic or
semi-parabolic, W*%(q,,) lives in J*. When the fixed point is attracting, or semi-Siegel,
W*5(qq,:) belongs to the interior of K*. Note also that when a = 0, W*%(qo+) = qo,xC.

We will denote by W% (qq,) the local strong stable manifold of qq relative to the
polydisk D, x I, that is, the connected component of W*°(qq ) ND, x I, that contains
the point qq .

Let H be a semi-parabolic germ of transformation of (C2,0), with an isolated fixed
point at 0 with eigenvalues |v| < 1 and A = ¢*™/4, The multiplicity of 0 as a solution
of the equation H®Y(x) = x is a number congruent to 1 modulo gq. Suppose therefore
that x = 0 is a fixed point of H°? of multiplicity mq + 1; we call m the semi-parabolic
multiplicity of H.

Proposition 3.4. Let {H;}jy <5 be an analytic family of germs of diffeomorphisms
of (C2,0) whose eigenvalues at 0 are Ay = (1 + t)\ and v¢, with |v| < min(1,|N])
and |v||A|? < 1. If the semi-parabolic multiplicity of Ho is 1 then there exist local
coordinates (x,y) in which Hy has the form Hy(x,y) = (z1,y1), with

{ 21 = M@ + 29T + Oz + agqpo(y)a?rt2 + )

19
y1 = vy + xzh(z,y) (19)

where C' is a constant depending on t, and a;(-) and h(-,-) are germs of holomorphic
functions from (C,0) to C, respectively from (C%,0) to C, such that a1(0) = \; and
h(0,0) = 0. The coordinate transformations depend smoothly on t.

Proof. The case A = 1 and ¢t = 0 was proved by Ueda [U] and Hakim [Ha]. In [RT)
Proposition 3.3], this was stated for any primitive root of unity A = 2™/ and t = 0.

By straightening the local strong stable manifold of the fixed point 0 we can assume
that H; is written in the form:

11 =ai(y)xr +az(y)z® + ... (20)
y1 = vy + zh(z,y) ’

where a;(-) and h(-,-) are holomorphic functions with a;(0) = A; and h(0,0) = 0.

One can make a holomorphic change of coordinates to make the first 2¢+1 coefficients
of the power series in the first coordinate constants. We proceed in three steps. In the
first two steps we show that there exist local coordinates (x,y) in which the map H;
has the form:

T1 = MT + a2 + ... + a2g 172 + aggpa(y) 2?2+ L (21)
y1 =y +zh(z,y)
where asg, ..., az,41 are constants. In the third step we show how to eliminate the terms

apx® for 2 < k < 2¢+ 1, k not congruent to 1 modulo ¢, and obtain Equation .
(1) Reduction to a;j(y) = A;. Consider as in [Ha] and [U] a coordinate transformation

X =u(y)x N x=X/uY)
{ Y =y with inverse { Y=Y
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where u is a germ of analytic functions from (C,0) to C with u(0) = A;. We need to
find u such that

X1 = w(y)z = u(vy + zh(z,y)) (a1 (y)z + as(y)z® + ...
= u(Y + X/u(Y)h(X/u(Y),Y)) (a1 (V) X/u(Y) + a2(Y)(X/u(Y))* +...)
u(Y)ar(Y)

2\ 2
b YO = NX -+ O(X),

Let b1(Y) = a1(Y)/M\¢. The map u satisfies the equation u(Y) = u(14Y)b1(Y). We
successively substitute 14Y instead of Y in this equation and obtain the unique solution

uY) = [ br(v'Y).
n=0

This product converges in a neighborhood of 0 since |1¢| < 1 and b1(Y) =1+ O(Y).

(2) Reduction to ax(y) constants for 2 < k < 2¢ + 1. We proceed by induction on k.
The base case k = 1 was discussed above. Suppose that k£ > 2 and that there exist local
coordinates (z,y) in which H; has the form

r1 = M+ asx® + ..+ ap_1 2P Fap(y)at + ...
y1 =y + zh(z,y),

with ag, ..., ar_1 constant. We would like to find local coordinates so that ay(y) is also
constant. Consider the transformation

— k _ _ k
{ X =z+v(y)x with inverse { r=X—-vY)X"+...
Y=y y=Y

where v is a germ of analytic functions from (C,0) to C with v(0) = 0. Using the
coordinates given by this transformation we get
X1 = a1 +o(y)zy
= Mz+ar®+ .. +ap2F T+ (ak(y) + )\,’fv(uty)> * + O(2F )

= MX 4. tap XE (ak(Y) (1Y) — )\tv(Y)) Xk 4+ O(x*)

We need v such that the coefficient of X* is constant. This gives the functional equation
Av(Y) = Mo(wY) = ap(Y) — ar(0). We successively substitute ;Y instead of Y in this
equation and obtain

o

Ao(Y) =3 (ar (4Y) = ax(0) AT

n=0
The series converges in a neighborhood of 0 if |v4||\¢|*~! < 1. This is clearly achieved
when [N\ < 1 since |1y] < 1. If [A| > 1 then |||\ 7! < || Me|?® < 1 and the later
inequality is true by hypothesis. Therefore H; can be written as in Equation .
(3) Suppose 2 < k < 2¢g + 1 is not congruent to 1 modulo g. Assume by induction on &
that H; can be written as

r1 =M+ apat 4t a2 272+ aggpa(y)a 4
y1 =1y + xzh(z,y).
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Let b = )\t‘ﬁ“)\k and consider the coordinate transformation
t
X =z + baF e r=X—-bXF+...
{ Y —y with inverse { Y=Y (22)
In the new coordinate system, we get
X1 = z14bzk = a4 apa® + ) + b\ 4 apzt + )P

= N+ (ap + AP+
= MX —bXF 4+ )+ (ap + D)X —bXE 4 )
= MX + (ap +bOF = X)X+ ...
By this procedure, the term containing X* has been eliminated. The first monomial
that cannot be eliminated in this way will be a;,q41X ma+l for some integer m. If we
assume that the parabolic multiplicity of the semi-parabolic germ is 1, then ag41 # 0
for t = 0 (hence also for small t) and a,+1 X" will be the first term that we cannot
eliminate by the above procedure. We can further reduce the normal form to ag+1 =1
by considering a linear transformation of the form X = Ax,Y = y, where A is a constant
such that A? = a441. We can therefore assume that the Hénon map can be written as
{ r1 = M(2 + 2 4k 4.+ a2q+1x2q+1 + a2q+2(y)$2‘I+2 +...)
y1 = py + zh(z,y).
By repeating the coordinate transformations , we can eliminate all monomials a;z*
with ¢ + 1 < k < 2¢g + 1. By abuse of notation we still denote by az the term M\iai. In
the new coordinate system, we get
X = x4+ b2F = (@42 4 apa® + )+ b (x4 29T + apat + )P
= Mz + 27 + (ag + DA)zP + ...
= MX =bXF 4+ (X —bXF)IF L) (ap + DX —bXF 4+ )4+
= M(X + X9 4 (ap +bOF = X)X+

therefore the term containing X* has been eliminated. ]

This following theorem is a generalization of [RT) Theorem 6.2].

Theorem 3.5. Let r > 3 be a fized constant. There exist 6,0 > 0 such that for any
(c,a) € Py, with |a] < & and |t| < ¢ there exists a coordinate transformation ¢q from
a tubular neighborhood B = Dy (i) x D, of the local strong stable manifold of the fized
point dq ¢

¢a7t :B— Dp X ]D)TJFO(‘QD
in which H,y has the form ﬁai(x,y) = (z1,y1), with

21 = M(w + 29+ Cp gzt + aggio(y)x?2 + ) (23)
Y1 = Va ,ty + -Tha,t(xv y)

and Cqy is a constant (depending on a and t) and xzhq (z,y) = O(a). Moreover the
transformations ¢q are analytic in a and t, and

ii_f)l’(l) (bmt == ((ﬁt(.@), y)a
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uniformly with respect to t. The map ¢y : Dy(cy) — D, is the change of coordinates
from Lemma[2. for the polynomial p; with a fized point oy of multiplier Ay and

(bt O Pt O ¢t_1(x) = )‘t(x + qurl + Cthqul + O($2q+2>).

Proof. We choose ¢ small enough so that the local strong stable manifold W;%* (qq,:)
has no foldings inside D, x ID,- and it can therefore be straightened using a holomorphic
change of coordinates. The first part of the proof follows directly from Proposition [3.4}
We need to verify the conditions imposed on the eigenvalues at the fixed point. We
have |\ € (1 —&,1+ ") and |va:| = |al?/|\e] € [0,62/(1 — &")). The bounds § and &’
are chosen small enough so that 6 < 1 —¢". It follows that |v, | < |A¢| and |vg ] < 1.
Then |A¢||vat]?? < (14 8")5%(1 — §')72¢ < 1. This inequality is not so restrictive. For
example, it is verified for ¢’ < 1/(2¢) and § < 1/2. The convergence of the coordinate
transformation ¢,; as a — 0 follows immediately by comparing the coordinate trans-
formations done in Proposition [3.4] to those done in Proposition [2.6] O

It is also worth mentioning that the change of coordinates function ¢, ; from Theorem
[3-5] maps horizontal curves to horizontal curves, that is

Pat(Dy(ar) x {y1}) € C x {ya}, (24)

which will be useful later on.

