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Abstract. We give a description of the group of all quasisymmet-
ric self-maps of the Julia set of f(z) = z2− 1 that have orientation
preserving homeomorphic extensions to the whole plane. More
precisely, we prove that this group is the uniform closure of the
group generated by the Thompson group of the unit circle and an
inversion. Moreover, this result is quantitative in the sense that
distortions of the approximating maps are uniformly controlled by
the distortion of the given map.

Stony Brook IMS Preprint #2016/4
December 2016

1. Introduction

Quasisymmetric geometry of fractal sets has attracted substantial in-
terest in recent years. A natural invariant in this category is the group
of quasisymmetries of the set. One can roughly classify such a set
as “little quasisymmetric” or “highly quasisymmetric”, depending on
whether this group is finite or infinite. We are interested in this di-
chotomy for Julia sets of rational maps. In our previous paper [BLM],
joint with Mario Bonk, we described a class of little quasisymmetric
Julia sets that are Sierpiński carpets. The goal of this paper is to
give an example of a highly quasisymmetric Julia set, the basilica (see
Figure 1), and to describe its group of quasisymmetries.

To formulate the main result, let us give quick definitions of the
main objects, referring to the main body of the paper for their precise
versions.

Let f : C → C be a polynomial of degree ≥ 2. Its filled Julia set
K(f) is defined as the set of non-escaping points, and the Julia set
J (f) is defined as the boundary of K(f).

The basilica is the filled Julia set of the quadratic polynomial f : z 7→
z2 − 1.1 This polynomial has a superattracting cycle γ = {0,−1} of
period two, and intK(f) coincides with the basin of this cycle. By
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1In this paper, we refer informally to the corresponding Julia set J also as

“basilica”.
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Figure 1. The filled Julia set of f(z) = z2 − 1.

definition, the immediate basin of γ is the union of two components
U0 and U−1 of the basin containing 0 and −1, respectively. These
components are Jordan discs, and the Riemann mapping φ0 : U0 → D,
such that φ0(0) = 0, φ′0(0) < 0, brings the return map f 2 : U0 → U0 to
the monomial form g : z 7→ z2.

Given a homeomorphism η : [0,∞) → [0,∞), a homeomorphism
h : J (f) → J (f) is called a quasisymmetry with distortion function
η (or η-quasisymmetry) if

|h(u)− h(v)|
|h(u)− h(w)|

≤ η

(
|u− v|
|u− w|

)
,

for all distinct triples u, v, and w in J (f). In fact, this definition is ap-
plicable to a homeomorphism h : X → X of any metric space X, with
the Euclidean distance replaced by the corresponding metric. More-
over, in the case of the complex plane, X = C, η-quasisymmetry is
equivalent to K-quasiconformality, quantitatively (provided the map
is normalized at two points). We say that a homeomorphism of J (f)
is topologically extendable if it has an extension to an orientation pre-
serving homeomorphism of C.

The Thompson group T is defined as the group of piecewise linear
(in the angular coordinate) homeomorphisms of the unit circle T with
breaks at some dyadic points and slopes equal to integer powers of 2.
By means of the Riemann mapping φ0, we can make this group act on
∂U0. In this paper, we show that this action admits an extension to
an action by quasisymetries of the basilica Julia set J ≡ J (f). We
also construct one more quasisymmetry of J , an involution ι, which
permutes the components U0 and U−1 of the immediate basin. Let T̂ be
the extended Thompson group of quasisymmetries of J generated by T
and ι. Our main result asserts that this group generates quantitatively
the whole group of topologically extendable quasisymmetries of J :
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Theorem 1.1. For any distortion function η there exists a distortion
function η′, such that for any topologically extendable η-quasisymmetry
ξ of the basilica Julia set J there exists a sequence of η′-quasisymmetries
τn of J that belong to the extended Thompson group T̂ and uniformly
converge to ξ.

Thus, the basilica is highly quasisymmetric. As we have already men-
tioned, this contrasts with the result of [BLM] concerning Sierpiński
Julia sets. Note that the standard Sierpiński carpet is little quasisym-
metric as well [BM]. On the other hand, it was shown in [Me] that the
“slit carpet” is highly quasisymmetric, and the corresponding group of
quasisymmetries bears some similarity with the Thompson group.

Note that the limit sets of non-elementary Kleinian groups are highly
symmetric, as they admit infinite groups of Möbius symmetries. Let

us say that a compact subset K ⊆ Ĉ of the sphere is rigid if all its
quasisymmetries are Möbius. It was shown in [BKM] that “Schottky
sets” of zero area are rigid, contrasting again with our result.

Let us also mention a recent work of J. Belk and B. Forrest [BF] who
studied a Thompson-like group of circle homeomorphisms that preserve
the invariant lamination of the basilica, and hence descend to homeo-
morphisms of the basilica itself. Our result implies that these homeo-
morphisms are quasisymmetric (and, in fact, form a dense subgroup of
basilica quasisymmetries). Unlike [BF], we approach the problem from
“inside” of the basilica, beginning with the Thompson group acting on
the immediate basin.

