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HEDGEHOGS IN HIGHER DIMENSIONS AND THEIR

APPLICATIONS

MIKHAIL LYUBICH, REMUS RADU, AND RALUCA TANASE

Abstract. In this paper we study the dynamics of germs of holomor-
phic diffeomorphisms of (Cn, 0) with a fixed point at the origin with
exactly one neutral eigenvalue. We prove that the map on any local
center manifold of 0 is quasiconformally conjugate to a holomorphic
map and use this to transport results from one complex dimension to
higher dimensions.

1. Introduction

Let f be a holomorphic germ of diffeomorphisms of (C2, 0) with a fixed
point at the origin with eigenvalues λ and µ, where |λ| = 1 and |µ| < 1.
Following the terminology from one-dimensional dynamics, the fixed point
is called semi-neutral or semi-indifferent.

The crude analysis of the local dynamics of the semi-indifferent fixed
point exhibits the existence of an analytic strong stable manifold W ss(0)
corresponding to the dissipative eigenvalue µ and a not necessarily unique
local center manifold W c

loc(0) corresponding to the neutral eigenvalue λ.
The center manifolds can be made Cr-smooth for any r ≥ 1 by possibly
restricting to smaller neighborhoods of the origin [HPS], however they are
generally not analytic, or even C∞-smooth [vS]. In this paper, we show how
to modify the complex structure on the center manifold W c

loc(0) so that the
restriction of the map f to the center manifold becomes analytic.

Theorem A. Let f be a holomorphic germ of diffeomorphisms of (C2, 0)
with a semi-neutral fixed point at the origin with eigenvalues λ and µ, where
|λ| = 1 and |µ| < 1. Consider W c

loc(0) a C1-smooth local center manifold
of the fixed point 0. There exist neighborhoods W,W ′ of the origin inside
W c

loc(0) such that f : W → W ′ is quasiconformally conjugate to a holo-
morphic diffeomorphism h : (Ω, 0) → (Ω′, 0), h(z) = λz + O(z2), where
Ω,Ω′ ⊂ C.

The conjugacy map is holomorphic on the interior of Λ rel W c
loc(0), where

Λ is the set of points that stay in W under all backward iterations of f .

Theorem A generalizes to the case of holomorphic germs of diffeomor-
phisms of (Cn, 0), for n > 2, which have a fixed point at the origin with
exactly one eigenvalue on the unit circle. The details are given in Section 6.
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In dimension one, linearization properties and dynamics of holomorphic
univalent germs of (C, 0) with an indifferent fixed point at the origin have
been extensively studied ([Y1], [Y2], [PM1], [PM2], [PM3], and many more).
Theorem A has important consequences and enables to us to transport re-
sults from one complex variable to C2. In Section 2 we examine the results
of Pérez-Marco about the hedgehog dynamics, and in Section 5 we show
how to extend them to C2 using Theorem A.

Suppose that the neutral eigenvalue λ of the semi-neutral fixed point of
the germ f is λ = e2πiα. If the origin is an isolated fixed point of f and
α ∈ Q, then the fixed point is called semi-parabolic. In the case when
α /∈ Q, the fixed point is called irrational semi-indifferent. We can further
classify irrational semi-indifferent fixed points as semi-Siegel or semi-Cremer,
as follows: if there exists an injective holomorphic map ϕ : D → C2 such
that f(ϕ(ξ)) = ϕ(λξ), for ξ ∈ D, then the fixed point is called semi-Siegel,
otherwise it is called semi-Cremer. Theorem D below motivates the following
equivalent definition: if f is analytically conjugate to (x, y) 7→ (λx, µ(x)y),
where µ(x) = µ + O(x2) is a holomorphic function, then the fixed point is
semi-Siegel; otherwise, the fixed point is semi-Cremer. In particular, when
λ satisfies the Brjuno condition [Brj] and |µ| < 1, the map f is linearizable
(i.e. conjugate by a holomorphic change of variables to its linear part), so
the fixed point is semi-Siegel.

In [FLRT] we have shown the existence of non-trivial compact invariant
sets for germs f with semi-indifferent fixed points, using topological tools. If
f is a germ of holomorphic diffeomorphisms of (C2, 0) with a semi-indifferent
fixed point at the origin, then there exists a domain B containing 0 such that
f is partially hyperbolic on a neighborhood of B. The concept of partial
hyperbolicity is explained in the introductory part of Section 3.

Theorem 1.1 ([FLRT]). Let f be a germ of holomorphic diffeomorphisms
of (C2, 0) with a semi-indifferent fixed point at 0 with eigenvalues λ and µ,
where |λ| = 1 and |µ| < 1. Consider an open ball B ⊂ C2 containing 0 such
that f is partially hyperbolic on a neighborhood B′ of B. There exists a set
H ⊂ B such that:

a) H bW c
loc(0), where W c

loc(0) is any local center manifold of the fixed
point 0, constructed relative to B′.

b) H is compact, connected, completely invariant, and full.
c) 0 ∈ H, H ∩ ∂B 6= ∅.
d) Every point x ∈ H has a well defined local strong stable manifold

W ss
loc(x), consisting of points from B that converge asymptotically

exponentially fast to x, at a rate � µn. The strong stable set of H
is laminated by vertical-like holomorphic disks.

In this paper, the compact set H will be called a hedgehog. We distin-
guish between a parabolic hedgehog, a Siegel hedgehog, or a Cremer hedgehog
(also called non-linearizable hedgehog), depending whether the fixed point is
semi-parabolic, semi-Siegel, or semi-Cremer. In this paper we will explore
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the dynamical properties of hedgehogs. The next two theorems and the
subsequent corollaries deal with Cremer hedgehogs (see Figure 1).

W c
loc(0)

W ss
loc(0)

B

Figure 1. A Cremer hedgehog inside a center manifold.

Theorem B. Let f be a germ of dissipative holomorphic diffeomorphisms
of (C2, 0) with a semi-Cremer fixed point at 0 with an eigenvalue λ = e2πiα.
Let H be a hedgehog for f . Suppose (pn/qn)n≥1 are the convergents of the
continued fraction of α. There exists a subsequence (nk)k≥1 such that the
iterates (f qnk )k≥1 converge uniformly on H to the identity.

Corollary B.1. The dynamics on the hedgehog H is recurrent. The hedge-
hog does not contain other periodic points except 0.

Denote by ω(x) and α(x) the ω-limit, respectively α-limit set of x.

Theorem C. Let B ⊂ C2 be a ball centered at the origin, and let H ⊂ B
be a Cremer hedgehog for f .

a) Let x ∈ B−W ss
loc(H). If the forward iterates fn(x) ∈ B for all n ≥ 0,

then ω(x) ∩H = ∅.
b) Let x ∈ B −H. If the backward iterates f−n(x) ∈ B for all n ≥ 0,

then α(x) ∩H = ∅.

Theorem C immediately implies the following corollary.

Corollary C.1. If x /∈W ss(0) then the orbit of x does not converge to 0.

Let H be a hedgehog for a germ f with a semi-Cremer fixed point and
denote by W s

loc(H) the local stable set of H, consisting of points that con-
verge to the hedgehog. Let W ss

loc(H) be the local strong stable stable of H,
consisting of points which converge asymptotically exponentially fast to the
hedgehog. From Theorem C it follows that

Corollary C.2. W ss
loc(H) = W s

loc(H).
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Clearly, the set H has no interior in C2 since it lives in a center manifold.
Let intc(H) denote the interior of H relative to a center manifold.

Theorem D. Let f be a holomorphic germ of diffeomorphisms of (C2, 0)
with an isolated semi-neutral fixed point at the origin. Let H be a hedgehog
for f . Then 0 ∈ intc(H) if and only if f is analytically conjugate to a linear

cocycle f̃ given by

f̃(x, y) = (λx, µ(x)y),

where µ(x) = µ+O(x) is a holomorphic function.

Corollary D.1. Let f be a dissipative polynomial diffeomorphism of C2

with a semi-neutral fixed point at the origin. Then 0 ∈ intc(H) if and only
if f is linearizable.

For a polynomial automorphism of C2 we define the sets K± of points
that do not escape to ∞ under forward/backward iterations. Denote by J±

the topological boundaries of K± in C2. The set J = J− ∩ J+ is called the
Julia set. We also obtain the following result.

Theorem E. Let f be a dissipative polynomial diffeomorphism of C2 with
an irrationally semi-indifferent fixed point at 0. Suppose f is not linearizable
in a neighborhood of the origin. Let H be a hedgehog for f . Then H ⊂ J
and there are no wandering domains converging to H.

Consider now a holomorphic germ f of (C2, 0), with a semi-parabolic

fixed point at 0 with a neutral eigenvalue λ = e2πip/q. After a holomorphic
change of coordinates, we can assume that f is written in the normal form
f(x, y) = (x1, y1), where{

x1 = λ(x+ xνq+1 + Cx2νq+1 + a2νq+2(y)x2νq+2 + . . .)
y1 = µy + xh(x, y)

We call ν the semi-parabolic multiplicity of the semi-parabolic fixed point.
The existence of holomorphic 1-D repelling petals for f and of Fatou

coordinates on the repelling petals, was established by Ueda [U2]. We can
give a new proof of this result using Theorem A and the Leau-Fatou theory
of parabolic holomorphic germs of (C, 0). Let B ⊂ C2 be a small enough
ball around the origin and define the set

ΣB = {x ∈ B − {0} : f−n(x) ∈ B ∀n ∈ N, f−n(x)→ 0 as n→∞}. (1)

Theorem F. Let f be a germ of dissipative holomorphic diffeomorphisms of
(C2, 0) with a semi-parabolic fixed point at 0 with an eigenvalue λ = e2πip/q.
Suppose the semi-parabolic multiplicity of 0 is ν. The set ΣB from (1)
consists of ν cycles of q repelling petals. Each repelling petal is the image
of an injective holomorphic map ϕ(x) = (x, k(x)) from a left half plane of
C into C2, which satisfies ϕ(x + 1) = f q(ϕ(x)). The inverse of ϕ, denoted
by ϕo : ΣB → C is called an outgoing Fatou coordinate; it satisfies the Abel
equation ϕo(f q) = ϕo + 1.
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2. Holomorphic germs of (C, 0)

In this section we make a brief survey of the results of Pérez-Marco on
holomorphic germs of (C, 0) with a neutral fixed point at the origin. The
following theorem gives the local structure of such germs.