3.2. Attracting and repelling sectors. In this section we continue the analysis of the
local dynamics of holomorphic germs of diffeomorphisms of (C2,0) with a semi-parabolic
fixed point and their nearby perturbations. Consider the set

AR:{xe(C : (Re(xq)+2;>2+ (]Im(xq) —2;>2<2}122}.

in the complex plane. There are ¢ connected components of Ag, which we denote Ag, ;,
for 1 < j < q. Define Pr, = Ar x D, and let Pg,; = Ag; x D, be the connected
components of Pg .

Proposition 3.6. For R large enough and r small enough there exists a positive number
&' such that for all t € (—§',0)

Hyt(Pryrj) C PrujipU{0} x D, for1<j<gq.
In particular Hyt(Pry) C Pry U {0} x D;.

Proof. Assume that R is large enough and r is small enough so that the map H,; is
well defined and has the expansion from Theorem [3.5

21 = M + 29 + Cp gz + aggia(y) 2?2 + 1)
Y1 = vay + vh(z,y)

Define the region Up :={X € C | R/q — Re(X) < [Im(X)|} and set Wg, := Up x D,.

Suppose (z,y) € Pry,;. The transformation X = —1/(¢z?), Y = y maps each petal

PryrjtoWr,. Thus X € Ugand |Y| < r. Let H(X,Y) = (X1, Y1) be the corresponding
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map in the new coordinates:
I X
qr{ A (14 29 + Cyu 1220 + aggyo(y)z2att +...)7
X

q(qg+1
= )\g<1—q(x‘1+0a7tm2q+...)+(2)x2q+...>

1 A 1 1 /qg+1
- )\<X+1_|_X+(’)Y<W>>,whereA.—q<2— a,t>7

1
Yio= vaw+oh(z,y) =veY + Oy <\X|1M) |

X, =

+Q

The notation Oy (|X|*) represents a holomorphic function of (X,Y) in Wg, which is
bounded by K|X|* for some constant K.

One can easily check that | X| > q% throughout the region Ug. Clearly |\;|? > 1/2

for small |t|. There exist constants K, K and K| = 2K'q\/2, Ky = K"(qv/2)'/% such
that

1 K’ K
Xi——=X+1) < —— < —
WY S X < R
K// K2
’Yl — Va,tY‘ S W < m
Choose R large enough and r small enough so that
Ky 1
v, - (25)
T/ < (1 = |vau])r -
The second condition immediately gives
Ky
’Yi‘ < ’Yi — I/QVtY‘ + ‘Va,tHY’ < W + ’Va,t|r <r.
The first condition of implies that
1 1
Xl—F(X+1) <Z' (26)
t

In our case \{ = (14 t)7 is a real positive number. Hence inequality yields the
following estimates:

1 1 1
Re(X1) > R0+ i~
1 1

[Im(X1)| > m\fm(X)l e

Using these estimates and the fact that X € Ug, we get

Rjg+1 1 _ Re(X1) > R/q — Re(X1),

[Im(X1)| > Az 2
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provided that |¢| is small enough so that

R+q
— > (1x¢)% 27
ooy > (D) 27)
The constant 0’ > 0 is chosen so that this inequality holds for all 0 < ¢t < §’. It follows
that H(WR,T) C WRJ«. ]

Since the dynamics is different, we will treat the cases ¢t < 0 and ¢ > 0 separately. We
begin with the latter case, so suppose R, and t > 0 are as in Proposition [3.6f We show
that points in Pg, are attracted by an attractive orbit of period ¢ under iterations by
H, ;. Each region Pg, ; contains a point of this orbit. The fixed point 0 is hyperbolic.

Suppose p; > 0 is a small enough radius such that p; < ¥/t/(2¢). The number p; is
just a local variable which will be used in the proposition below. Define
DRyt = Pry — {(xay) €C? : |z < py, lyl < T}
and let Dp,¢; with 1 < j < ¢, be the connected components of Dg ., (see Figure [3)).

Proposition 3.7 (Trapping regions — ¢ positive). For R large enough and r small
enough there exists a positive number &' such that for all t € (0,0)

Ha,t(fR,r,t,j) C DR,T,t,j-‘,—p fOT’ 1< ] <gq.

In particular Ha’t(met) C DRyt and all points of Dg4 are attracted to an attractive
orbit of period q under iterations by Hy .

Proof. We make a change of variables X = —1/(qz?), Y = y and analyze the situation
at infinity. This transformation maps each Dy .; ; to a region Wg;.; := Ur x D, where

1
Ugpy = {X €C : R/qg— Re(X) < |Im(X)| and |X| < qq}
t

From Equation from the proof of the previous proposition we have

1 1

X, — X|— <|x, —
X3 (1+t)qH 1+t = |

1 1
(1+t>q(X+1)‘ < 1

which gives

1 n 1 n 1 < 1
a1 +t)7p] ~ (L+8)1 4 " qp]’
The last inequality holds because

|X1| <

q<t< (1+t)2-1
W= U+0e/a+1

based on our assumption on ¢t and our choice of p;. With this choice we showed that

~

HWgyt) C Wryy and all points of Wg ., are attracted to an attractive orbit under

iterations by H. The existence of this orbit follows immediately since we have a nested
intersection of compact sets. ]

By choosing a smaller p; as necessary we can show that all points in Pg, are attracted
by the g-periodic attractive orbit under forward iterations by H,;. Moreover, every
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Im(x7)
0.3t

0.2r

0.1+

: : ‘ ‘ ‘ - Re(x9)
-0.3 -0.2 -01 01 02 03

-0.1¢

-0.2r

-0.3¢

Figure 3. (case t > 0) The image of Dg,; under the map z — x4 at a
height y = const. A small disk of radius p; is removed around the origin.

point that is attracted to this orbit must eventually land in the interior of one of the
regions Pg,; for 1 < j <gq.
Let ¢p = tan(27/9). In order to simplify notation, define p such that p? :=

1—eg

Ry/ 1+€[2) ’

The number p measures the distance between the origin and one of the points of inter-
section of the lines Re(x?) = ¢y|Im(z?)| with the boundary of Ag.
Define the attractive sectors

AT :={r € C : Re(x?) < eo|Im(x?)| and |27 < p?}, (28)
and the repelling sectors
A7 :={x € C : Re(z?) > ¢|Im(z?)| and |z?| < p?}. (29)

Let WT:= AT xD, C Pg, and W™ := A~ x D,.

We will call W~ repelling because as we will see, the Hénon map expands horizontally
when the Jacobian is small enough. We will call W attractive because points in W
are attracted to the g-periodic attractive orbit as we have shown above. There are ¢
components of W* which we denote VVji for 1 <j<gq.

In the regions A~ and W~ we have

Re(z?) > e1|xz]?, where ¢ = LS

V1i+é
The constants ¢y and €; are chosen such that the image of A~ under x +— z? has an
angle opening of 57/9 (see Figure ).

The definition of the sectors W= for ¢ > 0 is the same as in the case t = 0 [RT),
Section 4]. However, when ¢t < 0, we need to modify the definition of the repelling
sector W~ so that we have a good horizontal expansion for the Hénon map. Suppose
therefore that ¢t < 0.

(30)

ol w

Remark 3.8. When \ = 1 the parametric paths described by A\; = 1+t are in fact the
same, so we can assume that ¢ > 2.
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Im(x9)

0.2t

0.1r

‘ ‘ ‘ - Re(x7)
-0.2 -01 0.1 0.2

-0.1¢+

-0.2r

Figure 4. (case t > 0) Repelling and attractive sectors near the semi-
parabolic/hyperbolic fixed point. The attracting sector AT is shown in red
and the repelling sector A~ is shown in green. The angle of the green sector
is 5m/9.

Assumption on t. Suppose t is sufficiently small so that |t| < T{H?' A restriction
on t of this form is needed for the local dynamics, but the choice for this bound will
become clear later on. Let
2]
(q +1 / 3)61
be fixed from now on. The constant ¢; > 3/5 is the same as in Equation . Suppose
further that |¢| is small enough so that R; < 1/(9R), where R is as in Proposition
Define

R, := (31)

DT’,t - {(%y) S C2 : |x|q S Rt7 ’y| < T} .

Proposition 3.9 (Attracting region — t negative). For R large enough and r small

enough there exists a positive number &' such that H,(Dyt) C Dyt and all points of
D, are attracted to the origin under iterations by Hyy for all t € (=¢',0).