Let us finally note that our method extends in a straightforward way
to hyperbolic Julia sets in the “main molecule” of the Mandelbrot set
(obtained from z2 through a finite cascade of satellite bifurcations),
e.g., to the Douady rabbit.

1.1. Notation and terminology. Throughout the paper we denote
N ∪ {0} by N0. We let D be the open unit disc in the complex plane
C, and let T = ∂D be the unit circle in C.

In what follows, we label a point z = e(θ) = e2πiθ ∈ T by θ ∈ R/Z.
In other words, the angular measure on the circle T is scaled so that
its total length is equal to 1, which is standard in dynamics. Points
e((2k + 1)/2n) ∈ T, k = 0, 1, . . . 2n−1 − 1, n ∈ N0, are called dyadic
points of level n. Taking the union of dyadic points of levels m ≤ n, we
obtain 2n points e(l/2n), l = 0, 1, . . . , 2n − 1, that tessellate the circle
into 2n (closed) intervals Inl . We will refer to these intervals as dyadic
intervals of level n.

Let g denote the map z 7→ z2, which is doubling in the angular
coordinate of T, i.e., θ 7→ 2θ mod Z. The dyadic points z ∈ T are
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dynamically identified as the iterated preimages of the fixed point 1,
with the level equal to the smallest n ∈ N0 such that gn(z) = 1.

2. Dyadic subdivision of bounded Fatou components

The reader can consult [CG, Mi] for a general introduction to the iter-
ation theory of rational functions, and [DH, L] for particular features
of the dynamics of quadratic polynomials.

The Fatou set is the complement of the Julia set, F(f) = C \ J (f).
Its connected components are called Fatou components. Bounded Fa-
tou components can also be identified as the connected components of
the interior of the filled Julia set K(f).

As we have already mentioned, the basilica map f(z) = z2 − 1 is
specified by the property that it has a superattracting periodic cycle
{0,−1} of period two. In particular, it is a postcritically finite hyper-
bolic map. We let U0 and U−1 be the Fatou components of f that
contain 0 and −1, respectively. Both of these components are Jordan
discs. The map f takes U0 onto U−1 as a double branched covering,
and it takes U−1 back onto U0 conformally.

Let φ0 : (U0, 0, α)→ (D, 0, 1) be the Böttcher coordinate of U0 (which
coincides with the appropriately normalized Riemann uniformization of
U0), homeomorphically extended to the boundary. It conjugates the
return map f 2 : U0 → U0 to the monomial map g : D→ D, z 7→ z2.

The left-most point of the closure U0 on the real line is a fixed point
α of f , and it equals to (1 −

√
5)/2. It is also the unique point of

intersection of U0 and U−1, called the root of each of these components.
Moreover, α is a global cut-point for the Julia set J : puncturing α
out results in breaking J into two connected components. All the
preimages of α under the iterates of f are therefore also global cut-
points. The other fixed point of f is β = (1+

√
5)/2. It is the right-most

point of the intersection of J with the real line.
Every bounded Fatou component U of f eventually, i.e., under a

certain iterate of f , lands in the cycle {U0, U−1}. In fact, for each U
there exists a unique n ∈ N0 such that fn : U → U0 is a conformal
map. We call such n the dynamical distance from U to U0. It follows
that all bounded Fatou components of f are Jordan discs as well. Then
the map φU = φ0 ◦ fn is a conformal map of U onto D that extends
to a homeomorphism U → D. It is called the Böttcher coordinate of
U . The root αU ∈ ∂U of U is defined as the preimage of the root
α ∈ U0 under fn, or equivalently, as the point in ∂U whose Böttcher
coordinate φU(αU) is equal to 1 ∈ T.
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Similarly, we define dyadic points on ∂U as points whose Böttcher
coordinates are dyadic. Dyadic points of level ≤ n induce a level n
dyadic subdivision of ∂U . It can also be described as follows: for a
bounded Fatou component U of dynamical distance n ≥ 0 from U0 and
for a natural number m ≥ 1, the full preimage f−m(α) gives the dyadic
decomposition of ∂U that consists of 2m−n points. (Here, if n > m,
then the corresponding set is empty.)

The basilica filled Julia set K ≡ K(f) has the following combina-
torial structure of a (non-locally finite) tree T. The vertices of T are
the bounded Fatou components of f . (In what follows we make no
distinction between bounded Fatou components and the vertices of T.)
Two vertices U and V are connected by an edge E if and only if they
touch, i.e., their closures intersect. Let δ(U) stand for the combinato-
rial distance in this tree from a vertex U to the main vertex U0. If two
vertices U and V are adjacent, then |δ(U) − δ(V )| = 1. Under these
circumstances, if δ(U) = δ(V ) + 1 then V is called the principal vertex
of E, while U is called a satellite of V .