Theorem 2.1 ([PM1]). Let f(z) = λz +O(z2), |λ| = 1 be a local holomor-
phic diffeomorphism, and U a Jordan neighborhood of the indifferent fixed
point 0. Assume that f and f−1 are defined and univalent on a neighborhood
of the closure of U . Then there exists a completely invariant set K ⊂ U ,
compact connected and full, such that 0 ∈ K and K ∩ ∂U 6= ∅.

Moreover, if f◦n 6= id for all n ∈ N then f is linearizable if and only if
0 ∈ int(K).

Pérez-Marco calls the compact set K a Siegel compactum for f . He calls
K a hedgehog when the fixed point is irrationally indifferent, and the set
K is not contained in the closure of a linearization domain. For simplicity,
we refer to the sets K from Theorem 2.1 as hedgehogs and we distinguish
between the various types of hedgehogs as in the introduction.

LetK be a hedgehog for f , as in Theorem 2.1, and λ = e2πiα. Pérez-Marco
associates to each set K an analytic circle diffeomorphism with rotation
number α as follows. We first uniformize C \ K using the Riemann map
ψ : C \ K → C \ D. Let g = ψ ◦ f ◦ ψ−1. The mapping g is defined and
holomorphic in an open annulus {z ∈ C : 1 < |z| < r}. We can extend g
to the annulus {z ∈ C : 1/r < |z| < r} by the Schwarz reflexion principle.
The restriction g|S1 to the unit circle will be a real-analytic diffeomorphism
with rotation number α. Pérez-Marco uses this construction to transport
results of analytic circle diffeomorphisms to results about the dynamics of
holomorphic maps around the indifferent fixed points. This analogy is used
both to construct the hedgehog from Theorem 2.1 and to study the dynamics
on the hedgehog.

We say that a domain U is admissible if it is a C1-Jordan domain such
that f and f−1 are univalent on a neighborhood of the closure of U .

Theorem 2.2 ([PM1], [PM3]). Let U be an admissible neighborhood for a
germ f(z) = λz+O(z2), λ = e2πiα and α /∈ Q. Let L be a connected compact
set, invariant under f or f−1, such that 0 ∈ L ⊂ U and L ∩ ∂U 6= ∅. Then
L = K. Therefore the hedgehog K of f associated to the neighborhood U
is unique and it is equal to the connected component containing 0 of the set
{z ∈ U : fn(z) ∈ U for all n ∈ Z}.

For the rest of the section, suppose that f is a non-linearizable germ
with f(z) = λz + O(z2), λ = e2πiα and α /∈ Q. Consider U an admissible
neighborhood and K a hedgehog associated to f and U . Let (pn/qn)n≥1 be
the convergents of the continued fraction of α. Pérez-Marco shows that even
if f is non-linearizable, the dynamics of f has a lot of features in common
to the irrational rotation.
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Theorem 2.3 ([PM2],[PM3]). There exists a subsequence A ⊂ N such that
the iterates (f qn)n∈A converge uniformly on K to the identity.

Corollary 2.3.1. All points on the hedgehog K are recurrent. The dynamics
on the hedgehog has no periodic point except the fixed point at 0.

Theorem 2.4 ([PM2],[PM3]). Let x ∈ U be a point which does not belong
to K. If the ω-limit (or α-limit) set of x intersects K, then it cannot be
contained in U . Consequently, x cannot converge to a point of K under
iterations of f .

Regarding the topology of the hedgehog, Pérez-Marco [PM3] shows that
non-linearizable hedgehogs have empty interior and are not locally connected
at any point different from 0.

The following two theorems discuss the structure of non-linearizable germs.
Using Theorem A, one can immediately formulate a higher dimensional ana-
logue of the following result:

Theorem 2.5 ([PM4], [PM5]). If
∞∑
n=1

log log qn+1

qn
<∞ (2)

then all non-linearizable germs f(z) = λz+O(z2) have a sequence of periodic
orbits (Ok)k≥0 which tend to 0, of periods qnk

and rotation numbers pnk
/qnk

such that
∞∑
n=1

log qnk+1

qnk

=∞.

Condition (2) is sharp: by [PM5], if the sum in (2) diverges, then there
exists a holomorphic germ f(z) = λz + O(z2) defined and univalent in D
with no other periodic orbits in D, except 0. In fact, every orbit (fn(z))n≥0

remaining in D accumulates 0, i.e. 0 ∈ ω(z).

3. A complex structure on the center manifold

Consider a holomorphic germ f of diffeomorphisms of (C2, 0) with a semi-
indifferent fixed point at 0. Denote by λ and µ the eigenvalues of the de-
rivative df0. Throughout the paper, we make the convention that |λ| = 1
(neutral eigenvalue) and |µ| < 1 (dissipative eigenvalue), and we denote by
Ec0 and Es0 the eigenspaces corresponding to the eigenvalues λ and respec-
tively µ. The map f is partially hyperbolic on a neighborhood B′ ⊂ C2

of the origin. Partial hyperbolicity was introduced in the ’70s by Brin and
Pesin [BP] and Hirsch, Pugh, and Shub [HPS] as a natural extension of the
concept of hyperbolicity. We define partial hyperbolicity below; for a thor-
ough introduction and an overview of the field we refer the reader to [HP],
[CP], and [HHU].

Let E1 and E2 be two continuous distributions (not necessarily invariant
by df) of the complex tangent bundle TB′ such that TxB

′ = E1
x ⊕ E2

x for
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any x ∈ B′. For x = 0, we take E1
0 = Ec0 and E2

0 = Es0. The horizontal cone

Ch,αx is defined as the set of vectors in the tangent space at x that make an
angle less than or equal to α with E1

x, for some α > 0,

Ch,αx = {v ∈ TxB′,∠(v,E1
x) ≤ α},

where the angle of a vector v and a subspace E is simply the angle between v
and its projection prEv on the subspace E. The vertical cone Cv,αx is defined
in the same way, with respect to E2

x. We will suppress the angles α from
the notation of the cones, whenever there is no danger of confusion.

The map f is partially hyperbolic on B′ if there exist two real numbers
µ1 and λ1 such that 0 < |µ| < µ1 < λ1 < 1 and a family of invariant cone

fields Ch/v

dfx(Chx) ⊂ Int Chf(x) ∪ {0}, df−1
f(x)(C

v
f(x)) ⊂ Int Cvx ∪ {0}, (3)

such that for some Riemannian metric we have strong contraction in the
vertical cones, whereas in the horizontal cones we may have contraction or
expansion, but with smaller rates:

λ1 ‖v‖ ≤ ‖dfx(v)‖ ≤ λ−1
1 ‖v‖, for v ∈ Chx (4)

‖Dfx(v)‖ ≤ µ1 ‖v‖, for v ∈ Cvx.
Let B be a domain in C2 containing the origin such that B ⊂ B′ and

f(B) ⊂ B′.

Remark 3.1. Since B is compactly contained in B′, the angle between
dfx(Chx) and ∂Chf(x) is uniformly bounded independently of x. This implies

that there exists 0 < ρ < 1 such that for every x ∈ B, the angle opening of
the cone dfx(Chx) is ρα, a fraction of the angle opening of the cone Chf(x).

The semi-indifferent fixed point has a local center manifoldW c
loc := W c

loc(0)
of class C1, tangent at 0 to the eigenspace Ec0 corresponding to the neu-
tral eigenvalue λ. Throughout the paper, W c

loc will denote the local center
manifold of 0. The local center manifold is the graph of a C1 function
ϕf : Ec0 ∩B′ → Es0 and has the following properties:

a) Local invariance f(W c
loc) ∩B′ ⊂W c

loc.
b) Weak uniqueness: If f−n(x) ∈ B′ for all n ∈ N, then x ∈W c

loc.
c) Shadowing: Given any point x such that fn(x) → 0 as n → ∞,

there exists a positive constant k and a point y ∈ W c
loc such that

‖fn(x) − fn(y)‖ < kµn1 as n → ∞. In other words, every orbit
which converges to the origin can be described as an exponentially
small perturbation of some orbit on the center manifold.

The center manifold is generally not unique. However, the formal Taylor
expansion at the origin is the same for all center manifolds. The center
manifold is unique in some cases, for instance when f is complex linearizable
at the origin. For uniqueness, existence, and regularity properties of center
manifolds, we refer the reader to [HPS], [Sij], [S], and [V].
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It is also worth mentioning the following reduction principle for center
manifolds: the map f is locally topologically semi-conjugate to a function
on the center manifold given by u 7→ λu + f1(u, ϕf (u)). In this article, we
will not make use of the reduction principle, as it only gives a topological
semi-conjugacy to a model map which is as regular as the center manifold,
hence not analytic.

The assumption of partial hyperbolicity implies that any point x with
fn(x) ∈ B for all n ≥ 0 has a well defined local strong stable manifold
W ss

loc(x), defined as

W ss
loc(x) = {y ∈ B : dist(fn(x), fn(y))/µn1 → 0, as n→∞}.

Moreover W ss
loc(x) intersects W c

loc transversely. Let y ∈W ss
loc(x)∩W c

loc. Then
the orbit of y shadows the orbit of x. We can therefore formulate a more
general shadowing property:

Proposition 3.2. Let x ∈ B such that fn(x) ∈ B for every n ≥ 1. There
exists k > 0 and y ∈W c

loc such that ‖fn(x)− fn(y)‖ < kµn1 as n→∞.