Proof. We make the change of variables X = —1/(¢qz?), Y = y and analyze the
situation at infinity. Let H be the map written in these coordinates. This transformation
maps D, to the region

1
Wyt = {XE(C C X > } x D,.
ql

~

Let (X1,Y7) = H(X,Y) for (X,Y) € W,;. Note that \y = 1 — |t|, as ¢ is negative.
Similar to Equation we have that

1

1
’Xl— qX‘<4'

(1= [¢])
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This gives
1 1 1 1
| X| - — - |X4| < ’Xl—(X—l-l) < =
(1—ta (1 —[t]) (1 —[t])a 4
and, after rearranging the terms, we want to obtain the following estimate

1 1 1 1
X TS X 4 e
) TR VA R e Ry

The last inequality is equivalent to

1 1 11
X1 <<1 T 1) A

Note that m — 1 > q|t| for small [t|. Using the fact that |X| > (¢R;)~! and the

particular choice of R; we get that

‘Xl‘ >

1 7 1 11
X[ [———1 1/3)e; >t > —— 4 —
| '((1—|t|>q >>(q+ Bz g > T a0

which is true whenever (1 — [¢|)? > 8/9. This condition is satisfied because, based on
our assumption on t, we have

1 59\ _ 8
o> (1-——) > (2) 52
(1=1e) >< 24q+12> _(60> ~ 9

Note that the function x — (1 —1/(24x + 12))” is increasing on [2, 00) and that is why
we can use the middle inequality. We have therefore shown that |X;| > |X| 4 1/40.
Let (X, Yn) = ﬁ(Xn_l,Yn_l) for some (Xo,Yy) € W, By induction we get that
| X7| > | Xo| + n/40. It follows that all points in W, ; are attracted to (co0,0). In order
to prove that indeed Y;, — 0 as n — oo we need to do a similar analysis as in [RT]; we
leave the details to the reader. t

When ¢ < 0, we define the repelling sectors as follows
Ag ={z € C : Re(z?) > eo[Im(x?)| and R; < |29| < p?}, (32)

where R; is given in . The excluded region belongs to the basin of attraction of
0 (see Figure . Set as before Wy := Ap x D, . The definition of the set W is
the same as in the case when t is positive, i.e. W+ = AT x D,., where A" is given in
Equation . Also, A% is a subset of A7, defined in Equation . When ¢t — 07,
the sets A}, converge to A™, so the definition of W~ when ¢ = 0 is the same as in [RT].

By choosing ¢ small enough so that R; < % < p? we made sure that the excluded
region {z € C | |z|? < R;} N Ag is contained in AT.

Let B = Dy (o) x D, be the polydisc from Theorem and ¢, the coordinate
transformation defined on B. We define attractive and repelling sectors relative to B.

Definition 3.10. Let W := ¢, (W) for t > 0 and W} := ¢ (D, x D, — W) for
t < 0 be the attractive sectors inside B. Similarly, let W := qb;%(W*) for t > 0 and
Wg = qb;%(Wgt) for t < 0 be the repelling sectors inside B.
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Figure 5. (case t < 0) The repelling sector A is shown in green. The
angle of the green sector is 5m/9. The red region belongs to the basin of
attraction of 0.

Proposition 3.11 (Local dynamics).
a) Ift > 0 then the compact region W3 satisfies Hy t(Wj) C int(KIt)UW/ﬁj:(qa’t).
b) If t <0 then the compact region Wg lies in the interior of K;:t.

Proof. Using the definitions from the proof follows directly from Propositions
3.6l and 3.9 O

3.3. Deforming the local semi-parabolic structure into a hyperbolic structure.
In the parabolic case we have shown in [RT!, Propositions 6.8, 9.2] that in the repelling
sectors W™ mnear a semi-parabolic fixed point, the Hénon map is weekly expanding in
horizontal cones and strongly contracting in vertical cones, with respect to the Euclidean
metric. We will reuse these cones and show that when t is nonzero, the Hénon map is
strongly expanding in horizontal cones and strongly contracting in vertical cones, and
therefore has a local hyperbolic structure. In this section we only use the local normal
form of the map, so all results are applicable to holomorphic germs of diffeomorhisms
of (C2,0) with a semi-parabolic fixed point at 0.

Definition 3.12. Define the vertical cone at a point (z,y) from the set D, x D, as
%y) ={(&n) € Tay)Dp x Dy, [¢] < |$‘2q|77’}'

Define the horizontal cone at a point (z,y) from the set D, x I, to be

Clyy = {(&m) € TiayyDp x Dy, [€] > ]}
We consider the interior of a cone to be its topological interior together with the origin.
Consider the Hénon map .FNIM : Dy x D — C? written in the normal form given
in Equation . We write H,; whenever we want to stress the dependency on the
parameters a and ¢, but otherwise we simply write H. We have

Hoy (2,y) = (M@ + 27 + g04(2,9)), Vary + whay(z,y))
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where

Jat(@,y) = Cag@®™ + agga(y)a® 2 4 ...

hat(z,y) = bi(y)+...+be(y)z™ +...
and gq:(z,y) = got(x) + O(a) and hg¢(x,y) = O(a). Here the term O(a) is in fact a
holomorphic function in both a and f.

When a = 0, Ho(x,y) = (pt(2),0), where py(x) = A\i(z + 297 4 go4(2)) and
go(x) = C’oﬂgazz‘frl + a2q+1x2q+2 +....
The function go; depends only on x and ¢, hence dygoo(z,y) = 0. For |a| < § and
|t|] < ¢ we can assume that there exists a constant M, with 0 < M, < 1 such that
}ayga,t(l'»y)‘ < Ma,t|x‘2q+2- (33)

When ¢ = 0 we also know that xzho¢(x,y) = 0. Moreover, by the construction of
the normalizing coordinates, we have xhq(x,y) = O(a). There exists a constant Ng¢,
depending on a, with 0 < N,; < 1 such that when |a| < § the following bounds hold

‘8x(a:ha7t)(w,y)‘ < Nyt and ‘8y(mha7t)(x,y)‘ < Nggt. (34)

Let 0yat(z,y) = 22934 +(x, ), for some function Ba,t- As usual, d, denotes the partial
derivative with respect to the variable . Denote by m the supremum of |5, +(x,y)| on
the set W, where the supremum is taken after all |a| < ¢ and |¢t| < ¢’. Thus

m = sup |Bat(2,y)] (35)
(z,y)eW ™, |a| <4, [t] <&’
and so |0ygas(z,y)| < mlz[*? for all (z,y) € W~. The repelling sectors A~ and
W~ = A~ x D, are defined in Equation (29).

By eventually reducing the radius p > 0 from the definition of the set A™, we can

assume that

11+ (g + D29 —m|z%| > 1+ (¢ +2/3)er|z|? > 1, forallz € A™, (36)
where € is given in Equation . Consider the polynomial p; as in Lemmawith its
corresponding repelling sector Agt (see Equations and ) The estimate above
allows us to show that |p{(x)| > [A¢|(1+(¢+2/3)e1|z|?) for all z € Af, . The polynomial

pi is clearly expanding if ¢ is nonnegative since |A¢] = 1+¢ > 1, but Lemma shows
that it is also expanding on Ap for negative ¢.

Proposition 3.13 (Vertical cones). Consider (x,y) and (x1,y1) in the repelling sec-
tors W= C D, x D, (respectively in Wy for t <0) such that H(x,y) = (z1,y1). Then

rr—1 v v
DH(, 4y ( <x1,y1>> C Int C(y )

and |[DH} (€1 = (Vail +3/2Nae) (€ 0| for (¢',1) € C

T1,y1 (z1,91)"

Proof. Let (¢,7) € Cliy gy With (&',n') # (0,0), and set (§,n) = Dﬁ&}y)(f’,n’). We

need to show that (§,n) € Ci“x W) A direct computation gives

pi,. [ A+ @+ D2+ 8egar(2,y))  MOygar(,y)
(z.y) Oy (l'ha’t)(x, y) Vot + xayha,t (I’, @/)
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and so
& = M1+ (g+ 127+ 0ugar(x,y)) € + MOygas(z,y)n (37)
1 = 0u(@hat)(@,y)€ + (Var + Oy(zhar)(z,y)) 7. (38)
Using the bounds from Equations and we get
€T = Nl (114 (g + D)a?| = m|z]*?) [€] — Aol Mae|z[*72n| (39)
n'] < Natlél+ (vasl + Nat) Inl (40)

Since (¢,7) belongs to the vertical cone at (z1,y1), we also know that
€1 < |z[2'] < P2+ 27+ gag(,y) /x|

2
< NP POy,

where M is the supremum of |1 + 29+ g, +(z,y)/z| on the repelling sectors W~ of the
tubular neighborhood D, x D,., that is
My := sup ‘1+xq+ga7t(az,y)/x‘.
(zy)EW™,
la]<d, |t|<d’

Since Re(x?) > €1]z|? on W~ we can take M; > 1, but any constant M; > 0 would
suffice. We have assumed that [t| < 1/(2q), so |\|?? < 3|\| and

€] < 3[dl [P . (41)
By combining estimates , , and we get
el (11 + (q + 1)a%] = mla[20) [¢] — Nl M2+ ] < [¢] <
< 3222l < BN NG il PIE] + BN M ([ved] + No) 2.

After regrouping the terms, we write

A2 9
< 221120
€] < 2lal )
where A; and Aj are defined as follows
Ay = 1 (g + D) = (m 4 BMINy )]
Ay = BMP(|Vas| + Nag) + Maglz]®.

Since z is chosen from the repelling sectors we have |1 + (¢ + 1)249| — m|z|?? > 1. The
quantities Nq ¢, Mg and v, = —a2/)\t depend on a and on t, and they tend to O as
a — 0, uniformly with respect to t. For |a| and |t| small we can therefore assume that
Ay >2/3 and Ay < 1/3. Hence (§,7n) € Cloy)r 50

rr—1 v v
DH(l'hyl) <C($1,y1)> C Int C(z,y)'

We now show that inside the vertical cones the derivative DH ™! is expanding with
respect to the Euclidean metric. We have

A
1< Nadlel+ (vl + Nag) Il < N Eleflnl + (vl + Nog)

1 3
< (G0nelePt vl + 8o ) ] < (Il + 53N ) bl
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provided that |z| < 1 (which is already assumed since p < 1). By definition, as both
(&,m) and (¢',n) are taken from the vertical cones, we have

1€ m)Il = max([], [n]) = In| and [[(§",n")]| = max(|€]", [0]) = In|.
We obtain [[(&,n)l] > ([Va.l +3/2Nas) I, 7)]- .