The main edge of T, denoted E0, is the edge that connects U0 to
U−1 via their common root α. The higher level edges are described as
follows:

Lemma 2.1. Let U and V be distinct bounded Fatou components that
touch at a point z. Let n ∈ N0 and m ∈ N0 be the dynamical distances
from U and V to U0, respectively, with n ≥ m. Then U is a satellite
of V and the root of U is z.

Proof. The distances m and n cannot be equal because otherwise we
get a contradiction with the fact that fm is conformal in a neighbor-
hood of z. Application of fk, k ≤ m, preserves the differences in
dynamical and in combinatorial distances from U and V to U0, respec-
tively. This implies that the combinatorial distance from V to U0 in T
is one less than that from U to U0. Now, fm(U) is a bounded Fatou
component that touches fm(V ) = U0. The point of the intersection
is fm(z), and n − m ∈ N is the dynamical distance from fm(U) to
U0. Thus fn−m−1(fm(U)) is either U−1 or U1, the bounded Fatou com-
ponents that contain −1 and 1, respectively. In either case we must
have fn−m−1(U0) = U0 because f is at most two to one in each Fatou
component. Hence fn−1(z) = fn−m−1(fm(z)) is either α or −α, and
thus fn(z) = α, i.e., z is the root of U . �

Thus, every edge E can be labeled by the principal component V
and a dyadic number d ∈ T representing the point on ∂V where the
satellite component U touches V .
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3. Dynamical partitions of the Julia set J

Let U∞ denote the basin at infinity, i.e., the unbounded Fatou compo-
nent of f , and let φ∞ be the Böttcher coordinate of U∞. Namely, φ∞ is
the conformal map of U∞ onto the complement of the closed unit disc
C \ D conjugating f to g : z 7→ z2.

The external ray ρθ with angle θ ∈ R/Z is defined as the pullback
of the straight ray ρθ = {re(θ) : 1 < r < ∞} under the Böttcher map
φ∞. The external rays form an invariant foliation with f acting by the
angle-doubling: f(ρθ) = ρ2θ.

It is known that the Julia set of a hyperbolic map f is locally con-
nected, so the inverse Böttcher map ψ∞ = φ−1

∞ : D → U∞ extends
continuously to the boundary, and so induces a continuous boundary
map of T onto J . It follows that any ray ρθ lands at some point zθ ∈ J .
For a circle arc I ⊂ T, we call

ψ(I) = {zθ : e(θ) ∈ I}

a Julia arc.
In the case of the basilica, there exist exactly two rays, ρ±1/3, that

land at the fixed point α. They bound two (open) sectors, S0 ⊃ U0

and Sα ⊃ U−1. The latter sector is also called the wake rooted at α.
The intersection Kα := (K ∩ Sα) ∪ {α} (with the added root) is called
the limb of K rooted at α. We denote Jα := ∂Kα.

This picture can be spread around to the iterated preimages of α.
Let z ∈ J and fnz = α for some n ∈ N0. We choose the smallest
moment n like this. Then z is the landing point of exactly two rays,
fn-preimages of ρ±1/3. They bound the unique (open) sector Sz that
does not contain U0; it is called the wake rooted at z. Moreover, if
n ≥ 1, then fn conformally maps Sz onto S0. Let Kz := (Sz ∩K)∪{z}
be the limb of K rooted at z, and let Jz := ∂Kz be the corresponding
Julia arc. Below we may also refer to Jz as a limb rooted at z.

Let Rn, n ∈ N0, be the family of all external rays in U∞ that land
at points of the full preimage f−n(α). Note that each external ray of
Rn lands on the boundaries of exactly two bounded Fatou components,
adjacent components of the tree T.

We say that distinct external rays ρ1 and ρ2 of Rn are adjacent if
they are not separated in U∞ by other external rays of Rn (in other
words, the angles θ1, θ2 are adjacent points of the set g−n{±1/3} ⊂ T).

Lemma 3.1. If ρ1, ρ2 ∈ Rn are adjacent external rays, then there
exists a bounded Fatou component U of f such that ρ1 and ρ2 land at
boundary points of U .
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Proof. We apply induction. The statement is trivially true for n = 0.
Assuming that the statement is true for n− 1, where n ≥ 1, let ρ1 and
ρ2 be two adjacent external rays of Rn. If we apply f to ρ1 and ρ2, we
obtain two external rays of Rn−1 that are necessarily adjacent. Other-
wise, we would apply f−1 to the region in U∞ between f(ρ1) and f(ρ2)
that contains a separating external ray to get a contradiction. Note
that in the Böttcher coordinate of U∞ the arc on T that corresponds to
the landing points of ρ1 and ρ2 and does not contain the landing points
of other rays in Rn has angular length at most 1/3 < 1/2, and hence
f is conformal in the region of U∞ between ρ1 and ρ2 that does not
contain other external rays of Rn. Therefore, f(ρ1) and f(ρ2) land on
the boundary of the same bounded Fatou component U . If U = U−1,
then ρ1 and ρ2 must land on the boundary of U0, because U0 is the
only preimage of U−1 under f . If U 6= U−1, any branch of the map f−1