An old question posed by Dulac and Fatou is whether there exists orbits
converging to an irrationally indifferent fixed point of a holomorphic map.
Using the dynamics on the hedgehogs, renormalization theory and Yoccoz
estimates for analytic circle diffeomorphisms, Pérez-Marco showed that the
answer to this question is negative, see Theorem 2.4. It is a natural question
to ask whether there exist orbits converging to a semi-Cremer fixed point of
a holomorphic germ of (C2, 0). Also, Pérez-Marco has constructed examples
of hedgehogs in which the origin is accumulated by periodic orbits of high
periods, see Theorem 2.5.

In the two-dimensional setting, the problem of the existence of periodic
orbits of f accumulating the origin or the existence of orbits converging to
zero can naturally be reduced to posing the same question for the restriction
of the map f to the local center manifold(s). Let us explain this reduction
further.

If the semi-indifferent fixed point is accumulated by periodic orbits of high
period, then these periodic points necessarily live in the intersection of all
center manifolds W c

loc(0), by the weak uniqueness property of local center
manifolds. Since we work with dissipative maps, there will always be points
that converge to 0 under forward iterations, corresponding to the strong
stable manifold of 0. If there exists some other point x, whose forward orbit
converges to 0, then the orbit of x must be shadowed by the orbit of a point
y that converges to 0 on the center manifold. Therefore, in order to answer
the questions about the dynamics of the two-dimensional germ around 0,
we should first study the dynamics of the function restricted to the center
manifolds.

The main obstruction for extending the results of Pérez-Marco directly
to our setting is the fact that the center manifolds are not analytic. It is
well-known (see e.g. [GH], [vS]) that there exist C∞-smooth germs which
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do not have any C∞-smooth center manifolds. For every finite k one can
find a neighborhood Bk of the origin for which there exists a Ck-smooth
center manifold relative to Bk, however the sets Bk shrink to 0 as k →∞.

A first useful observation in this context is that some analytic structure
still exists in some parts of the center manifold. Let

Λ = {z ∈ B : f−n(z) ∈ B, for all n ≥ 0} (5)

be the set of points that never leave B under backward iterations. As a
consequence of Theorem 1.1, we know that the set Λ is not trivial, i.e.
Λ 6= {0}. By the weak uniqueness property of center manifolds, Λ is a
subset of W c

loc. Also, f−1(Λ) ⊂ Λ, by definition.

Proposition 3.3. Let W c
loc be any local center manifold relative to B′. The

tangent space TxW
c
loc at any point x ∈ Λ is a complex line Ecx of TxC2. The

line field over Λ is df -invariant, in the sense that dfx(Ecx) = Ecf(x) for every

point x ∈ Λ with f(x) ∈ Λ.

Proof. Let x ∈ Λ. All iterates f−n(x), n ≥ 0 remain in the domain B,
where we have an invariant family of horizontal cones Ch preserved by df .
The derivative acts on tangent vectors as a vertical contraction by a factor
µ1, close to µ. Let

Ecx =
⋂
n≥0

dfnf−n(x)C
h
f−n(x).

This is a decreasing intersection of nontrivial compact subsets in the pro-
jective space, hence Ecx is a non-trivial complex subspace of TxC2. Thus Ecx
is a complex line included in Chx . The invariance of the line bundle (Ecx)x∈Λ

under df follows from the definition.
Any local center manifold W c

loc defined relative to B′ contains the set Λ
and the tangent space TxW

c
loc at any point x ∈ Λ is equal to Ecx, thus it is

a complex line in the tangent bundle TC2. �

Proposition 3.3 means in particular that for every point x ∈ Λ, the tan-
gent space Tx(W c

loc) is J-invariant, where J is the standard almost complex
structure obtained from the usual identification of R4 with C2. Recall that
an almost complex structure on a smooth even dimensional manifold M is
a complex structure on its tangent bundle TM , or equivalently a smooth
R-linear bundle map J : TM → TM with J ◦ J = −Id.

The center manifold W c
loc is a real 2-dimensional submanifold of C2. The

standard Hermitian metric of the complex manifold C2 defines a Riemann-
ian metric on the underlying smooth manifold R4, which restricts to a Rie-
mannian metric on the center manifold W c

loc. Recall that in Cn, the stan-
dard Hermitian inner product decomposes into its real and imaginary parts:
〈u, v〉H = 〈u, v〉 − iw(u, v), where 〈u, v〉 is the Euclidean scalar product and
w(u, v) is the standard symplectic form of R2n. From now on, whenever
we refer to the Riemannian metric we understand the metric defined by the
Euclidean scalar product.
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Every Riemannian metric on an oriented 2-dimensional manifold induces
an almost complex structure given by the rotation by 90◦, i.e. by defining

J ′x : TxW
c
loc → TxW

c
loc, as J ′x(v) = v⊥,

where v⊥ is the unique vector orthogonal to v, of norm equal to ‖v‖, such
that the choice is orientation preserving. Every almost complex structure on
a 2-dimensional manifold is integrable, that is, it arises from an underlying
complex structure. Namely, there exists a (J ′, i)-holomorphic parametriza-
tion function φ : ∆→W c

loc where ∆ is an open subset in C and i is the stan-
dard complex structure in C given by multiplication by the complex number
i. By (J ′, i)-holomorphic map, we understand a C1-smooth map with the
property that its derivative dφz : Tz∆ → Tφ(z)W

c
loc is complex linear, that

is dφz ◦ iz = J ′φ(z) ◦ dφz. A good introduction on almost complex structures

and J-holomorphic curves can be found in [Voi] and [MS]. Note that the
parametrizing map φ that we have constructed is only (J ′, i)-holomorphic,
but not necessarily (J, i)-holomorphic, as W c

loc is not in general an embedded
complex submanifold of C2. Note also that the almost complex structure
induced by J ′ on W c

loc agrees with the standard almost complex structure J
from C2 on the set Λ, so Jx = J ′x for all x ∈ Λ.

Let W := B ∩W c
loc and U := φ−1(W ) ⊂ ∆. The set W ′ = f(W ) belongs

toW c
loc, by the local invariance of the center manifold. The map f : W →W ′

is an orientation-preserving C1 diffeomorphism.
Let g = φ ◦ f ◦ φ−1 : U → U ′ = g(U) be the orientation-preserving

C1-diffeomorphism induced by f on U .

W
f−−−−→ W ′

φ

x xφ
U

g−−−−→ U ′

Denote by X := φ−1(Λ), or equivalently

X = {z ∈ U : g−n(z) ∈ U, for all n ≥ 0}, (6)

the set of points that stay in U under all backward iterations by g.
The map f is holomorphic on C2, so it is (J, J)-holomorphic on Λ, which

means that ∂̄Jf = 0 for ξ ∈ Λ, where

∂̄Jf :=
1

2
(dfξ + Jf(ξ) ◦ dfξ ◦ Jξ). (7)

The conjugacy function φ is (J, i)-holomorphic on Λ. In the holomorphic
coordinates provided by φ, this means that g is (i, i)-holomorphic on X, or
equivalently ∂̄ig = 0, where

∂̄ig :=
1

2
(dgz + ig(z) ◦ dgz ◦ iz), (8)

and z = φ−1(ξ).
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It is easy to check that with the standard identifications z = x + iy,
g(x, y) = g1(x, y) + ig2(x, y), and

iz (∂x) = ∂y, iz (∂y) = −∂x, (9)

the relation ∂̄ig = 0 is equivalent to the familiar Cauchy-Riemann equations

∂xg1 − ∂yg2 = 0 and ∂xg2 + ∂yg1 = 0.

As usual, consider the linear partial differential operators of first order

∂ = ∂z =
1

2
(∂x − i∂y) and ∂̄ = ∂z̄ =

1

2
(∂x + i∂y) . (10)

We have just shown the following proposition:

Proposition 3.4. ∂̄g = 0 on the set X, defined in Equation (6).

Let intc(Λ) denote the interior of Λ rel W c
loc. Propositions 3.3 and 3.4

immediately imply the following corollary:

Corollary 3.4.1. The set intc(Λ) is a complex submanifold of C2. The
conjugacy map φ : int(X) ⊂ C → intc(Λ) ⊂ C2 is holomorphic, and the
function g is holomorphic on int(X).

When x ∈W c
loc−Λ, the tangent space TxW

c
loc is only a real 2-dimensional

subspace of TxC2, included in the horizontal cone Chx . We want to measure
how far it is from a complex line.

The angle between two real subspaces V1 and V2 of TyC2 of the same
dimension can be defined as

Angle(V1, V2) = max
u1∈V1

min
u2∈V2

∠(u1, u2).

For each n ≥ 0, let Wn be the set of points from W that stay in W under
the first n backward iterates of f . Let Un = φ−1(Wn).

Proposition 3.5. Let x ∈ Wn and v ∈ TxW c
loc. There exists ρ < 1 such

that
Angle (TxW

c
loc, SpanC{v}) = O(ρn).

Proof. Let y = f−n(x). Let w = df−nx (v) ∈ TyW c
loc. The vector Jyw does

not in general belong to TyW
c
loc, but it does belong to the horizontal cone

Chy . The derivative dfny maps this cone into a smaller cone inside Chx , with
an angle opening O(ρn) where ρ < 1 as in Remark 3.1. The vectors v and

Jxv = Jfn(y)df
n
y (w) = dfny (Jyw)

both belong to the cone dfny (Chy ). Note that SpanC(v) = SpanR(v, Jxv). In
conclusion the angle between the complex line spanned by v and Jxv and
the real tangent space TxW

c
loc is O(ρn). �

Define the norm of the ∂̄J ′-derivative of f on a set W as

‖∂̄J ′f‖W = sup
z∈W
‖(∂̄J ′f)z‖,
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where ‖(∂̄J ′f)z‖ is the operator norm of (∂̄J ′f)z : TzW → Tf(z)W .

Lemma 3.6. There exists a constant C such that for every n ≥ 1,

‖∂̄J ′f‖Wn < Cρn.