For |a| and |¢| sufficiently small the expansion factor (|vg¢|+3/2Nat) ! can be easily

made larger than 1. Hence DH ! expands in the vertical cones with a factor strictly
greater than 1.

Proposition 3.14 (Horizontal cones). Consider (z,y) and (x1,y1) in the repelling
sectors W= C D, x D, (respectively in Wy for t < 0) such that H(x,y) = (z1,y1).
Then

7 h h
DH(:E,y) (C(z,y)> C Int C(Ilyyl)

and | DH, (€ )| = M (1 + (g + 1/2)etlal) [ n)l| for (€.m) €Ch, .

Proof. Consider (¢,n) € C(hw’y), (&,m) # (0,0), and let (¢',71) = Dﬁ(zw (&,m). We first

need to show that (¢/,7) € Cglml 41 Consider & and 1 written as in Equations and

, from the proof of the previous proposition. Since (£, 1) belongs to the horizontal
cone at (z,y), we know that [£| > |n|. As before, by using Equations (33), (34), and
, we get the following estimates

€1 = el (11 (g + 1)a?] — mlz7) €] — [\t Moy |z [*+2 1)
> [Nl (114 (g + D)2 = mla*? — My, |a*772) |¢] (42)
7' < Naglél + (Iael + Nog) Inl < (2Nat + [vaul)IE]
In the final analysis we obtain
By
N < 22)¢
where By and Bj are defined in the obvious way
BQ = 2Na,t + |Va,t‘
By = M| (L4 (g4 D29 — m|z?? — Mg,|z|*t?) .

The bounds Ny ¢, My and |v, | tend to 0 as a — 0, uniformly with respect to ¢, so one
can assume that for |a| and |¢| small enough we have By < 1/2. Moreover, using the
bound from Equation , we can assume that

By > M| (14 (¢ +1/2)er]z|?). (43)
Clearly, By is bounded below by |A\;| > 1 —1/(2¢). In conclusion, we get

q
€',

/
<
7| 50 1

which implies that (¢/,n') € Int Célz, ,- The norm of the two vectors from the horizontal
cones are [[(€), )| = max((€], if]) = €] and. (€, )| = max((e], ) = |¢]. We have
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already shown in Equation that [¢'| > B|¢]. Together with the lower bound on B
from Equation this yields

1€ I > I\l (L4 (g + 1/2)e)||?) 1] = [Nl (1 + (g + 1/2)en)]z]?) (€ m)],

which is what we needed to prove. O

We now analyze the expansion factor || (1 + (¢ + 1/2)e1|z|?) in the horizontal cones
from Proposition If t = 0, then |\ = 1 and the expansion factor reduces to
14 (g+1/2)e1|z]?. In this case DH expands strictly, but not strongly in the horizontal
cones. The expansion factor goes to 1 when z — 0, i.e. when we approach the local
strong stable manifold of the semi-parabolic fixed point.

If t is positive then |\;| > 1 and DH expands strongly in the horizontal cones, by a
factor of (14 ¢)(1+ (¢+1/2)er|z|?) > (1 +¢). If ¢ is negative, then |N| < 1 and we
need to use the definition of the repelling sector Wg, to get a good expansion. The
repelling sectors were carefully defined in Equation , from the previous section.
We use the fact that |xz|? > R; for the choice of R; from Equation to make the
product [A¢]- (1 + (g + 1/2)e1|z]?) strictly greater than 1 throughout Ap . So we use the
particular choice of R; to make the second term dominate |\|, which is in fact smaller
than 1. The following technical lemma deals with this situation.

Lemma 3.15 (Expansion estimate). Ift € (—§',0), then

€
Ml (1+ (g +1/Derlal?) > (L+ eoft]) (1+ 1lal?)

for all x € AR, where €3 := —A . The inequality is also true for t € [0,8') and

16(g+1) *
z €A™,

Proof. The proof is straightforward if ¢ is nonnegative. Suppose that t is negative.
Note that [A\;] =1 — [¢|. We first show that for all z € Ap,

(Ael (14 (g +1/2)eafe]?) = (1 = [¢]) (1 + (¢ + 1/2)er|z|?) > 1+ %Ix\q,

which is equivalent to showing that [z|? ((1 — [t[)(¢ + 1/2)e1 —€1/8) > [t|. On Ay we

have that |z|? > R; for Ry = %’

SO
4
(¢ +1/3)
This is verified for [¢]| < m, which is one of the bounds already imposed on ¢.
We then show by direct computation that

2" (1= [t)(g +1/2)er — e1/8) > (L=t (g +1/2) = 1/8) > |i].

L+ Sl > (1t ealt]) (1+ 5lal?)

for all x € Af%t and some constant e3. We take €5 = m, but the choice is not

optimal. The computational details are left to the reader. ]
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3.4. Global analysis of the Julia set. We would first like to show that the corre-
sponding Hénon map is hyperbolic on its Julia set J, ;. We must show that the derivative
of the Hénon map has appropriate contraction and expansion in a family of vertical,
respectively horizontal cones. We have already shown this to be true locally around the
fixed point qq; in Section

If we look at the form of the Hénon map, Hy (7, y) = (pi(z) + a®>w + ay, ax) given in
Equation , we notice that the presence of the multiplicative factor a in the second
coordinate implies that the derivative of the Hénon map is strongly contracting in the
“vertical direction”, or equivalently, DH~! is expanding in the “vertical direction”. If
we analyze the first coordinate, we notice that the expanding properties of DH in the
horizontal direction are closely related to the expanding properties of the polynomial p;
on a neighborhood of its Julia set. We will construct a neighborhood V' of J;f , for the
Hénon map H,; inside a polydisk D, x D, and put a metric on it with respect to which
the derivative of the Hénon map is expanding in the “horizontal direction”.

For the Hénon map H,;, the construction of the neighborhood V' will be similar to
the construction of the neighborhood U/ in the polynomial case in Section (see also
[RT), Section 7] for the construction of the neighborhood in the semi-parabolic case).

Let a4 be a fixed point for the polynomial p;. For |a| < ¢ consider the normalizing
coordinates of the Hénon map H,; on the tubular neighborhood B = D, (a;) x D, as
defined in Theorem Let qq,+ denote the hyperbolic/semi-parabolic/attracting fixed
point. Let W and Wy be the attractive, respectively repelling sectors inside B from
Definition By Proposition the set W3 belongs to int(K;ft) UW}5 (qa,). The

loc
set H, tl (B) ND, x D, has two connected components, so let us denote by

B':= (H,}(B)— B)ND, x D, (44)

a,t

the component disjoint from B. Let WE, be the preimage of the attractive sectors Wg
in B’ that is, W}, := H,} (W}) N B’

We start by defining a box neighborhood U/ x D, where UJ is constructed as in the one
dimensional case (see Definition @) Recall that the set U/ was defined as U/ = p, Ly,
where

Uy i= C = p; Y (Sare) — {2 € C— K, : |W1(2)| > R}.

We choose R > 2 large enough so that the outer boundary of Uy is in the set V' defined
in (and implicitly in the escaping set U™).

The only difference will be that instead of removing the attractive sectors p; oN (A]),
we want to remove a little bit less. Construct attractive sectors Sy C AZF associated
with the polynomial p; in D (ay), thin enough along the attractive azes so that

(p;"(N“)(satt) N A> x Dy C W3

We denoted by A the annulus between the disk of radius p’ and the disk of radius
p" < p'/2 centered at oy, so A = Dy (o) —Dyr(ay). Otherwise said, in the annular

region A, we want the small attractive sectors p, O(NH)(Satt) of the polynomial p; to be
compactly contained in the attractive sectors Wg of the Hénon map. As in Section
when writing p,” oV (Sait) we do not take into account all preimages of Sy, but rather



SEMI-PARABOLIC TOOLS FOR HYPERBOLIC HENON MAPS 33

only the preimage of Sy that is contained in the immediate Fatou components of the
fixed point oy and has a; in the boundary.

Inside the tubes B and B’, we forget all together about the polynomial dynamics. So
we take out the tubes completely and put back in only the repelling sectors W and
Wy,. We can now finally define the set V' as

V= (U/xD,—(BUB))U Wz UWg). (45)

Remark 3.16. Note that the set B’ (and consequently W,) is contained in the bigger
set U; x DD, and its projection on the first coordinate is compactly contained in U; and
bounded away from the critical point 0 of the polynomial p;. Denote by B” the polydisk
D, (ay) xD,.. When |al is small, the set B” should be thought of as a small neighborhood
of the local stable manifold W c(qa ¢) of the fixed point q, ;. By the construction above,
the set difference W5 — B” is contalned in U/ xD,. Hence V — B” is a subset of Uy x D).

For t > 0, let V denote the set V together with the local stable manifold Wi (da,t)
and together with H 1 (W (qq.)) N B’. When ¢ < 0 there is no need to add the two
stable manifolds as they belong to the interior of K j .. However, to preserve notation,
we set V =V in this case.