restricted to U is conformal onto another bounded Fatou component
V , and there are exactly two such branches because f has degree 2.
Suppose ρ1 lands on the boundary of V . The branch f−1 that takes
U onto V extends conformally across the arc ω on the boundary of
U between the landing points of f(ρ1) and f(ρ2) into the region R in
C \ U that satisfies the following properties. The arc ω does not con-
tain other landing points of external rays in Rn−1, and the region R is
bounded by ω, f(ρ1), and f(ρ2). The image of f(ρ2) under this branch
of f−1 is then necessarily the external ray ρ2, and we are done. �

For n ∈ N0, let:

–Dn be the n-fold preimage g−n{±1/3} ⊂ T (consisting of 2n+1 points);

– Pn be the tiling of the circle T by the points of Dn (comprising 2n+1

closed arcs Ik ⊂ T);

– Πn = ψ∞(Pn) be the corresponding tiling of J (comprising 2n+1

closed Julia arcs Jk = ψ∞(Ik) ⊂ J with endpoints at preimages of the
fixed point α of level ≤ n).

Each set Jk corresponds to a pair of adjacent external rays of Rn,
as follows. Let ρ1 and ρ2 be two adjacent external rays of Rn whose
landing points are z1 and z2, respectively. There are two cases that
need to be considered: either z1 = z2 or z1 6= z2.

Case 1. If z = z1 = z2, this point is the root of a unique bounded
Fatou component U unless z = α, the fixed point of f . This follows
from Lemma 2.1. If z = α, we choose U = U−1. The Julia arc Jk of Πn

that corresponds to ρ1, ρ2 is Jz.
Case 2. Now assume that z1 6= z2 and let U be a bounded Fatou
component of f whose boundary contains z1 and z2. Such U exists by
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Lemma 3.1. Let ω be the arc on ∂U between z1 and z2 that contains no
other landing points of external rays inRn. Let R be the region in C\U
that is bounded by ω, ρ1, and ρ2. The Julia arc Jk that corresponds to
the pair ρ1, ρ2 is the closure of the intersection of J with the region R.

It follows immediately from the definition that the map fn takes
each Julia arc Jk of Πn onto the closure of one of the two connected
components of J \ {α}: either J0 that contains the boundary of U0 or
Jα that contains the boundary of U−1. The first case occurs when the
landing points z1 and z2 are the same. In this case the map fn is one
to one. In the other case, i.e., z1 6= z2, the preimage of each point z of
Jα under fn is a singleton except if z = α, when the preimage consists
of two points.

Lemma 3.2. The set Dn, n ≥ 0, is the set of 2n+1 points on the unit
circle such that the angular lengths of complimentary intervals alternate
between 1/(3 · 2n) and 2/(3 · 2n). In particular, there exists a constant
L ≥ 1 independent of n, and an orientation preserving piecewise linear
L-bi-Lipschitz map ψ of T whose break points are points of Dn, and
such that ψ(Dn) is a set of 2n+1 points on the unit circle such that all
complementary intervals have equal lengths.

Proof. Let I and J be two adjacent complementary intervals at level
n. Application of the map g(z) = z2 doubles the lengths of each one of
them and keeps them adjacent. Because for n = 0 the points 1/3 and
2/3 satisfy the desired property and form a 2-cycle under the dynamics
of g, the first part of the claim follows from induction. The second part
follows from the observation that in order to make all complementary
intervals to have the same length, one needs to scale the complementary
intervals of length 1/(3 · 2n) by 3/2 and the complementary intervals
of length 2/(3 · 2n) by 3/4. In particular, L = 3/2. �

Let us finish this section with a description of a pinched disk topo-
logical model for the basilica. Let d be the diameter of D with one
endpoint at e(1/3), and let D± be the corresponding semi-disks. For
the sake of definiteness we assume that e(2/3) is contained in D−. Let
us connect the points e(1/3) and e(2/3) of D0 with the hyperbolic ge-
odesic γ0 ⊂ D. The points of D1 split into two symmetric pairs, one
contained in D+, the other contained in D−. Each of these pairs can
be connected with a hyperbolic geodesic. Since {e(1/3), e(2/3)} is a
periodic cycle for the map g, one of these geodesics, namely the one
contained in D−, is the geodesic γ0. We denote the other geodesic by
γ1. The full preimage of ∂γ1 under the doubling map g consists of two
pairs of points in D2, one contained in D+, the other contained in D−.
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Connecting each of these pairs with a hyperbolic geodesic, we obtain
two new geodesics in D2 \ D1, denoted by γ2