Proof. Let x ∈ Wn. Then f(x) ∈ W c
loc. Let v ∈ TxW c

loc. We will use the
fact that the map f is analytic on B′, so Jf(x) ◦ dfx = dfx ◦ Jx, to estimate

2‖(∂̄J ′f)x(v)‖ = ‖J ′f(x) ◦ dfxv − dfx ◦ J
′
xv‖ (11)

≤ ‖J ′f(x) ◦ dfxv − Jf(x) ◦ dfxv‖+ ‖dfx ◦ Jxv − dfx ◦ J ′xv‖.

Let β = ∠(Jxv, J
′
xv). Since Jx = J ′x on Λ, we may assume that β < π/2

for x ∈ Wn. Note then that β is also equal to the Angle(Jxv, TxW
c
loc), as

TxW
c
loc = SpanR{v, J ′xv}, and 〈v, J ′xv〉 = 〈v, Jxv〉 = 0.

By a direct computation we get

‖J ′xv − Jxv‖ = 2‖v‖ sin(β/2) ≤ β‖v‖. (12)

Let M = sup ‖dfx‖, where the supremum is taken after x ∈ f(B). Clearly
M <∞ since f is C1. In view of Equation (12), we get

‖dfx(Jxv − J ′xv)‖ ≤M‖Jxv − J ′xv‖ ≤ βM‖v‖. (13)

By the same estimate (12), we have ‖J ′f(x)w − Jf(x)w‖ ≤ β′‖w‖, where

w = dfxv and β′ is the angle between the vector Jf(x)w and the tangent space

Tf(x)W
c
loc. The vector v is in the horizontal cone Chx , so ‖w‖ ≤ λ−1

1 ‖v‖,
by partial hyperbolicity (4). Putting everything together, Equation (11)
becomes

‖(∂̄J ′f)x(v)‖ ≤ 1

2
(λ−1

1 β′ +Mβ)‖v‖.

From Proposition 3.5 we know that β = O(ρn) and β′ = O(ρn+1), for
some ρ < 1. Thus there exists a constant C, independent of n, such that
‖(∂̄J ′f)x‖ < Cρn, for every x ∈Wn. �

We will now transport the estimates obtained for f in Lemma 3.6 to
estimates for the ∂̄-derivative of g. Since g = φ−1 ◦ f ◦ φ and φ is (J ′, i)-
holomorphic, we get the following relation between the ∂̄-derivatives of f and
g computed with respect to the corresponding almost complex structures J ′

and respectively i:

(∂̄ig)z = dφ−1
φ(g(z)) ◦ (∂̄J ′f)φ(z) ◦ dφz, for all z ∈ U. (14)

Using Lemma 3.6 and the fact that dφ and dφ−1 are bounded above, we
obtain that there exists a constant C ′ such that for every n ≥ 1,

‖∂̄ig‖Un < C ′ρn. (15)

Corollary 3.6.1. There exists a constant C ′ such that for every n ≥ 1,

|∂̄g(z)| < C ′ρn, for all z ∈ Un.
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Proof. The proof follows directly from (15). For completion, we give the
details below. Let z = x+ iy and g(x, y) = s(x, y) + it(x, y). We have

dgz (∂x) =
∂s

∂x

∂

∂s
+
∂t

∂x

∂

∂t
and dgz (∂y) =

∂s

∂y

∂

∂s
+
∂t

∂y

∂

∂t
.

The standard complex structure on C satisfies the relations in Equation (9),
so we compute(

dgz ◦ iz − ig(z) ◦ dgz
)

(∂x) =

(
∂s

∂y
+
∂t

∂x

)
∂

∂s
+

(
∂t

∂y
− ∂s

∂x

)
∂

∂t
,

(
dgz ◦ iz − ig(z) ◦ dgz

)
(∂y) = −

(
∂t

∂y
− ∂s

∂x

)
∂

∂s
+

(
∂s

∂y
+
∂t

∂x

)
∂

∂t
.

Using Equation (10), the complex ∂̄-derivative of g is

∂̄g =
1

2

(
∂s

∂x
− ∂t

∂y
+ i

(
∂t

∂x
+
∂s

∂y

))
.

By inequality (15), ‖(∂̄ig)z(∂x)‖ and ‖(∂̄ig)z(∂y)‖ are bounded above by
C ′ρn for z ∈ Un, which implies that |∂̄g(z)| ≤ C ′ρn for all z in Un. �

4. Quasiconformal conjugacy

4.1. Preliminaries. In this section we give a brief account of quasiconfor-
mal homeomorphisms. We refer to the classical text of Ahlfors [Ahl] for
a thorough treatment of quasiconformal maps. Let U, V be two open sets
of C and ψ : U → V be a homeomorphism such that ψ belongs to the
Sobolev space W 1,2

loc (U) (that is, ψ has distributional first order derivatives
which are locally square-integrable). Let K ≥ 1. The map ψ is called
K-quasiconformal if

|∂̄ψ| ≤ K − 1

K + 1
|∂ψ|

almost everywhere.
Quasiconformal homeomorphisms are almost everywhere differentiable. If

ψ is quasiconformal, then ∂ψ 6= 0 and Jac(ψ) > 0 almost everywhere. The
complex dilatation of ψ at z (or the Beltrami coefficient of ψ) is defined as

µψ(z) =
∂̄ψ(z)

∂ψ(z)
.

We have ‖µψ‖∞ < 1, where ‖ · ‖∞ is the essential supremum. The number

K(ψ, z) =
1 + |µψ(z)|
1− |µψ(z)|

is the conformal distortion of g at z (or the dilatation of g at z). Clearly
‖µ‖∞ < 1 is equivalent to K(ψ, z) <∞ almost everywhere.

By Weyl’s Lemma, if ψ is 1-quasiconformal, then it is conformal (i.e. if
∂̄ψ = 0 a.e. then ψ is conformal). The composition of a K1-quasiconformal
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homeomorphism with a K2-quasiconformal homeomorphism is K1K2-quasi-
conformal. The inverse of a K-quasiconformal homeomorphism is also K-
quasiconformal. Using the chain rule for complex dilatations, we note that
if µψ = µϕ almost everywhere, then the composition ψ ◦ ϕ−1 is conformal.

Each measurable function µ : V → C with ‖µ‖∞ < 1 is called a Beltrami
coefficient in V . If µ : V → C is a Beltrami coefficient, then the pull back of
µ under ψ is a Beltrami coefficient in U , denoted by ψ∗µ.

4.2. Quasiconformal conjugacy to an analytic map. Let U,U ′ be open
sets of C and g : U → U ′ be the orientation-preserving C1 diffeomorphism
on a neighborhood of U with g(0) = 0, constructed in Section 3. In this
section, we will show how to change the complex structure on U , in order
to make the function g analytic.

For n ≥ 0, consider the sets

Un =

n⋂
k=0

gk(U) and U−n =

n⋂
k=0

g−k(U). (16)

The set Un is the of points from U such that the first n backward iterates
remain in U . The set U−n consists of the points of U whose first n forward
iterates belong to U . Note that U0 is equal to U . Moreover Un+1 ⊆ Un
and U−(n+1) ⊆ U−n, for all n ≥ 0. The set X from Equation (6) is equal

to U∞ and g−1(X) ⊆ X. Note that the sets Un and X have already been
introduced in Section 3, as the preimages of the sets Wn and Λ from the
center manifold W c

loc under the parametrizing map φ.
From the definitions given in Equation (16) we have the following invari-

ance properties.

Lemma 4.1. For every n ≥ 0, we have:

a) g−n(Un) = U−n
b) g−1(Un+1) ⊂ Un and g(U−(n+1)) ⊂ U−n
c) gj(U−n) = Uj ∩ U−(n−j), for 0 ≤ j ≤ n.

Proof. The set equalities

gj(U−n) =
n⋂
k=0

gj−k(U) =

j⋂
k=0

gk(U) ∩
n−j⋂
k=0

g−k(U) = Uj ∩ U−(n−j)

can be used to prove part c). Taking j = n yields part a). The first inclusion
in part b) follows from the fact that g(Un) ∩ U = Un+1, while the second
relation is obtained from part c) by taking j = 1. �

Let σ0 denote the standard almost complex structure of the plane, rep-
resented by the zero Beltrami differential on U . The following lemma is a
restatement of Corollary 3.6.1 in the language of Beltrami coefficients.
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Lemma 4.2. There exist ρ < 1 and M independent of n such that

sup
z∈Un

|µg(z)| < Mρn, for all n ≥ 0.

For each positive integer n, let µgn : U−n → C be the restriction of the
pullback (gn)∗σ0 to the set U−n. This is the Beltrami coefficient of the n-th
forward iterate gn on the set U−n.

Lemma 4.3. There exists a constant κ < 1, such that for all integers n ≥ 0
we have

|µgn(z)| < κ, for all z ∈ U−n.

Proof. Let n > 0 and z ∈ U−n. Let zj = gj(z) for 0 ≤ j ≤ n denote the
j-th iterate of z under the map g. By Lemma 4.1 c), zj ∈ Uj for 0 ≤ j ≤ n.

We want to show that the dilatation K(gn, z) is bounded by a constant
independent of n and the choice of z. Recursively using the classical relation
(see [Ahl])

K(f ◦ g, z) ≤ K(f, g(z))K(g, z),

we get the following estimate

K(gn, z) ≤
n−1∏
j=0

K(g, zj). (17)

By definition and Lemma 4.2 we have

K(g, zj) =
1 + |µ(zj)|
1− |µ(zj)|

≤ 1 +Mρj

1−Mρj
.

Since ρ < 1, we can choose j0 such that Mρj < 1/3, for j ≥ j0. Then
K(g, zj) is bounded above by 1 + 3Mρj , for j ≥ j0. The product of the first
j0 terms in Equation (17) is bounded by a constant C. This is an immediate
consequence of the fact that g is injective and orientation-preserving on a
neighborhood of U , thus ‖µg‖∞ is bounded away from 1. For n > j0 we get

K(gn, z) ≤ C
n−1∏
j=j0

(1 + 3Mρj).