Lemma 3.17. J N V= J;t ND, x D,.. Moreover, the Julia set J, 1 is contained in vV
and
Jag = [ H™(J5, V).

n>0

Proof. The outer boundary of the set V' is an equipotential of the polynomial p,
cross D, which belongs to the escaping set U; ;. From the tubular neighborhood B

of the local stable manifold we have removed only the attractive sectors W3, which
are contained in the interior of K , when ¢ < 0 and in the interior of K, +t union the
local stable manifold W% (qq.:) When t > 0. From B’ we only removed the attractive
sectors Wi, which are contalned in the interior of K, when ¢ < 0, and respectively in
the interior of K + union a preimage of the local stable manifold H (W (qq,)) N B’
when ¢ > 0. Outside of B U B’, we have removed a vertical tube p, O(NH)(Satt) x D,
which belongs to the interior of K,. Therefore, when t < 0, the set J. N (Dy xDy) is

contained in the set V. When t > O in our construction process of the nelghborhood V,
we have lost from Ji , N (D, x D) only two local stable manifolds. These local stable

manifolds are no longer in V, but they lie in the larger set V,
Jitﬂ (D, xD,) CV whent > 0.

Any point in J; , NV remains in V under forward iterates of the Hénon map, so the
Julia set J,; is contained in V. O

3.5. Vertical and horizontal cones in the product metric. We construct an in-
variant family of horizontal and vertical cones on the set V' defined in , such that
the derivative of the Hénon map expands in the horizontal cones, and contracts in the
vertical cones.
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In Section we have already constructed such an invariant family of cones in the
repelling sectors of the fixed point q,¢. These cones live only in a small neighborhood
of qq,, where the map is conjugate to the normal form .

In this section we define a family of cones on the set V away from a small neighborhood
of qq¢. At the end of this section, we show how to patch together these two types of
cones, from Sections [3.3 and 3.5 to get an invariant family on the entire set V.

The set Uy x D, comes equipped with the product metric uy, X pg of the Poincaré
metric py, of the set Uy and the regular Euclidean metric pg on the vertical disk D,.
Tangent vectors (£,7) from T(‘,E,y)(c2 will be measured with respect to the product metric

1, | := max(pw, (x, €), [n]),
where |n| is the absolute value of the complex number 7.

By Remark the set V' — B” is a subset of U; x D, and we can endow V — B”
with the product metric that we have just constructed on the set U; x D,.. Denote by
U the projection of V' on the first coordinate, which is equal to U} U pri(Wpg,). The
set U{' — D, (ay) is compactly contained in Uy, so the Poicaré metric uy, is bounded
above and below by the Euclidean metric on the set U{’ — D,/ (), that is, there exist
two positive constants mq and meo such that

m1 < py,(x) < ma, (46)

for any t € [—¢',0'] and any « € U/’ =D, (a;). Therefore, the product metric is bounded
on the set V' — B”. If we let py, be the density function of the metric puy,,
Huy (1‘,5) - pUt(x)‘§’
then py, is positive and C*°-smooth on Uy’ — D (ay).
The sets U/, |t| < ¢, avoid a neighborhood of fixed size of the critical point of the
polynomial p;. Hence there exists a lower bound r; > 0 such that

r1 < |pi(z)|, for any z € U}'. (47)
Definition 3.18. Let 7 < 1. Let the vertical cone at a point (z,y) from V — B” be
C&,y) = {(5577) € T(:E,y)(czv HUt(xaf) <T- W} .

Define the horizontal cone at a point (z,y) from the set U/ x D, to be
Cloypy = {(&n) € Ty C?, pus(2,€) > Inl} -

We will show that the vertical cones are invariant under DH, ar tl and that the horizontal
cones are invariant under DH, ;.

Proposition 3.19 (Vertical cones). Consider (x,y) and (z',y’) in V. — B" such that
H(2',y') = (x,y). Then

—1 v v
DH (Cu,y)) C Int Cli

and [|DHG (& )] > lal~HI(& )| for (€,n) € CL, -

Proof. Let (¢,n) € CP

(r.y) and &)= DH(;ly) (&,1n). From the formula of the inverse

(«'.y) = <y’ x —pi(y/a) — a2w>

a a

of the Hénon map
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we find ¢ = én and ' = é (5 - %n) Assume (§,7n) # (0,0), otherwise the proof is

trivial. The vector (£,n) belongs to the vertical cone, so uy,(z,&) = pu,(z)|E| < TIn].
This implies that

T
<. 48
€< o (43)
We can evaluate
m
mmw=mwﬂggw (49)

Next, by using inequality , we compute

> o (G- 2 ) (50)

1 2z
= e =22y e
|a| a la| \ la] ™

The point 2’ belongs to U}’ so |22/| > 1 by Equation ([47). Choose |a| small so that
% — 7 > max (aﬂ, 1). Combining Equations and gives py, (z',€") < Zn|.

Therefore DH (; }y) (Cz“x’y)) C Int CFx’,y’)’ which proves the cone invariance. Inequality

shows that DH~! expands in the vertical cone as || > |a|~}|n|. By definition,
since both (£,7) and (£,7') belong to vertical cones, we have

(&, )l = max (uw, (z,€), ) = | and [[(€", 7| = max (ur, (', ), In'l) = '
We therefore obtain (&, )| > |a|=|(¢/,7)]], as claimed. O

Remark 3.20. When dealing with vertical cones, it is not really necessary to measure
the horizontal component of vectors with respect to the Poincaré metric. Any bounded
metric in the horizontal direction would work, because we can always choose |a| small
to get the invariance of the vertical cone field and the strong expansion of DH ! in the
vertical cones. The choice of the Poincaré metric is essential however to show expansion
of DH in the horizontal cones.

The scalar 0 < 7 < 1 in the definition of the vertical cone will typically be chosen
less than (p/ 2)2q, so that on a neighborhood of the boundary of B, the vertical cones
Cl) from Definition are contained in the pull-back by D¢, of the vertical cones

from [B.12] defined in the normalized coordinates.

Proposition 3.21 (Horizontal cones). Let (z,y) and (2',y') in V — B” such that
H(z,y) = («',y'). Then we have

h h
DH(I,Z/) (C(Ly)) C I’flt C(m/’y/)

and || DH (&, m)[| = Kl for (&,m) €CL, -

Proof. Let (§,7n) € C(hm y) With (&,m) # (0,0) and let (¢',1') = DH(y,(§,n). We first
need to show that (¢',n') € Int C&/7y,). Since DH , (&, 1) = (22§ + an,af), we find

& =2x&+an and i’ = a€. The vector (£,7n) belongs to the horizontal cone at (z,y), so
Il < pw, (z,8) = pu, (z)[€] < mal¢]. (51)
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Using (2/,y/) = (pe(z) + a®w + ay, ax) we evaluate

po (@', €) = pu, (pe() + a*w + ay) [22€ + an]. (52)
Since py, is C°°-smooth, its derivative pp, is also bounded on U’ — D,r(cy). There

exists a constant ¢ > 0 (which just a local variable) such that

lpu, (pe(2) + a?w + ay) — pu, (pe(2))]
|a|

pu(pe())
inf PU,

< c-py, (pe()) . (53)

The polynomial p; is expanding with respect to the Poincaré metric pp,. As in Lemma

part (a), there exists x; > 1 with [i%f(s | k¢ > 1 such that
tG — /7 !

pu. (pe(2)) i (2)8] > ke - pu, (@)IE], (54)

whenever z, p;(z) € U/ =D, (a;). We now turn back to relation (52)). Using (53), (54),
and one gets

po(a',€) > (1= clal) - pu, (pi(x)) 28] -

IN

law + y| - sup py,

|2z€ + an
|2z

> (1-clal) - & pu,(2)[€] - (1 = lel \2L77||\§|)

> we-(1— cla))- (1 - |a|’ff> (@) (55)

The constant k; is bigger than 1 for all ¢ € [—¢’,40’]. We write the dependence on ¢ to
preserve notations from Lemma @, but we could drop the dependence on ¢t by working

with [irgf . # which is also strictly bigger than 1. The factors 1 — cla| and 1 — [a| 72
te[—o',0"

are independent of ¢, and they can be made arbitrarily close to 1 by reducing |a|. In
conclusion, for |a| sufficiently small we can assume that

k.= te[i_%f,y] k- (1 —cla]) - (1 — ]a\?) > 1. (56)
From relation , we obtain
o (2',6) > k- pu, (2)I€] = k - po, (2, €),
which shows that DH expands in the horizontal cones. Also from we infer that
la| - pu, (27, €) > k- pu, (2)|ag] > k-mq - 7],

which proves that DH (z,y) (C(hx y)) C Int C(hz, y)r S5O the horizontal cones are invariant. [J

On the set V — B” we have one family of horizontal /vertical cones, C?x ,) and CZ’x Y

defined in On Wy we have another family of horizontal /vertical cones
— h — v
Dﬁba,ﬂ%,t(x,y) (C%,t(m,y)) and Dqﬁa,ﬂ%,t(ﬂfay) (C¢a,t(9&,y))

defined in with respect to the Euclidean metric in the normalized coordinates given
by ¢q,:. For those points (z,y) € W5 where both types of cones are defined, we take
the horizontal /vertical cone to be their intersection.
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3.6. Combining infinitesimal metrics. On the neighborhood V' defined in we
have given two infinitesimal metrics. On the set V — B”, where B” C B was defined in
Remark we put the product of the Poincaré metric py, with the Euclidean metric
on D,,

NP((xay)v(gvn)) = maX(IU’Ut(x7€)7|77D7 (57)

where (z,y) € V — B" and (§,n) € T,V — B".
In the repelling sectors W of the tubular neighborhood B of the local strong stable
manifold of the hyperbolic/semi-parabolic/attractive fixed point (see Definition ,

we have the pull-back Euclidean metric from the normalizing coordinates ¢, : W5 —
W= cD, xD,. Let

(@), (€. m)) = max (1€],17])

where (5,77) = D¢avt‘(xy (&,m) and ¢qs : B — D, x D, is the change of coordinate

function from Theorem
Just like in the polynomial case, we can define an infinitesimal pseudo-norm on V,

p = inf (Mpp, pp), (58)

where M is a positive real number, chosen so that the derivative of the Hénon map is
still expanding in the horizontal cones when we map from the repelling sectors W, of
B’ (see Definition (44))) into the repelling sectors W of B. We take M so that

2p,p ((377 y)a (ga 77))
M > sup :
ayewy, 18 (H(w), DHey ()
(&mecy, ,,—{(0,0)}

The supremum from Equation is bounded, because pup((z,y), (§,1)) = pu, (z,§) for
(z,y) e Wg, (§&,n) € C& Y and the Poincaré metric on B’ is bounded.