+ and γ2
−. By the same

procedure, for each geodesic γ2
ε , ε = ±, we obtain two new geodesics

(“pullbacks” of γ2
ε ), one in D+ and the other contained in D−, which we

denote by γ3
(ε1 ε2), εi ∈ ±, i = 1, 2. Proceeding this way, for each level

n ∈ N, we can construct 2n−1 hyperbolic geodesics γnε̄ , ε̄ = (ε1 . . . εn−1),
εi ∈ ±, paring the points of Dn \ Dn−1. It is easy to show that all
geodesics γnε̄ are disjoint. One can also show that together they form a
closed subset Q of D. This subset (endowed with a partition into the
geodesics γnε̄ ) is called the basilica lamination; see Figure 2.

Let us consider an equivalence relation ∼
f

on C whose classes are

either the geodesics of the basilica lamination or single points.

Theorem 3.3. [L, Theorem 24.33] The quotient of (C,D) by the equiv-
alence relation ∼

f
is homeomorphic to (C,K). Moreover, this homeo-

morphism coincides with the inverse Böttcher coordinate ψ∞ on C \D
and sends the geodesics γnε̄ to the corresponding level n preimages of
the α-fixed point.

The equivalence relation ∼
f

induces an equivalence relation on the

circle T that pairs points of D∞ :=
⋃
Dn, where θ1 ∼

f
θ2 if and only

if the rays ρθ1 and ρθ2 land at the same point of J . We will refer
to it as the basilica lamination of T. (This “lamination” has zero-
dimensional leaves.) Obviously, the basilica lamination of T contains
the same amount of information as the basilica geodesic lamination of
D.

For the sake of reference, let us state a simple lemma:

Lemma 3.4. Any homeomorphism ξ : U∞ ∪ J → U∞ ∪ J lifts (by
means of the extended inverse Böttcher coordinate ψ∞ : C \D→ U∞ ∪
J ) to a homeomorphism h : C \ D → C \ D that preserves the basilica
lamination of T, and whose restriction ξ∞ to T satisfies

(3.1) ψ∞ ◦ ξ∞ = ξ ◦ ψ∞.
Conversely, any homeomorphism h : C \ D→ C \ D that preserves the
basilica lamination of T descends to a homeomorphism ξ : U∞ ∪ J →
U∞ ∪ J .

Proof. On C\D, the map h is defined as φ∞◦ξ◦ψ∞. By the Carathéodory
Theory, the closure C \D is naturally homeomorphic to the prime end
compactification clC U∞ of U∞. The definition of prime ends easily
implies that any homeomorphism ξ : U∞ ∪ J → U∞ ∪ J induces a
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Figure 2. The basilica lamination2.

homeomorphism of clC U∞. It follows that h extends continuously to
the unit circle T. This extension respects the basilica lamination of
T since ξ respects the landing pairing between the rays. Equation 3.1
follows by equating the boundary values of ψ∞ ◦ h and ξ ◦ ψ∞.

Conversely, any homeomorphism h : C\D→ C\D that preserves the
basilica lamination on T descends to a homeomorphism of the quotient
(C \ D)/ ∼

f
. By Theorem 3.3, the latter is naturally homeomorphic to

U∞ ∪ J , providing a desired homeomorphism ξ. �

See [Th, D, L] for a detailed discussion of geodesic laminations and
pinched models.

4. Local properties of quasisymmetries of J

Before we proceed, we briefly recall basic definitions and facts on qua-
siconformal and quasisymmetric maps. For more background one can
consult [Vä, AIM, He].

A homeomorphism f : U → Ũ between open regions in the plane C
or the Riemann sphere Ĉ is called quasiconformal if f is in the Sobolev
space W 1,2

loc and if there exists a constant K ≥ 1 such that the (formal)
Jacobi matrix Df satisfies

||Df(z)||2 ≤ K det(Df(z))

for almost every z ∈ U . In this case we say f is K-quasiconformal ; the
constant K is called dilatation of f . The condition f ∈ W 1,2

loc means

2Source: https://commons.wikimedia.org/wiki/File:Basilica lamination.png
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that the first distributional partial derivatives of f are locally in L2. A
quasiconformal map is necessarily orientation preserving.

If (X, dX) and (Y, dY ) are metric spaces, a homeomorphism f : X →
Y is called quasisymmetric or a quasisymmetry if there exists a home-
omorphism η : [0,∞)→ [0,∞) such that

dY (f(u), f(v))

dY (f(u), f(w))
≤ η

(
dX(u, v)

dX(u,w)

)
,

for every triple of distinct points u, v, w ∈ X. If we want to empha-
size the dependence on the distortion function η, we say that f is
η-quasisymmetric, or η-quasisymmetry.