The infinite product
∏

(1 + 3Mρj) is convergent. There exists a constant
M ′ such that K(gn, z) < M ′ for all points z ∈ U−n and all n ≥ 0. Thus
|µgn(z)| < (1−M ′)/(1 +M ′) on U−n. �

For n > 0, let σn : Un → C be the restriction of the pullback (g−n)∗σ0 to
the set Un. This is the Beltrami coefficient of the n-th backward iterate g−n

on the set Un. We write σn = µg−n for simplicity. The map gn : U−n → Un
is bijective. In fact, the measurable function σn is the push forward of σ0

under gn, also written as σn = (gn)∗σ0.
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From the standard properties of Beltrami coefficients we have

µg−1(z) = −
(
∂g(z)

|∂g(z)|

)2

µg(g
−1(z)),

so |µg−1(z)| = |µg(g−1(z))|. It follows that |µg−n(z)| = |µgn(g−n(z))|, for all
z ∈ Un. By Lemma 4.3 we get ‖σn‖∞ < κ, for all n > 0.

By a result of Sullivan [Su], a uniformly quasiconformal group is conjugate
to a group of conformal transformations. We will give a direct proof of this
property in our situation:

Theorem 4.4. The map g−1 : U1 → U−1 is quasiconformally conjugate to
an analytic map.

Proof. Consider the measurable function µ : U → C, given by

µ =

{
σn on Un − Un+1, for n ≥ 0
σ0 on X.

(18)

Then ‖µ‖∞ < 1 by Lemma 4.3 and the observation above. Thus µ is a
Beltrami coefficient in U . Moreover, by construction, µ is g−1 invariant, i.e.
(g−1)∗µ = µ on U1. The standard almost complex structure is g−1 invariant
on X, since µg = 0 on X by Lemma 4.2, which implies that µg−1 = 0 on X,

by Definition (18) and the fact that g−1(X) ⊂ X. The Beltrami coefficient
µ is g−1 invariant on U1−X by construction. To see this, let n > 0 and pick
any point z ∈ Un−Un+1. Then µ(z) = σn(z) on Un−Un+1, µ(z) = σn−1(z)
on Un−1 − Un, and

g−1(Un − Un+1) ⊂ Un−1 − Un
by Lemma 4.1 b). We have the following sequence of equalities

(g−1)∗µ(z) = (g−1)∗σn−1(z) = (g−n)∗σ0(z) = σn(z) = µ(z),

which shows that (g−1)∗µ = µ on U1 −X as well.
By the Measurable Riemann Mapping Theorem, there exists a quasicon-

formal homeomorphism ψ : U → C with complex dilatation µψ equal to the
Beltrami coefficient µ. We choose ψ such that ψ(0) = 0. Let Ω = ψ(U−1)
and Ω′ = ψ(U1) and consider the map h : Ω→ Ω′, h = ψ ◦ g ◦ψ−1, as in the
diagram below

(U1, (g
−1)∗µ)

g−1

−−−−→ (U−1, µ)

ψ

y yψ
Ω′

h−1

−−−−→ Ω

The map ψ ◦ g−1 is a composition of two quasiconformal maps, hence
quasiconformal. It has complex dilatation µψ◦g−1 = (g−1)∗µ = µ. Since

µψ◦g−1 = µψ, the maps h and h−1 = ψ ◦ g−1 ◦ ψ−1 are conformal.
The conjugacy map ψ is analytic on the interior of X, since the Beltrami

coefficient µ on X is equal to the standard almost complex structure σ0. �
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4.3. Proof of Theorem A. Let f be a holomorphic germ of diffeomor-
phisms of (C2, 0) with a semi-indifferent fixed point at the origin. Let
λ = e2πiθ be the neutral eigenvalue of 0. The restriction of the map f
to the center manifold, f : W →W ′ is conjugate to the map g : U → U ′ by
a C1-diffeomorphism φ. By Theorem 4.4, and eventually replacing U with
U−1, the map g : U → U ′ is conjugate to an analytic map h : (Ω, 0)→ (Ω′, 0)
by a quasiconformal homeomorphism ψ.

Let Λ be defined as in Equation (5). By Proposition 3.3 , the interior of
the set Λ is a (not necessarily connected) complex submanifold of C2. To
show that the conjugacy map ψ ◦ φ−1 is analytic on the interior of Λ, we
first recall from Corollary 3.4.1 that φ : int(X) → intc(Λ) is holomorphic,
where X = φ−1(Λ). From the proof of Theorem 4.4 it follows that map
ψ is analytic on the interior of the set X. So the composition ψ ◦ φ−1 is
holomorphic on intc(Λ).

The last thing we need to show is that h′(0) = λ. The map dφ−1 maps
the complex eigenspace Ec0 of the eigenvalue λ to the complex tangent space

T0U . The action of df0 on Ec0 is multiplication by λ and dg0 = dφ−1
0 ◦df0◦dφ0,

so dg0 as a real matrix is just a rotation matrix of angle θ. Since the tangent
space T0U is complex, we can view dg0 as a complex function, which means
that g′(0) = λ.

Remark 4.5. It is well-known that the multiplier of an indifferent fixed
points is a quasiconformal invariant (even a topological invariant by a the-
orem of Naishul [N]). Namely, if g1 and g2 are two quasiconformally con-
jugate (topologically conjugate) holomorphic germs of (C, 0) with indifferent
fixed points at the origin, then g′1(0) = g′2(0). We cannot use this fact in our
setting to conclude that g′(0) = h′(0), because the map g is not holomorphic.

To show that the two rotation numbers coincide, we use a generaliza-
tion of Naishul’s Theorem in 1D, due to Gambaudo, Le Calvez, and Pécou
[GLP], which says in particular that the multiplier at the origin is a topo-
logical invariant for the class of orientation-preserving homeomorphisms of
the plane which are differentiable at the origin and for which the derivative
at the origin is a rotation.

Alternatively, to show that h′(0) = λ, we can use the hedgehog con-
structed in [FLRT]. Let V be a neighborhood of the origin in W c

loc compactly
contained in W . Let Kf be a compact, connected, and completely invariant
set for f given by Theorem 1.1 such that 0 ∈ Kf and Kf ∩∂V 6= 0. By con-
struction Kf ⊂ V and Kf is full in W c

loc (that is, W c
loc−Kf is connected). As

in [FLRT], we can associate to (f,Kf ) an orientation-preserving homeomor-

phism f̃ of the unit circle, with rotation number θ, by uniformizing the com-
plement of Kf inside the global center manifold W c(0) identified with R2, by
the complement of the unit disk in C. The set Kh = ψ◦φ−1(Kf ) is a nontriv-
ial compact, connected, full, and completely invariant set for h, containing
the origin. Moreover, Kh intersects the boundary of V ′ = ψ ◦ φ−1(V ). By
[PM1, Lemma III.3.4], we can associate to (h,Kh) an orientation-preserving
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diffeomorphism h̃ of the unit circle, with rotation number θ′, the argument
of h′(0). The conjugacy map ψ ◦φ−1 is uniformly continuous on a neighbor-
hood of Kf . Therefore it defines a homeomorphism from the set of prime

ends of W c(0)∪ {∞}−Kf to the set of prime ends of Ĉ−Kh. We use this

to obtain a conjugacy between the homeomorphisms f̃ and h̃ on the unit
circle. Hence they have the same rotation number θ = θ′.

5. Dynamical consequences of Theorem A

In this section we give the proofs of the remaining theorems stated in the
introduction.

Clearly, Theorem B, respectively Corollary B.1 follows from Theorem 2.3,
respectively Corollary 2.3.1 by applying Theorem A. We now proceed with
the proofs of Theorems C, D, E and Corollary D.1.

Proof of Theorem C. Consider a domain B′ ⊂ C2 such that B, f(B) are
compactly contained in B′ and f is partially hyperbolic on B′. Let W c

loc be
a center manifold of 0 constructed with respect to the bigger set B′. Let
H ⊂ B be a hedgehog for f such that H ∩ ∂B 6= ∅. Set W = W c

loc ∩B. By
Theorem A, the map f |W is quasiconformally conjugate to a holomorphic
map h : Ω→ Ω′, where Ω and Ω′ are domains in C with C1-boundary. Let
φ : W → Ω be a quasiconformal conjugacy.

Consider a point x ∈ B, which does not belong to W ss
loc(H). Suppose that

fn(x) ∈ B for n ≥ 1. By the shadowing property from Proposition 3.2 there
exists y ∈ W c

loc − H such that fn(y) ∈ W c
loc for all n ≥ 1 and the orbit of

y shadows the orbit of x. Clearly the ω-limit set of x is the same as the
ω-limit set of y. The set K = φ(H) is a hedgehog for h. The point z = φ(y)
does not belong to K. However, fn(z) ∈ Ω for all n ≥ 0. By Theorem 2.4,
ω(z) ∩K = ∅. It follows that ω(x) ∩H = ∅.

A similar argument shows that if x ∈ B−H and f−n(x) ∈ B for all n ≥ 1,
then α(x) ∩H = ∅. �

Proof of Theorem D. Suppose that f is conjugate in a neighborhood of the
origin to the map f̃(x, y) = (λx, µ(x)y). For some small r, the disk Dr×{0}
is invariant under f̃ , therefore there exists an embedded holomorphic disk
∆ which is invariant for the dynamics of f . All local center manifolds must
contain ∆, therefore 0 ∈ ∆ ⊂ H.