Let (x,y) be any point in V. Let (§,7), (¢',7') be any vectors from the two dimensional
tangent space T, V.

Notice that p is homogeneous that is, u((z,y),@(§,n)) = |a|u((z,y), (§,n)), for all
complex numbers «, as both up and up are homogeneous metrics. It also satisfies the
relation p((z,y), (§,m)) > 0, with equality if and only if (§,7) = (0,0). However, u does
not necessarily satisfy the triangle inequality u((z,y), (E+&,n+1") < u((z,y), (&,n))+
w((z,y),(&',n')). Nonetheless, u induces a regular path metric on horizontal curves
between points in V' (see Definitions and @D) by integration. If g : [0,1] — V is a
horizontal rectifiable path g(s) = (g1(s),y), then its length with respect to p is given
by the formula ¢,,(g) = fol w(g(s),(gi(s),0))ds. The distance between two points (x,y)
and (2/,y) from V with respect to the induced metric u is

dy ((z,y), (2',y)) = inf £, (g), (60)

where the infimum is taken after all horizontal rectifiable paths ¢ : [0,1] — V with
pra(9) =y, 9(0) = (z,y) and g(1) = (', y).

Another way to combine the two metrics is by defining a true product metric, where
the second coordinate is measured with respect with the Euclidean metric, and the first
coordinate is an infimum of two metrics. Choose (z,y) € U/ x D, N W5 and nonzero

(59)
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(€,n) € Tiay)U, x D N Wy as before. Using Remark ([24), let (E, 0) = D%,t‘( (£,0)

and define

z,y)

o). (€)= mave (i (). MIE ) o)

The constant M is greater than sup <2MUt (x,€) /|£~1]), where (§1,m) = DH g (€, 1)

h
(z,y)

If we let o = (1, 62), then & = dpdi(z,9)6. Also py,(,€) = pu, (x)€, where
pu, is the density function of the Poincaré metric of U;. In conclusion, if we define
m(z,y) := inf(py, (x), M|0zh1(2,y)|) we get

1 ((2,9), (€m)) = max (m(z, y)[¢], Inl) -

With this definition it is easy to see that the triangle inequality is satisfied and p' is
an infinitesimal metric, i.e. a norm. Notice also that p and y’ coincide when restricted
to horizontal curves, and they induce the same horizontal path metric.

Lemma 3.22. Let t € [—0',8'] and |a| < 0. Let k be chosen as in Proposition and
the constant €3 as in Lemma . There exists a constant ky > min(1 + eglt|, k) > 1,
independent of a, such that

(ot (@,9)s DHaa| ) (€m)) > ki (@,9), (6m)) (61)

for any (z,y) € V and any nonzero tangent vector (§,n) in the horizontal cone at (x,y).
Ift =0 and |a| < 9§, there exists ko(x,y) > 1 such that

M (Ha,t(‘rv y)a DHa,t|(x7y)(§7n)) > kO(x7y) Y ((.I,y), (57 77)) 9 (62)

and ko(x,y) goes to 1 precisely when (x,y) tends to the local stable manifold W% (qa.0)
of the semi-parabolic fized point.
Moreover, the inequalities and hold true for u' instead of .

and the supremum is taken after all (x,y) € W, and nonzero vectors (§,7n) € C

Proof. The proof is identical to the proof of Lemma We use the estimates in
the horizontal cones from Propositions and The choice of the constant M in
Definition |59 is useful when dealing with the analogue of case (d)(i), from Lemma
The case t = 0 is given by [RT, Theorem 8.7]. O

A larger region of hyperbolicity. The following theorem is a classical result on
dominated splitting.

Theorem 3.23 ([KH]). A compact f-invariant set A is hyperbolic if there exists By <
1 < By such that for every x € A there is a decomposition T,M = S, ® T, a family of
horizontal cones Ct > S, and a family of vertical cones C2 O T, associated with that
decomposition such that

IDfo €ll = Bulgll for & € Cl and | Df; €Nl = By €Il for € € C3.
We now have all the ingredients to prove the hyperbolicity part of Theorem
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Theorem 3.24 (Hyperbolicity). There exist §,8' > 0 such that in the parametric
TEGLON

HRs5 = {(c,a) €Py, : 0<|a| <6 and =8 <t< ¢, t#0}

the Julia set J., is connected and the Hénon map H., is hyperbolic.

Proof. In Section [3.5] we built a family of horizontal and vertical cones, invariant
under DH, respectively under DH !, such that DH expands with a factor of 51 > 1
inside the horizontal cones, and DH ! expands with a factor of 1/8y > 1 inside the
vertical cones. The expansion is measured with respect to the metric y' from Lemma
The proof follows from Propositions [3.13] [3.14] [3.19] and [3.21] and Lemma by
taking Sy = max(|al, [Vat| +3/2Na) < 1 and B = k¢ > 1 for t # 0. The constant k; is
given in Lemma We then apply Theorem for the set A := V, which includes
JTND, x D,, by Lemma The set V' was constructed in Section

The fact that this hyperbolic region is inside a component of the connectedness locus

follows from Corollary [3.31.1 U

It is worth mentioning that J = J* (the closure of the saddle periodic points) through-
out the parametric region defined by (¢,a) € Py,, 0 < |a] < § and —¢' < t < ¢’. This
follows from Theorem and [BS1] for ¢ # 0 and [RT) for ¢ = 0.

Period doubling. Let P?] be the set of parameters (c,a) € C? for which the Hénon
map H., has a cycle of period 2" with one multiplier A\ = —1. Theorem can
be generalized to show that there are regions of hyperbolicity to the left and to the
right of the real curve P2 NR? (see Figure . Moreover, for each n, there is a region

of hyperbolicity connecting P%] N R? to PET;H N R? of “vertical” size (the size of the
parameter a) d, > 0. Presumably d,, — 0 as we approach the Feigenbaum parameter.

3.7. The function space F. We will do the same construction as in Section Let
R be fixed as in Equation (@ Recall that

Yo : St = U, vo(s) =0y, <R1/262ﬂ'is>

is the equipotential of p; that defines the outer boundary of the neighborhood U/ con-
structed in Section Define fy:S! x D, = V as

f0(57 Z) = (’7&0(5)7 Z)'
The image of fy is thus a solid torus contained in the escaping set U™ that represents
the outer boundary of the set V.

Definition 3.25. Consider the space of functions:

Fat = {fn :S'xD, > V: fo(s,2) = (v,0(5),2), fn(s,2) = Far 0 fa_1(s,z) for n > 1},

where the graph transform Fp,; @ Fup — Fuy is defined as F((f) = f, where the map

f is continuous with respect to s, holomorphic with respect to z, and f ‘stD)T is the

reparametrization f(s, z) = (ps(z), z) of one of the two vertical-like disk components of
Hi (f2sxDp)NV

as a graph of a function over the second coordinate, via the Inverse Function Theorem.
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Remark 3.26. The maps f, are essentially reparametrizations of the backward iterates
of fo (inside V') under the Hénon map. The picture to keep in mind is the following:
The image of the map f, € F,+, n > 0, is a solid torus 7}, contained in the escaping set
U*. In the s-coordinate, the Hénon map behaves like angle doubling, whereas in the
vertical z-coordinate, it behaves like a strong contraction. Therefore, the Hénon map
maps Tp+1 to another solid torus, wrapped around two times inside 7,.

We say that a complex disk is vertical-like if any tangent vector to it belongs to the
vertical cones and [3.12]if both of them are defined, or to the one that is defined. The
invariance of vertical cones (Propositions and and the fact that the Hénon
map has degree 2 imply that the preimage of a vertical-like complex disk contained
in the set V N U™ consists of two vertical-like complex disks. Assume by induction
on n > 0, that we have f,(s,2) = (¢2(z),2), where f, is injective, continuous with
respect to s and holomorphic with respect to z, and for any s € S!, L = f,(2s x D,)
is a vertical-like disk in the escaping set U". Let us show how to construct f,1. The
projection A of L on the first coordinate is almost constant and bounded away from 0,
the critical point of pt, so the preimage H,_ (L) NV is a disjoint union of two vertical-
like disks that we would like to first label as s and s 4+ 1/2 and then parametrize as
graphs over the second coordinate. As in the polynomial case, there are exactly two
possible choices of labelings that would make the function f,, 11 continuous with respect
to s € S'. There are two holomorphic branches of the backward iterate of the polynomial
pt defined on A. Let now (¢5,(2), z) be any point of L such that Ha_g(gogs(z),z) eV.
In particular, by analyzing the second coordinate of H,_ HeB.(2),2), we see that the
condition |(¢5(2) — p(z/a) — a*w)/a| < r must be satisfied, which means exactly that
the first coordinate z/a is O(a) close to one of the two preimages of ¢ (z) under the
polynomial p;. The curves fr,11(sxD;) and f,4+1((s+1/2) xD,) correspond to different
choices of the branch of p; ! (see also Section Equation . The Inverse Function
Theorem can be used to write the two vertical-like disks as graphs of functions over
the second coordinate. Thus f,11(s,2) = (¢?*1(2),2) where 7! is a holomorphic
function, continuous with respect to s. The map f,+1 is injective.