Suppose U and V are subregions of Ĉ. Then every orientation-
preserving η-quasisymmetric homeomorphism f : U → V is K-quasi-
conformal with K that depends only on η. Conversely, every prop-
erly normalized quasiconformal homeomorphism f : U → V is locally
quasisymmetric, i.e., for every compact set M ⊂ U , the restriction
f |M : M → f(M) is a quasisymmetry, quantitatively, i.e., η depends
only onK and the relative distance betweenM and ∂U ; see [AIM, p. 58,
Theorem 3.4.1 and p. 71, Theorem 3.6.2] and [He, Theorem 11.14]. This
is referred to as the egg yolk principle.

If we have a family of maps with the same dilatation or distortion
function, then we say that the family is uniform. E.g., a family of
homeomorphisms is uniformly quasisymmetric if there exists a home-
omorphism η : [0,∞) → [0,∞) such that each map from the family
is η-quasisymmetric. Inverses and compositions of quasiconformal or
quasisymmetric maps are quantitatively quasiconformal or quasisym-
metric, respectively.

According to the Ahlfors–Beurling theorem [BA], each orientation
preserving η-quasisymmetric map h : T → T has a K-quasiconformal
extension H to the whole complex plane, where K depends only on η.
Conversely, the homeomorphic extension h of each K-quasiconformal
homeomorphism H : D→ D or H : C \ D→ C \ D to T is η-quasisym-
metric for some η that depends only on K.

Let ξ be an orientation preserving homeomorphism of C that leaves
J invariant. Let U, V be bounded Fatou components of f such that
ξ : U → V . Then the homeomorphism ξU,V = φV ◦ ξ ◦ ψU : T → T,
where ψU = φ−1

U , preserves the set of dyadic points. Indeed, this fol-
lows from the fact that ξ preserves the set of global cut-points of J .
By Lemma 3.4, the global homeomorphism ξ also induces a homeomor-
phism ξ∞ of T that satisfies ψ∞ ◦ ξ∞ = ξ ◦ ψ∞. For the same reason
as above, the induced map ξ∞ preserves the set D∞ = ∪∞n=0Dn, where
Dn is the set of all preimages of {1/3, 2/3} under gn, with g(z) = z2.
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Let ξ be a topologically extendable η-quasisymmetric map of J . Let
U and V be bounded Fatou components of f such that ξ(U) = V . In
this case the maps ξU,V , where U runs over all bounded Fatou compo-
nents, are uniform quasisymmetries, i.e, they are η′-quasisymmetries
with η′ that depends only on η. This follows from an elementary fact
that all the bounded Fatou components are uniform quasidiscs, which,
in turn, is a consequence of the hyperbolicity of f . In particular, each
ξU,V has a K-quasiconformal extension to C, where K depends only on
η. The following lemma shows that the same holds for the map ξ∞.

Lemma 4.1. Let ξ be a topologically extendable η-quasisymmetric map
of J . Let ξ∞ be the induced map on the unit circle T that satisfies the
semi-conjugation ψ∞ ◦ ξ∞ = ξ ◦ ψ∞. Then ξ∞ is an η′-quasisymmetric
homeomorphism of T with η′ that depends only on η. In particular, ξ∞
has a K-quasiconformal extension to C, where K depends only on η.

Proof. It is enough to show that there exists C > 0 that depends only
on η, such that if I and J are two adjacent non-overlapping arcs on T
that have the same lengths, then

diam(ξ∞(I))/C ≤ diam(ξ∞(J)) ≤ Cdiam(ξ∞(I)).

To prove this, we first show that there exist constants C1, C
′
1 > 0,

such that if I and J are two adjacent non-overlapping arcs on T, then

diam(I)/C1 ≤ diam(J) ≤ C1diam(I)

if and only if

diam(I ′)/C ′1 ≤ diam(J ′) ≤ C ′1diam(I ′),

where for an interval I in T we denote by I ′ the corresponding Julia
arc, i.e., I ′ = ψ∞(I); we use the same convention in the rest of this
proof. In this statement, for the necessary part C1 is given and C ′1
depends only on C1, and for the sufficiency part it is the other way
around.

Indeed, since ψ∞ does not collapse arcs of T to points, it follows that
if I is such an arc with diam(I) ≥ ε > 0, then there exists δ > 0 that
depends only on ε, such that diam(I ′) ≥ δ. Conversely, the uniform
continuity of ψ∞ implies that if δ > 0 is given such that diam(I ′) ≥ δ,
then there exists ε > 0 that depends only on δ, with diam(I) ≥ ε.

Now, if diam(I)/C1 ≤ diam(J) ≤ C1diam(I), then there exists a
constant ε0 > 0 that depends only on C1, such that for some n ∈ N0

we have

diam(In), diam(Jn) ≥ ε0,
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where In = gn(I) and Jn = gn(J). From the above it follows that this
happens if and only if

diam(I ′n), diam(J ′n) ≥ δ0.