Conversely, suppose that 0 ∈ intc(H), the interior of H relative to a center
manifold. Let ∆ be the connected component of intc(H) which contains 0.
By the properties of the hedgehog H from Theorem 1.1, the set ∆ is open,
bounded, simply connected, with f(∆) = ∆. By Proposition 3.4, the set ∆
is an analytic submanifold of C2 of dimension 1, hence it is biholomorphic
to the unit disk D. Choose a biholomorphism φ : D→ ∆ with φ(0) = 0, and
set g := φ−1◦f ◦φ. The map g : D→ D is an automorphism of the unit disk,
satisfying g(0) = 0 and g′(0) = λ, |λ| = 1, hence by the Schwarz Lemma we
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can conclude that g is a rotation, g(z) = λz for all z ∈ D. Therefore, the
restriction of f to ∆ is linearizable.

We will show that the map f in conjugate in a neighborhood of the origin
in C2 to a linear cocycle (x, y) 7→ (λx, µ(x)y), in a two-step argument. In
the first step, we conjugate f to a skew product (x, y) 7→ (λx, ν(x, y)), where
ν is a nonlinear cocycle, using ideas from [BS, Proposition 6]. In the second
step we show how to reduce the nonlinear cocycle to a linear one.

Step 1. We conjugate f to a map of the form

F (x, y) = (λx, ν(x, y)) , (19)

where

ν(x, y) = µy (B0(x) + yB1(x, y)) ,

for some holomorphic functions B0(·) and B1(·, ·) with B0(x) = 1 +O(x).

The parametrizing map φ : D → ∆, φ = (φ1, φ2), is a biholomorphism,
hence (φ′1(x), φ′2(x)) 6= (0, 0) for all x ∈ D. There exists two holomorphic
maps q1 and q2 such that φ′1(x)q2(x) − φ′2(x)q1(x) = 1 for all x ∈ D. Let
s : D× C → C2 be given by s(x, y) = (φ1(x) + yq1(x), φ2(x) + yq2(x)), and
set F := s−1 ◦ f ◦ s. The maps s and F are local diffeomorphisms in a
neighborhood of the disk s−1(∆) = D × {0}, since det ds(x, 0) = 1 for all
x ∈ D. Moreover F (D× {0}) = D× {0} and F (x, 0) = (λx, 0) for all x ∈ D.

Consider the strong stable set W ss
loc(∆) of ∆ with respect to a small neigh-

borhood N of ∆ and let V = s−1(W ss
loc(∆)). The strong stable set W ss

loc(∆)
consists of point from N which converge asymptotically exponentially fast
to the invariant disk ∆. In Step 1, we show how to straighten the foliation
of the local strong stable set of ∆ so that the local strong stable manifolds
W ss

loc(x), x ∈ ∆, become vertical. By construction, F (V ) ⊂ V . The se-
quence of iterates {Fn|V }n≥0 is a normal family. Therefore there exists a
subsequence of iterates Fnj which converges uniformly on compact subsets
of V to a holomorphic map ρ : V → D × {0}. One can in fact choose the
subsequence nj as in [B] so that the map ρ is a retract of V onto the invari-
ant disk D × {0}, that is, ρ(x, 0) = (x, 0) for all x ∈ D. By construction, ρ
commutes with the map F , so we have

ρ ◦ F (x, y) = F ◦ ρ(x, y) = λρ(x, y).

Consider the map H(x, y) = (ρ(x, y), y) which leaves the disk D × {0}
invariant and is invertible in a neighborhood of this disk since ∂xρ(x, 0) = 1.
By replacing F with H ◦ F ◦ H−1, we may assume that F is linear in the
first coordinate and therefore has the form given in Equation (19).

Step 2. Next we show that F is conjugate to f̃(x, y) = (λx, µ(x)y), where
µ(x) = µ+O(x) is a holomorphic function.

Let Fn(x, y) = (λnx, νn(x, y)) denote the n-th iterate of F , where νn is
holomorphic and νn = νn−1 ◦F , for all n ≥ 1. By convention, ν0 = ν. Using
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this recurrence relation, we find

νn(x, y) = µny
n−1∏
j=0

(
B0(λjx) + νj(x, y)B1(F j(x, y))

)
, (20)

for all n ≥ 1.
Note that partial derivative of ν with respect to y has the form

∂yν(x, y) = µ (B0(x) + yC1(x, y)) ,

for some appropriate holomorphic function C1. By direct computation, we
obtain

∂yνn = (∂yνn−1 ◦ F ) · ∂yν,
which yields

∂yνn(x, y) =
n−1∏
j=0

∂yν(F j(x, y)) = µn
n−1∏
j=0

(
B0(λjx) + νj(x, y)C1(F j(x, y))

)
,

for all n ≥ 1. Note that νj(x, 0) = 0 for all j ≥ 0. Also µ 6= 0 since F is a
local diffeomorphism. Hence, when y = 0, the formula above simplifies to
∂yνn(x, 0) = µn

∏n−1
j=0 B0(λjx). We will show that the infinite product

ψ(x, y) = lim
n→∞

νn(x, y)

∂yνn(x, 0)
= y

∞∏
j=0

(
1 +

νj(x, y)B1(F j(x, y))

B0(λjx)

)
(21)

is uniformly convergent in some neighborhood V ⊂ C2 of 0. Using the local
dynamics, we can choose a sufficiently small neighborhood V of the origin so
that F (x, y) ∈ V whenever (x, y) ∈ V . There exists a constant M > 0 such
that |B0(x)| < 1+M |x| and |B1(x, y)| < M throughout V . Since |µ| < 1, we
can choose V small enough so that the following technical condition holds:

|µ|1/2 (1 + |x|M + |y|M) < 1, (22)

for all (x, y) ∈ V .

Lemma 5.1. |νn(x, y)| < |µ|n/2|y| for all n ≥ 0 and for all (x, y) ∈ V .

Proof. We proceed by induction. From the definition of ν and assumption
(22), for n = 0 we get

|ν0(x, y)| ≤ |µ||y|(1 + |x|M + |y|M) < |µ|1/2|y|.
Let n ≥ 1 and suppose that |νj(x, y)| < |µ|j/2|y| for all 0 ≤ j ≤ n − 1. By
Equation (20) and the fact that |λ| = 1 and |µ| < 1 we have

|νn(x, y)| ≤ |y||µ|n/2
n−1∏
j=0

|µ|1/2 (1 + |x|M + |y|M) < |y||µ|n/2,

which concludes the proof. �

The germ F is a local diffeomorphism, so the Jacobian is bounded away
from 0. Thus there exists a constant κ > 0 such that |B0(x)| > κ for all



HEDGEHOGS IN HIGHER DIMENSIONS AND THEIR APPLICATIONS 21

x ∈ ∆. Using Lemma 5.1, we find that the infinite product (21) is bounded
above by

|y|
∞∏
j=0

(
1 + |νj(x, y)|Mκ−1

)
< |y|

∞∏
j=0

(
1 + |µ|j/2Mκ−1

)
<∞.

This shows that the product from Equation (21) is convergent, uniformly
on U .

From the definition of νn we have

νn+1(x, y)

∂yνn+1(x, 0)
=

νn(λx, ν(x, y))

∂yνn(λx, 0) · ∂yν(x, 0)
.

By letting n→∞ we see that the map ψ satisfies the equation

ψ(F (x, y)) = µB0(x)ψ(x, y).

Let Ψ(x, y) = (x, ψ(x, y)) and f̃(x, y) = (λx, µB0(x)y). The map Ψ is a
holomorphic function on a neighborhood of the origin with Ψ(0, 0) = (0, 0),

which conjugates F to f̃ . For simplicity, we denote µB0(x) by µ(x).
This step concludes the proof of Theorem D. �

Assume as in Theorem D that the germ f is analytically conjugate to
f̃(x, y) = (λx, µ(x)y), for some holomorphic function µ(x) = µ + O(x).
Since we work in the dissipative setting, we can topologically linearize f in
a neighborhood of the origin. Let us now discuss the analytic linearizability
of the germ f . The map f̃ can be viewed as a linear cocycle.

As in [KK], we say that a cocycle h is reducible if it cohomologous to a
constant map, that is, if h satisfies the cohomology equation

h(x)− h(0) = φ(λx)− φ(x), (23)

for some function φ. The reducibility of h depends on finer arithmetic prop-
erties of the neutral eigenvalue λ.

Suppose that there exists a biholomorphic map (x, y) 7→ (x, η(x)y) with

η(0) = 1 which conjugates f̃ to the linear map (x, y) 7→ (λx, µy). The maps
µ(x) and η(x) are not identically vanishing in a neighborhood of the origin,
so they have holomorphic logarithms h(x) = log(µ(x)) and φ(x) = log(η(x))
which must satisfy the cohomology equation (23). If we compare the Taylor
series expansions of h(x) = log(µ) + a1x+ a2x

2 + . . . and φ(x) = x+ b1x+
b2x

2 + . . . , we get an = bn(λn− 1) for n ≥ 1. When λ is not a root of unity,
we can solve for bn and obtain a formal series defining φ.

The problem of convergence of the formal series for φ is strongly related
to how fast λn − 1 approaches 0. Let λ = e2πiα, α /∈ Q and let pn/qn be the
convergents of α given by the continued fraction. If λ satisfies the Brjuno
condition, ∑

n≥0

log qn+1

qn
<∞, (24)
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then by [Brj] we have a convergent power series for φ. On the other hand,
for general functions µ(x) and neutral eigenvalues λ which are not roots of
unity and do not satisfy the Brjuno condition, small divisor problems could
prevent the existence of solutions of the cohomology equation (23).

Non-linearizable germ with a Siegel disk. Let α be an irrational angle
such that

lim sup
n→∞

({nα})−1/n =∞,

where {nα} denotes the fractional part of nα. Set λ = e2πiα. As in [M], the
arithmetic condition imposed on α is equivalent to

lim sup
n→∞

|λn − 1|−1/n =∞.

Assume that the power series expansion of h(x) = log(µ(x)) has radius of
convergence 0 < R < ∞. Since bn = an(λn − 1)−1 for n ≥ 1, it follows
that the radius of convergence of the formal series expansion of φ is 0,
which shows that there is no holomorphic function φ satisfying (23). As a

concrete example, let λ be chosen as above, and let µ(x) = µex/(1−x), with

|µ| < 1. Then f̃(x, y) = (λx, µ(x)y) is an example of a local diffeomorphism
which has a Siegel disk containing 0 and which cannot be linearized in a
neighborhood of the origin in C2.