Remark 3.27. This procedure can be used to define external rays for the Hénon map.
External rays are very useful tools, because they give combinatorial models for the Julia
set. In [BS6] and [BS7] it was shown that external rays for polynomial diffeomorphisms
of C? can be defined when J is connected. A priori we do not know that our family
has connected J, but this will be shown to be true as a result of our construction, in
Corollary The construction of the space F and of the operator F for ¢t = 0 is
given in [RT) Section 11] and is identical for ¢ real and small.

On the set V' we use the modified metric d,, from Definition On the function
space JF,; we consider the metric

d(f,g) = sup sup dy, (f(s,2), 9(s,2)), (63)
seS zeh,
where d, (f(s, 2), g(s, z)) is defined in as the infimum of the length of horizontal
rectifiable paths v : [0,1] — V with v(0) = f(s,z) and v(1) = g(s, z). The length is
measured with respect to the metric u.
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Theorem 3.28. Suppose that t € [—0',0'] and |a| < 6. If t # 0, then the operator
Foi @ Fair — Fay 15 a strong contraction, i.e. there exists a constant K; > 1, which
depends on t, such that

d(Far(f). Faslg)) < ; d(f,g), for any f.g € Far.

Proof. We can use the expanding properties of the infinitesimal pseudo metric
constructed in to show that the operator Fy; contracts distances between vertical-
like disks with respect to the induced metric d,,. We show that there exists K; > 1 such
that
1
d (Fa,t © f(S X ]D)r)a Fa,t © 9(5 X Dr‘)) < fd (f(28 X Dr)ag(25 X Dr)) ) (64)
¢
for all f,g € For and s € SL.
We first discuss the strategy in the semi-parabolic case ¢ = 0, which is harder and
treated in [RT]. When ¢ = 0 we showed a similar inequality in [RT], Proposition 11.9]:
for f,g € Fao and s € S! there exists a constant 0 < C(f, g,s) < 1 such that

d(Fapo f(sxDy),Faoog(sxDy)) <C(f,g,8)d(f(2s xD,),g(2s x Dy)).

The contraction factor C(f, g, s) depends only on the distance from the fibers f(2sxD;,),
9(2s x D) to W2 (qq,0) and goes to 1 precisely when these fibers approach W;? (qq,),
the local stable manifold of the semi-parabolic fixed point qq .

We briefly explain how the factor C(f,g,s) is obtained when t = 0. When the
disks f(2s x D), g(2s x D) are close to W;’*(qq,0), they become almost vertical (the
vertical cones have angle opening of ~ |x|??, where |z| measures the distance to the
stable manifold W% (qq,0) and is close to 0). Meanwhile, by [RT) Proposition 6.8], the
expansion factor of the derivative of the Hénon map in the horizontal direction is at
least (14 $[x|?) > 1. By using the fact that |z|? dominates |2|*? when |z| is small, we
showed in [RT) Theorem 10.2] that the factor C(f,g,s) is strictly smaller than 1 and
goes to 1 precisely when x — 0. When the disks f(2s x D,.), g(2s x D,.) do not belong
to a small neighborhood of W}*?(qq4,0) we proved in [RT), Proposition 11.9] that in fact
we have a strong contraction factor C(f,g,s) < 1/(k+ O(|a|)) < 1. The constant k > 1
is defined in Equation .

We now return to the proof of inequality . When t # 0, the same proof as outlined
above works, but the computations are greatly simplified, because the expansion factor
from Lemma is at least min (1 + e2|t|, k), hence strictly greater than 1.

In a small neighborhood of W}**(qqa,), the disks f(2s x D), g(2s x ;) are almost
vertical. Indeed, by Definition [3.12] and the invariance of vertical cones from Proposi-
tion [3.13} the vertical cones in the repelling sectors W5 have a narrow angle opening
~ |z|*? when z is close to 0. By Proposition and Lemma the derivative DH, ;
expands horizontally by a factor of (1 + e|t]) (1+ [x|?), so the operator F,; con-
tracts the distance between vertical-like disks by a factor of (1 + e|t|)C(f,g,s). Away
from the local stable manifold W;%’(qq,), we have the same strong contraction factor

1/(k+ O(lal)) as in the case t = 0. Let K; be min (1 + e2|t|, k + O(|a|)). In conclusion,
when t # 0, we have a strong contraction factor 1/Kj, strictly less than 1. O
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As in the polynomial case, we can reduce the hyperbolic case t € [—d’,0'] to the
semi-parabolic case by considering

h:[0,00) = [0,00), h(s):= sup hy(s),
te[—d’,0']

where
hi(s) := sup sup {d(FM o f(0xDy),Farog(@xDy)) : f,g€ Forand 0 € St
la|<é

and d (f(20 x D), g(20 xD,)) < s}.

By definition, for each ¢, the function h; : [0,00) — [0, 00) is increasing and satisfies

d(Fa,t(f)aFa,t(g)) < hy (d(fa g)) , for any f:g € ]:a,t-

By Theoremwe know that for ¢ # 0, ht(s) < K%s < sforall s >0. Whent =0, we
know a bit more: by [RT), Theorem 11.10], ho(s+) < s for all s > 0. We can therefore
apply Lemma and conclude that the function h™ : s — h(s+) is a Browder function
that works for all ¢t € [—¢’, ¢']. This proves that the construction can be done uniformly
with respect to t and a. Uniformity with respect to |a| < § was already shown in the
semi-parabolic case t = 0 [RT]. Now Browder’s Theorem proves the existence of a
unique fixed point fy; : St x D, — V of the operator F,;. We summarize below some
basic properties of the fixed point f;;, which are direct consequences of our construction.

Proposition 3.29. The operator Fy has a unique fived point fq; S! x D, — J;t nv,
fai(s,2) = (¢r,s(2),2). The map fy, is surjective, continuous with respect to t and s,
and holomorphic with respect to a and z.

3.8. Stability and continuity of J and J*. The Julia sets J and J* depend lower-
semicontinuously on the parameters, and discontinuities can occur at a parameter for
which the Hénon map has a semi-parabolic fixed point [BSU]. In Theoremwe prove
that in our family of complex Hénon maps H,; the sets J and J* depend continuously
on the parameters as t — 0.

We begin by analyzing the properties of the fixed point f;, in more detail. The
analysis is similar to [RT), Section 12], but the role of the parameter ¢ is different. By
Proposition fai(s,2) = (¢1,s(2),2), where ¢;5(2) is continuous with respect to
s € S' and analytic with respect to z € I,. The map ¢t,s depends analytically on
the parameter a as well, but we choose to disregard this to simplify notations. We will
point out the dependency on a when needed. For each ¢, let o, : St x D, — St x D,
be defined by

Tat(8,2) = (25,ap1(2)) . (65)
By Proposition below, for sufficiently small |t| and |a| # 0, the map o4 is well-
defined, open, and injective.
As in [RT), Lemma 12.2], for each ¢, the map ¢; s has the following expansion

0rs(2) = e(s) — %ﬁs) + aQBt(s, z,a), (66)

where 73 : St — J,, is the Carathéodory loop associated to the polynomial p;. Recall
that v; is continuous, surjective, and does not vanish on S' since the critical point of
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the polynomial p; does not belong to the Julia set J,,. The tail (s, z,a) is bounded
with respect to a and t.

Proposition 3.30. For sufficiently small |t| < ¢’ and 0 < |a| < 0 the map o4y is open
and injective. Moreover aa,t(Sl x D) C St x D)qjy, for some r<r.

Proof. Since the critical point of p; is far away from the Julia set J,,, there exists
€ > 0 such that |y,(s) — vi(s +1/2)| > € for all s € S* and ¢ € [, ']. The expansion
from shows that there exist constants M; > 0 such that ¢ s(2) — v(s)| < |a|M;
for all s € S! and 2z € D,.. The constant M := Supyy <5 M does not depend on ¢. Then
for |a| < 537 the map oy is injective. It is open because locally it is a homeomorphism. [

The following theorem is a direct consequence of our construction so far.

Theorem 3.31. Let A = e2™P/% qnd A\, = (14 t)\. There exists 6,0 > 0 such that

o forall =§' <t < ¢ and
o for all parameters (c,a) € Py, with 0 < |a| < ¢

the diagram commutes:

S x D, -5 JtND, x D,

Ua,tl lHC,{L
St x D, —2% JtND, x D,

Proof. The existence of the fixed point f;; has already been established in the previous
section By construction, we have that H o f; (s x D;) is compactly contained in
fa+(2s x D). Thus we can write

Ho fri(s,2) = (pi(ers(2) + a’w + az, ap; 4(2))
= (pras(aprs(2)),aprs(z)) = f;,t 0 0a(s,2).
The last equality follows from the fact that
far00at(s,2) = fu,(25,ap15(2)) = (pr2s(aprs(2)), aprs(2)) -

Therefore f;, semiconjugates H on J TNV to o4t on S! x D,, as claimed. The fact
that Jt NV = Jt ND, x D, follows from Lemma O

Corollary 3.31.1. The Julia set J is connected.