Here, for the “if” part, ε0 depends only on δ0, and for the “only if”
part δ0 depends only on ε0. Thus, there exist constants C2, C

′
2 > 0 that

depend only on ε0 (or only on δ0), such that

diam(In)/C2 ≤ diam(Jn) ≤ C2diam(In)

and

diam(I ′n)/C ′2 ≤ diam(J ′n) ≤ C ′2diam(I ′n).

Note that I ′n = fn(I ′) and J ′n = fn(J ′). We may and will assume that
n is chosen not too large, so that I ′n and J ′n are properly contained
in an open set where the appropriate branch of f−n is well-defined
and conformal. The egg yolk principle now implies that there exists a
constant C ′1 > 0 that depends only on C2, C

′
2, and hence only on C1,

such that

diam(I ′)/C ′1 ≤ diam(J ′) ≤ C ′1diam(I ′).

The converse implication, namely that the last inequalities imply

diam(I)/C1 ≤ diam(J) ≤ C1diam(I),

for some C1 > 0 that depends only on C ′1, follows the same lines with
the egg yolk principle applied to fn rather than to f−n.

We are now ready to finish the proof. If I and J are two adjacent
non-overlapping arcs of T that have the same lengths, then for some
absolute constant C ′1 > 0 we have

diam(I ′)/C ′1 ≤ diam(J ′) ≤ C ′1diam(I ′).

Since ξ is η-quasisymmetric, there exists a constant C ′2 > 0 that de-
pends only on η and C ′1, such that

diam(ξ(I ′))/C ′2 ≤ diam(ξ(J ′)) ≤ C ′2diam(ξ(I ′)).

But, for each interval I in T, it follows from ψ∞ ◦ ξ∞ = ξ ◦ ψ∞ that
ξ(I ′) = (ξ∞(I))′, and so

diam((ξ∞(I))′)/C ′2 ≤ diam((ξ∞(J))′) ≤ C ′2diam((ξ∞(I))′).

Now we apply the above claim to conclude that there exists a constant
C > 0 that depends only on C ′2 with

diam(ξ∞(I))/C ≤ diam(ξ∞(J)) ≤ Cdiam(ξ∞(I)),

and the lemma follows. �
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5. Thompson group action on J

5.0.1. Thompson groups. The Thompson group F is a group of orienta-
tion preserving piecewise linear homeomorphisms of the closed interval
[0, 1] whose break points, i.e., points of non-differentiability, are dyadic
points and such that on intervals of linearity the slopes are integer
powers of 2. See [CFP] for background on the group F as well as the
Thompson group T of the unit circle, defined below. It follows imme-
diately that the elements of F preserve the set of dyadic points. The
group F is generated by

A(t) =


t/2, 0 ≤ t ≤ 1/2,

t− 1/4, 1/2 ≤ t ≤ 3/4,

2t− 1, 3/4 ≤ t ≤ 1,

and

B(t) =


t, 0 ≤ t ≤ 1/2,

t/2 + 1/4, 1/2 ≤ t ≤ 3/4,

t− 1/8, 3/4 ≤ t ≤ 7/8,

2t− 1, 7/8 ≤ t ≤ 1.

t
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Figure 3. The graph of A(t).

Similarly, the Thompson group T is the group of orientation pre-
serving piecewise linear (in the angular metric) homeomorphisms of
the unit circle T that preserve the set of dyadic points, whose break
points are dyadic points, and the slopes on intervals of linearity are
integer powers of 2. Elements of the Thompson group F induce in the
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t
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Figure 4. The graph of B(t).

obvious way elements of T that fix 1 ∈ T. In addition to the elements
induced by A and B defined above, the group T is generated by

C(t) =


t/2 + 3/4, 0 ≤ t ≤ 1/2,

2t− 1, 1/2 ≤ t ≤ 3/4,

t− 1/4, 3/4 ≤ t ≤ 1.

t
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Figure 5. The graph of C(t).

5.0.2. Pseudo-group Υg. For further reference, let us formulate two
elementary lemmas:
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Lemma 5.1. Let I0 and I1 be two non-empty open arcs on T so that
the endpoints are dyadic. Then there exists an orientation preserving
piecewise linear map τ from I0 onto I1 whose break points are dyadic
points and such that on each interval of linearity, the slope of τ in the
angular metric is 2n for some n ∈ Z.