The next two proofs in this section deal with the case of polynomial
automorphisms of C2.

Proof of Corollary D.1. If f is a polynomial automorphism of (C2, 0)
then it has non-zero constant Jacobian, equal to the product λµ of the
two eigenvalues of df0. By Theorem D, 0 ∈ intc(H) if and only if f is

analytically conjugate to a holomorphic map f̃(x, y) = (λx, µ(x)y). Any
conjugacy function constructed in the proof of Theorem D has the property
that the determinant of its Jacobian matrix restricted to the invariant disk
D× {0} is 1. This is obvious for the conjugacy maps considered at Step 1.
For the coordinate transformation Ψ from Step 2, this property follows from
the fact that

det dΨ(x, y) = ∂yψ(x, y) = lim
n→∞

∂yνn(x, y)

∂yνn(x, 0)
,

which is equal to 1 when y = 0. Therefore det df̃ |D×{0} is constant and

equal to λµ. It follows that µ(x) = µ for all x ∈ D, so f̃ is a linear map. �

Proof of Theorem E. Let f be a polynomial diffeomorphism of C2 with
an irrationally semi-indifferent fixed point at the origin. Since f is assumed
non-linearizable in a neighborhood of the origin in C2, by Corollary D.1, we
know that 0 /∈ intc(H), the interior of H relative to a center manifold W c

loc.
By Theorem A, the restriction of f toW c

loc is quasiconformally conjugate to a
holomorphic diffeomorphism h : (Ω, 0)→ (Ω′, 0), h(z) = λz+O(z2). Denote
by φ : W c

loc → Ω the conjugacy map and by K = φ(H) the corresponding
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hedgehog for h. It follows that 0 /∈ int(K), which is equivalent, by Theorem
2.1, to the fact that h is non-linearizable as well. By [PM3], the interior of a
non-linearizable hedgehog is empty, therefore intc(H) = ∅. Hence H belongs
to the Julia set J .

Suppose there is a wandering component converging to H, and choose any
interior point z of the wandering component. Then for n sufficiently large,
we may assume that all points fn(z) ∈ B, a neighborhood of the origin, and
ω(z) ∈ H. This contradicts Theorem C. �

We conclude this section with the proof of Theorem F, which discusses
germs with a semi-parabolic fixed point at the origin.

Proof of Theorem F. Let B ⊂ C2 be a ball containing 0 such that f is
partially hyperbolic on a neighborhood B′ of B. Let W c

loc be any local center
manifold of 0, constructed relative to B′. By the weak uniqueness property
of center manifolds, ΣB ⊂ W c

loc, where ΣB is defined in Equation (1). By
Theorem A, the map f restricted to W c

loc is quasiconformally conjugate to
an analytic map h : (Ω, 0) → (Ω′, 0), where Ω,Ω′ are domains in C. By
Corollary 3.4.1, the quasiconformal map φ−1 is holomorphic on the interior
of Λ rel W c

loc, for the set Λ defined in (5). Therefore φ−1 is holomorphic on
the set ΣB, since ΣB belongs to the interior of Λ rel W c

loc.
By Theorem A, the map h has a parabolic fixed point at 0, with multiplier

λ, so it is conjugate to a normal form

h(z) = λz + zνq+1 + az2νq+1 +O(z2νq+2).

By the Leau-Fatou theory of parabolic holomorphic germs of (C, 0), h
has ν cycles of q attracting and q repelling petals, containing 0 in their
boundary. On each repelling petal Prep, there exists an outgoing Fatou
coordinate ϕo : Prep → C, which satisfies the Abel equation ϕo(f q) = ϕo+1,
that is, it conjugates f q to the translation z 7→ z + 1 on a left half plane.

The repelling petals for f are just the pull-back of the repelling petals for
h under the holomorphic map φ−1|ΣB

, and on each such repelling petal we
have a holomorphic Fatou coordinate ϕo ◦ φ−1. �

We define the parabolic basin of 0 with respect to the neighborhood B as

Bpar(0) = {x ∈ B : fn(x) ∈ B ∀n ∈ N, and fn(x)→ 0 as n→∞}.

Note that this has complex dimension two. Therefore we cannot use the
same strategy as in the proof of Theorem F to construct incoming Fatou
coordinates, since the conjugacy map φ−1 is only quasiconformal on the set
one-dimensional slice W c

loc ∩ Bpar(0).

6. A generalization for germs of (Cn, 0)

In this section we consider holomorphic germs f of diffeomorphisms of
(Cn, 0) such that the linear part of f at 0 has eigenvalues λi, 1 ≤ i ≤ n,
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with |λk| = 1 and

0 < |λ1| ≤ . . . ≤ |λk−1| < 1 < |λk+1| ≤ . . . ≤ |λn|, (25)

for some k between 1 and n.
The presence of the neutral eigenvalue permits the existence of a rich type

of local invariant sets and induces more complicated local dynamics.
The tangent space at 0 has an invariant splitting into three subspaces

T0Cn = Es0 ⊕ Ec0 ⊕ Eu0 , of dimensions k − 1, 1, and respectively n − k. Es0
is strongly contracted and Eu0 is strongly expanded by df , and the center
direction Ec0 is the eigenspace corresponding to the neutral eigenvalue λk.
When k 6= 1 and k 6= n, f is partially hyperbolic (in the narrow sense)
(see [HP], [CP]). Partial hyperbolicity is an open condition which can be
extended to a suitable neighborhood of the origin.

Let B′ a small ball containing the origin. As in Section 3 we explain in
terms of invariant cone fields what it means for f to be partially hyperbolic
on B′. Let E be a subspace of TxCn and denote by

Cx(E,α) = {v ∈ TxCn,∠(v,E) ≤ α}
the cone at x of angle α centered around E.

There exist (not necessarily invariant) continuous distributions Es, Ec

and Eu, extending Es0, Ec0, Eu0 , such that TxCn = Esx ⊕ Ecx ⊕ Eux for any x
in B′. Let Ecsx = Esx⊕Ecx and Ecux = Ecx⊕Eux . There exist invariant cone
families of stable and unstable cones

Csx = Cx(Esx, α), Cux = Cx(Eux , α)

and center-stable and center-unstable cones

Ccsx = Cx(Ecsx , α), Ccux = Cx(Ecux , α)

such that

dxf
−1(Csx) ⊂ Int Csf−1(x) ∪ {0}, dxf(Cux) ⊂ Int Cuf(x) ∪ {0}

dxf
−1(Ccsx ) ⊂ Int Ccsf−1(x) ∪ {0}, dxf(Ccux ) ⊂ Int Ccuf(x) ∪ {0}

and there are constants 0 < µs < µcu ≤ 1 ≤ µcs < µu such that µcu < µcs,
|λk−1| < µs, |λk+1| > µu, and the following inequalities hold:

‖dfx(v)‖ ≤ µs ‖v‖, for v ∈ Csx
‖dfx(v)‖ ≤ µcs ‖v‖, for v ∈ Ccsx
‖dfx(v)‖ ≥ µu ‖v‖, for v ∈ Cux
‖dfx(v)‖ ≥ µcu ‖v‖, for v ∈ Ccux

The fact that f is partially hyperbolic on the set B′ implies that there
exists local center-stable manifolds W cs

loc and center-unstable manifolds W cu
loc

of class C1, tangent at 0 to the subspaces Ecs0 and respectively to Ecu0 . By
intersecting the local center-stable and the local center-unstable manifolds,
one shows the existence of center manifolds W c

loc of class C1, tangent at 0
to the eigenspace Ec0 of the neutral eigenvalue λk. A local center manifold
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is the graph of a C1 function ϕf : Ec0 ∩ B′ → Es0 ⊕ Eu0 , and is locally
invariant, in the sense that f(W c

loc) ∩ B′ ⊂ W c
loc. The center manifold

is not unique in general, but all center manifolds defined with respect to
the ball B′ must contain the set of points which never escape from B′ under
forward and backward iterations. A weak uniqueness property can therefore
be formulated as follows: if fn(x) ∈ B′ for all n ∈ Z, then x ∈W c

loc.
For the rest of the section, fix a local center manifold W c

loc defined with
respect to the ball B′. We show that the map f restricted to W c

loc is qua-
siconformally conjugate to an analytic map, in a two-step argument. Most
of the analysis will be similar to Sections 3 and 4.2, so we refer the reader
to these sections for most proofs, and we will only outline the differences,
whenever they occur. We prove the following:

Theorem G. Let f be a holomorphic germ of diffeomorphisms of (Cn, 0).
Suppose df0 has eigenvalues λj, 1 ≤ j ≤ n, with |λk| = 1 for some k and
|λj | 6= 1 when j 6= k. Let W c

loc(0) be a C1-smooth local center manifold of the
fixed point 0. There exist neighborhoods W,W ′ of the origin inside W c

loc(0)
such that f : W → W ′ is quasiconformally conjugate to a holomorphic
diffeomorphism h : (Ω, 0)→ (Ω′, 0), h(z) = λkz +O(z2), where Ω,Ω′ ⊂ C.

Moreover, the conjugacy map is holomorphic on the interior of Z rel
W c

loc(0), where Z is the set of points that stay in W under all forward and
backward iterations of f .

Remark 6.1. Note that if |λk| = 1 and |λj | < 1 for all j 6= k or |λj | > 1
for all j 6= k, then the proof is identical to the proof of Theorem A.

It is worth mentioning that the set Z from Theorem G belongs to the
intersection of all center manifolds defined relative to the ball B′.