Proof. By Theorem [3.31] and Lemma [3.17] we get

T=fi | (oo (s'xDy) |. (67)

n>0
By Proposition the intersection above is a nested intersection of connected, rela-
tively compact sets, hence connected. Then J is connected, since fj, is continuous. See
Figure |§| for parameter space pictures of the connectivity region. ]
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The Hénon map H,; has a fixed point q,; with eigenvalues \; and v;. The product
of the eigenvalues equals the Jacobian of the map, so |\¢||v¢| = |a|>. We write T )
and J(J/r\“ut) to denote the dependency of the Julia sets J and JT on the eigenvalues,
rather than on the parameters a and t.

Theorem 3.32 (Continuity). There exists 6 > 0 such that if |1¢| < 6 and vy — v as
t — 0, then the Julia sets J and J depend continuously on the parameters, i.e.

J(—;hyt) — J(—i)_\,u) and J()m,/t) — J()\7,/)

in the Hausdorff topology.

Proof. By Theorem Lemma [3.17], and Proposition |3.29| we know that

J(jt,w) NDy x D, = fi, (S' x D) (68)
and f;, is continuous with respect to ¢ and holomorphic in a. Therefore
+ +
J(/\t%) NnD, x D, — J(A,v) ND, x D,

in the Hausdorff topology, as t — 0. Let H = H,, ,,) be the Hénon map corresponding

to a pair of eigenvalues (A, ;). Clearly H~! is continuous with respect to t. Let n be
a positive integer. Taking H ~°" in Equation gives

Hon (J&M) D, x ID)T) = H™rfr (St x D),
which converge in the Hausdorff topology, as t — 0. We have accounted for all of JT,
because globally the set J* is |J,,5o H*"(J* N Dy x D).

The Julia set Jy, ,,) can be written as in Equation (67). The maps f;; and o, are

continuous in a and ¢, so J(y,,,,) converges to J(, ,) in the Hausdorff topology. U

Remark 3.33. We have established a continuity result for real values of ¢, but the
situation is much more general, similar to the one-dimensional case. If ¢ is real, then the
local attractive/repelling sectors from Section [3.2/are “straight”, as in the semi-parabolic
case t = 0. If we allow ¢ to be complex, then we need to adapt the computations from
Sections [3.2] and [3.5] to construct “spiralling petals” for the Hénon map.

*

Suppose t is fixed. For each s € S, ot(sxD;) is a vertical-like holomorphic disk. Any
two such disks corresponding to distinct angles s; and so are either disjoint or coincide
(since they were obtained as a uniform limit of disjoint holomorphic disks f,,(s1 x D,)
and f,(s2 x D,.)). In the latter case, their parametrizing maps coincide, i.e.

f;,t(slv Z) = (@81 (Z)’ Z) = (3082 (Z)’ Z) = f;,t(SQ’ Z)
for all z € I;. The fixed point f;, is holomorphic with respect to a, so we can determine

the equivalence classes of f;; by letting a — 0. When a = 0, we have J NV =J, xD,
so all the identifications are given by the polynomial p;. An application of Hurwitz’s
theorem (see [RT) Propositions 12.4-12.6]) gives

fai(81,21) = fq (52, 22) if and only if y4(s1) = i (s2) and 21 = 2o.
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Definition 3.34. We define an equivalence relation ~ on S' x D, as follows:
(s1,2) ~ (s2,2) whenever y(s1) = v(s2).

We obtain ¢ s, (2) = @r.s,(2) i v(s1) = w(s2). By Equation this also gives
Bi(s1, z,a,t) = Pi(s2, z,a,t) whenever v,(s1) = Y(s2). The relation ~ is clearly closed.
Moreover, since all polynomials p; have the same Thurston lamination for ¢ € [0, ")
hence the same combinatorial model (see [Th]), the equivalence relation ~ does not
depend on ¢ when ¢ € [0,¢"). Thus, in 1-D, the polynomial p; acting on J, is conjugate
to the parabolic polynomial py on J,,, for all t € [0,¢"). Note that this is not true
for all ¢t € (—¢",0"). For example, if A = —1, the Julia set of p;_; is a quasi-circle
and the associated Thurston lamination is empty. However, the Julia set of pii; is
homeomorphic to the Julia set of z ++ 22 —3/4 (the “fat Basilica”) and the corresponding
lamination is non-empty. The same situation is true in 2-D as we will show below.

Theorem 3.35 (Stability). The family of complex Hénon maps Py, 3 (¢,a) — Hc,
is a structurally stable family on J and J* for 0 < |a| <& and 0 <t < §'.

Proof. In view of Equation , the map o, : S! x D, — S! x D, has the form

G2Z

=2 ———+0(a%) ). 69
ails,2) = (2n.0(s) = 5+ 0 ) (©9)
By Theorem the map H,; on J;t N, x D, is semiconjugate to o, on St x D
For 0 < |a|] < 0 and t € [0,¢") small enough, the maps o, are conjugate to each other.
The proof of this fact is the same as that of [RT), Lemmas 12.7, 12.8] stated below.
Lemma 3.36 ([RT]). Suppose 0 < |a| < § andt = 0.

a) The map 0,0 : S'xD, — St xD; is conjugate to the map cr;,O :StxD, — S'xD,,
2
defined by a;, o(s,2) = (25,0/)/0(3) — 2 ZS)).

270
b) The maps 02’0 are conjugate to 02,0 for some € > 0 independent of a.

It is important to note that in each fiber {s} x D, the image of o, consists of two
disjoint disks. This follows from Proposition as Y¢(s) and (s + 1/2) are at least
e-apart, for some € > 0 independent of a and ¢.

Suppose 0 < |a| < ¢ and t € [0,0'). The equivalence classes of f;, are exactly
the ones given by the equivalence relation ~, in the sense that (s1,z) ~ (so,z) iff
fai(s1,2) = fi4(s2,2). Moreover, by Definition and the discussion following it, if
(51,2) ~ (s2,2) then o44(s1,2) ~ 04(51,2). Hence, f;, and o4 are well defined on the
quotient S* x D,/ and fi,: S' x D,/ — J(it ND, x D, is bijective. The equivalence
relation does not depend on ¢ or a. We get that (Hgy, Jit N D, x D,) is conjugate to
(0at,S' x D,-/), which are conjugate to each other and to (0270,81 x D,/~), for all
0 < |a| <é and t € [0,d). Stability on J and J* follows from these observations. [

Using the same arguments as in the previous theorem, we also have that the family
P, D (c,a) = Hcq is a structurally stable family on J and J* for 0 < |a| < § and
t € (—=4’,0). However, this is not so surprising: by Theorem this family of maps is
hyperbolic and has connected Julia set J, so the family belongs to the same hyperbolic
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component of the Hénon connectedness locus. As in the polynomial case presented
earlier, stability does not hold for all parameters ¢t € (—§, ).

Using the equivalence relation from Definition [3.34) we can identify the quotient space
S x D,/ with Jp, x D, and the map oq : S x D, — S' x D, defined in Equation
with a similar map ¥ : Jp, X D — Jp, x D, of the form

CL2Z

nel6.2) = (mlOhag = 57 + 0. (70)
The following theorem is a direct consequence of the construction above and provides
concrete model maps for the Hénon family. The corollaries following the theorem are

immediate consequences.
Theorem 3.37. Let A = ¢*™P/% and N\ = (1 + t)\. Suppose pi(x) = 22 + ¢ is a
polynomial with a fized point of multiplier \;. There exists 6,0' > 0 such that
e forallte (—0',9) and
o for all parameters (c,a) € Py, with 0 < |a| < ¢
there exists a homeomorphism ®q @ Jp, X D — JTND, x D, which makes the diagram

b,
Jp x D —2 Jt D, x D,

th{ J/Hc,a

Ty x Dy —224s gt AD, x D,
commute, where
ez
1/}t(CaZ) = Pt((),EC - TC ) (71)

for some € > 0 independent of a and t.

Proof. Most of the work has already been done. The idea of the proof is the same
as in [RT] Theorem 1.1]. As in [RT] Lemma 12.7] we can construct a homeomorphism
hat @ Jp, x D — Jp, x D, conjugating the map 1, from Equation to the map
¢ from Equation , for some € > 0, independent of a and t. The map ®,; is just
a composition between the homeomorphism h, ¢+ and the map f;; from Theorem [l

Corollary 3.37.1. The Julia set J is homeomorphic to (>0 %" (Jp, X Dr).

Corollary 3.37.2. Passing to the inductive limit we obtain a global model for the Julia
set Jt. The map ®q extends naturally to a homeomorphism ®q which makes the
following diagram

limg(Jy, x Dy, ) —ts J+

M lH

lim(Jy, x Dy, ) —ts T+

commute.
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ka) t=0.25

(e) t = —0.025

Figure 6. Parameter plots inside the curves P(1 )y for A = —1 and several
values of t. In each picture, the large region in the center contains the disk
la] < 0. The black region represents a rough approximation of the set of
parameters (c,a) € P(144)x for which the Julia set J., is connected. Here
the Hénon map is written in the standard form H. ,(z,y) = (2% +c—ay, z).
The pictures were generated using FractalStream.
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