Denote by J the standard almost complex structure of Cn. Consider a
ball B containing 0, such that B ⊂ B′. We first endow the two-dimensional
real manifold W c

loc with a C1-smooth almost complex structure J ′, induced
by the restriction of the Riemannian metric of Cn to W c

loc. By integrating
the almost complex structure J ′, we show that the map f on W = W c

loc ∩B
is conjugate to a map g : U ⊂ C→ C of class C1, via a (J ′, i)-holomorphic
conjugacy map φ, as in the diagram below:

W
f−−−−→ W ′

φ

x xφ
U

g−−−−→ U ′

We will estimate how far g is from being an analytic map by measuring
how far the tangent space TxW

c
loc is from being a complex subspace of TxCn,

when x ∈ W . To carry on the analysis, we fix some notations for the
dynamically relevant sets for f and g. For each n ≥ 0, let Wn (respectively
W−n) be the set of points whose first n backward (respectively forward)
iterates remain in W . Similarly, we define the sets Un = φ−1(Wn) and
U−n = φ−1(W−n) for the map g.
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With these notations, W∞ and W−∞ represent the set of points from
W that do not escape from B under backward, and respectively forward
iterations. Let Z := W∞∩W−∞. For simplicity, let X = U∞ and Y = U−∞.

Proposition 6.2.

a) The tangent space TxW
c
loc at any point x ∈ Z is a complex line Ecx

of TxCn. The line field over Z is df -invariant.
b) There exists ρ < 1 such that for all integers m,n ≥ 0 and for all

x ∈Wn ∩W−m and v ∈ TxW c
loc the following estimate holds

Angle (TxW
c
loc,SpanC{v}) = O

(
ρmin(m,n)

)
.

Proof. Part a) follows from the fact that for x ∈ Z

TxW
c
loc =

⋂
n≥0

dfnf−n(x)C
cu
f−n(x)

 ∩
⋂
n≥0

df−nfn(x)C
cs
fn(x)

 ,

and the counterpart of Proposition 3.3, which is straightforward. For part b)
we observe that since x ∈Wn, the tangent vector v belongs to dfnf−n(x)C

cu
f−n(x)

which, by Remark 3.1, is a cone of angle opening α1 = O(ρn) inside Ccux ,
centered around Ecux . Similarly, since x ∈ W−m, the tangent vector v be-
longs to df−mfm(x)C

cs
fm(x), which is a cone of angle opening α2 = O(ρm) inside

Ccsx , centered around Ecsx . Hence v belongs to the complex cone centered
around Ec, of angle less than the maximum of the angles α1 and α2. As in
the proof of Proposition 3.5, it follows that both TxW

c
loc and SpanC{v} are

included in this cone. �

Corollary 6.2.1. Let intc(Z) denote the interior of Z relative to W c
loc. The

set intc(Z) is a complex submanifold of Cn of complex dimension 1. The
conjugacy map φ : int(X ∩ Y ) ⊂ C→ intc(Z) ⊂ Cn is holomorphic.

Lemma 6.3. There exists a constant C such that for every m,n ≥ 1,

‖∂̄J ′f‖Wn∩W−m < Cρmin(m,n),

where ∂̄J ′f is the derivative of f with respect to the almost complex structure
J ′ on W c

loc.

The proof of this lemma uses Proposition 6.2. The argument is the same
as in the proof of Lemma 3.6, so we omit it here.

Proposition 6.4. There exists a constant C ′ such that for every m,n ≥ 1,

|∂̄g(z)| < C ′ρmin(m,n), for all z ∈ Un ∩ U−m.

Proof. The proof follows from Lemma 6.3 and Corollary 3.6.1. �
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In terms of Beltrami coefficients the proposition above implies that there
exist ρ < 1 and M independent of m,n such that

sup
z∈Un∩U−m

|µg(z)| < Mρmin(m,n), for all m,n ≥ 0. (26)

Corollary 6.4.1. ∂̄g = 0 on X ∩ Y .

Note that in Section 3 we obtained that the ∂̄-derivative of g is 0 on the
entire set X, whereas when we have stable, neutral and unstable eigenvalues
we can only show that the ∂̄-derivative of g is 0 on X ∩ Y .

Let σ0 denote the standard almost complex structure of the plane, repre-
sented by the zero Beltrami differential. For n ≥ 0, consider the Beltrami
differential σn on Un, given by σn = (g−n)∗σ0. Similarly, we define the
Beltrami differentials σ−n on U−n by σ−n = (gn)∗σ0.

Lemma 6.5. There exists a constant κ < 1, such that for all integers n ≥ 0

‖σn‖∞ = ‖σ−n‖∞ < κ.

Proof. Let z ∈ U−n. Let zj = gj(z) for 0 ≤ j ≤ n denote the j-th iterate of
z under the map g. By Lemma 4.1 part c), we know that zj ∈ Uj ∩U−(n−j)
for all 0 ≤ j ≤ n. Hence, by Equation (26),

sup
z∈Uj∩U−(n−j)

|µg(z)| < Mρmin(j,n−j), 1 ≤ j ≤ n.

As in the proof of Lemma 4.3, we show that the dilatation K(gn, z) is
bounded by a constant independent of n and the choice of z. We have

K(gn, z) ≤
n−1∏
j=0

K(g, zj), (27)

where K(g, zj) = 1 +O
(
ρmin(j,n−j)) and the conclusion follows. �

We now use the estimates obtained on ∂̄g to prove the following theorem.

Theorem 6.6. The map g−1 : U1 → U−1 is quasiconformally conjugate to
an analytic map.

Proof. Consider the measurable function µ : U → C, given by

µ =


σn on Un − Un+1, for n ≥ 0
σ−n on X ∩

(
U−n − U−(n+1)

)
, for n ≥ 0

σ0 on X ∩ Y.
Then ‖µ‖∞ < 1 by Lemma 6.5. Thus µ is a Beltrami coefficient, which is
g−1 invariant by construction, i.e. (g−1)∗µ = µ on U1. The set X ∩ Y is
forward and backward invariant so (g−1)∗σ0 = σ0 on X ∩ Y , by Corollary
6.4.1. The invariance of µ on U−X is discussed in the proof of Theorem 4.4.
The only new case to check is when n > 0 and z ∈ X ∩

(
U−n − U−(n+1)

)
.

By Lemma 4.1,

g
(
X ∩

(
U−n − U−(n+1)

))
⊂ X ∩

(
U−(n−1) − U−n

)
.
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We have the following sequence of equalities(
g−1
)∗
σ−n(z) =

(
g−1
)∗

(gn)∗ σ0(z) = σ−(n−1)(z),

which shows that
(
g−1
)∗
µ = µ on X − Y as well.

The Measurable Riemann Mapping Theorem concludes the proof. �

We proved that f : W →W ′ is quasiconformally conjugate to a holomor-
phic diffeomorphism h : (Ω, 0) → (Ω′, 0), where Ω,Ω′ ⊂ C. By Corollary
6.2.1 and Theorem 6.6 it follows that the quasiconformal conjugacy map is
holomorphic on the interior of Z, the set of points that remain in W under
all forward and backward iterates of f . The fact that h(z) = λkz +O(z2),
where λk is the neutral eigenvalue of df0, follows from the generalization of
Naishul’s theorem due to Gambaudo, Le Calvez, and Pécou [GLP]. This
concludes the proof of Theorem G.

As a direct consequence of Theorem G, we obtain the following general-
ization of Naishul’s theorem to higher dimensions, which is of independent
interest.

Theorem 6.7. Let f1 and f2 be two holomorphic germs of diffeomorphisms
of (Cn, 0). For j = 1, 2, suppose the derivative of fj at the origin has exactly
one eigenvalue λj with |λj | = 1. If f1 and f2 are topologically conjugate by an
orientation-preserving homeomorphism which fixes the origin, then λ1 = λ2.

Proof. By Theorem G, the map fj is conjugate to an analytic map hj with
h′j(0) = λj , for j = 1, 2. The holomorphic germs h1 and h2 are topologically
conjugate, since f1 and f2 are topologically conjugate. By Naishul’s theorem
[N], we have h′1(0) = h′2(0), thus λ1 = λ2. �

Let H denote the connected component containing 0 of the set Z. Then
H is the hedgehog associated to the neighborhood B of the origin. Using
Theorem G and the local dynamics of the holomorphic germ h of (C, 0) with
an indifferent fixed point at 0, we can further describe the dynamical nature
of the hedgehog.

If λk is a root of unity, λk = e2πip/q, and the parabolic multiplicity of
h at 0 is ν, then the hedgehog H of f consists of 2νq holomorphic petals
Pinv, which are invariant under f q and f−q, and where points converge both
forward and backward to 0. In addition, when k = n in Equation (25), we
can prove as in Theorem F the existence of holomorphic one-dimensional re-
pelling petals with holomorphic outgoing Fatou coordinates. When k 6= 1, n,
we can fix any center manifold H ⊂W c

loc and use the quasiconformal conju-
gacy to construct νq one-dimensional attracting and repelling petals in W c

loc,
with the same regularity as the center manifold, consisting of points whose
forward, respectively backward, orbit is contained in W c

loc and converges to
0. However, the attracting/repelling petals will change as we change the
center manifold. To visualize the phenomenon better, one may think of slic-
ing the parabolic-attracting basin of 0 (of complex dimension k+1), and the
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parabolic-repelling basin of 0 (of dimension n − k + 1) with different cen-
ter manifolds. Theorem G also guarantees the existence of quasiconformal
incoming/outgoing Fatou coordinates ϕi/ϕo, with holomorphic transition
maps ϕi ◦ (ϕo)−1 : Pinv → C.

If λk = e2πiα, α /∈ Q, and h is linearizable at 0 (that is, analytically
conjugate to the rigid rotation z → λkz in a neighborhood of 0 in C), then H
contains a holomorphic disk, called a Siegel hedgehog in our context. Lastly,
if the angle α is irrational and h is not linearizable at the origin, then H is
a Cremer hedgehog, with a complicated topology: H has no interior, and is
non-locally connected at any point different from the origin.
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[PM4] R. Pérez-Marco, Sur la structure des germes holomorphes non-linéarisables, C. R.
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