Proof. First, we may assume by applying rotations by dyadic numbers
that both I0 an I1 have a common endpoint at 1, and they can be
identified with intervals in [0, 1] with one endpoint at 0. Then the other
endpoints of I0 and I1 are dyadic points d0, d1 ∈ (0, 1], respectively. We
may assume that d0 = k/2n, d1 = m/2n and k < m. We now apply the
identity to the first k − 1 intervals of length 1/2n comprising (0, d0],
and scale the last such interval by 2. All the slopes of such a map on
(0, d0] are integer powers of 2 and this map takes (0, d0] to the interval
(0, d0 + 1/2n]. Inductive process now finishes the proof. �

Recall that g stands for the doubling map of the circle. Given a path
γ : [0, 1] → T, a moment m ∈ N0, and a preimage z0 ∈ g−m(γ(0)), we
can uniquely lift the path γ by gm to a path δ : [0, 1]→ T with δ(0) =
z0. Informally, we will refer to the corresponding analytic continuation
δ(t) = g−m(γ(t)) of g−m along γ as the branch of g−m on γ that starts
at z0.

In particular, we can consider an arc I ⊂ T, a curve gn : I → T,
and a branch of some g−m on this curve. We obtain a composition
ξ = g−m ◦ gn on I. If the image Ĩ := ξ(I) is also an arc on T (i.e.,
ξ : I → T does not “wrap around the circle”), then ξ : I → Ĩ is a linear
(in the angular coordinate) diffeomorphism with slope 2n−m. Let us
denote the pseudo-group of such diffeomorphisms by Υg.

Lemma 5.2. If I and Ĩ are arcs of T whose endpoints are dyadic, and
if ξ is a linear map of I onto Ĩ such that the slope of ξ in the angular
coordinate is an integer power of 2, then ξ belongs to the pseudo-group
Υg.

Proof. Let I = [a, b] and Ĩ = [ã, b̃]. Since a is assumed to be dyadic,
we can find n ∈ N0 such that gn(a) = 1. Let us consider the branch
of g−n on the path gn : I → T that starts at 1. The composition
r = g−n ◦ gn : I → T is a linear (in the angular coordinate) map with
slope 1. Hence it rotates I to a dyadic interval J = [1, e(θ)], θ ∈ [0, 1].

Likewise, we can find a moment ñ ∈ N0 and a branch of g−ñ such
that the composition r̃ = g−ñ ◦gñ : Ĩ → T rotates Ĩ to a dyadic interval
J̃ = [1, e(θ̃)], θ̃ ∈ [0, 1]. Moreover, θ̃ = 2kθ, where 2k is the slope of ξ
on I, k ∈ Z. Hence J̃ = gk(J), where, in the case when k is negative,
the branch of gk is chosen so that the point 1 is fixed.
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The desired map can now be written as r̃−1 ◦ gk ◦ r. �

Let us say that a piecewise linear homeomorphism T→ T is piecewise
dynamical if its restriction to every interval of linearity belongs to the
pseudo-group Υg.

Corollary 5.3. Any element of the Thompson group T is piecewise
dynamical.

For instance, the A-generator of the Thompson group can be ob-
tained as follows:

A =


g−1, 0 ≤ t ≤ 1/2, where the branch g−1 fixes 1,

g−2 ◦ g2, 1/2 ≤ t ≤ 3/4, where g−2 : (0, 1)→ (1/4, 1/2),

g, 3/4 ≤ t ≤ 1.

5.0.3. Piecewise dynamical action of the Thompson group on J . Simi-
larly to Υg, let us consider the dynamical pseudo-group Υf comprising
local isomorphisms ψ = f−m ◦ fn : V → W , where m,n ∈ N0, V is
simply connected, fn|V is univalent, and f−m ◦ fn|V is a well defined
analytic branch of the algebraic function f−m ◦ fn. Note that in the
log-Böttcher coordinate u = log φ∞(z), the map ψ is affine with slope
2n−m, u 7→ 2n−mu+ c, c ∈ R.

Let us say that a homeomorphism ξ : J → J̃ between Julia arcs is
piecewise dynamical if J can be decomposed into finitely many Julia
arcs Ji that share only global cut-points, so that each restriction ξ|Ji ,
extended to some neighborhood Wi, belongs to the pseudo-group Υf .

If J = J̃ = J , piecewise dynamical homeomorphisms ξ : J → J form
a group, and we denote it by Dyn(J ).

Let us also say that a map h : U → V between two bounded Fatou
components respects the Böttcher coordinate if it is the identity in the
Böttcher coordinates of these components, i.e.,

φV ◦ h ◦ ψU = id: D→ D.

Lemma 5.4. The Thompson group T induces the group of piecewise
dynamical quasisymmetries of J that keep the central Fatou component
∂U0 invariant. Moreover, they admit global quasiconformal extensions
to C that respect the Böttcher coordinates of all non-central bounded
Fatou components.

Proof. Let ξ0 be an element of T acting on ∂U0 piecewise linearly in
the (inner) angular coordinate. We want to extend it to an orientation
preserving quasisymmetrtic homeomorphism of J (actually, to a global
quasiconformal map of (C,J )).
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Let I ⊆ ∂U0 be an arc of linearity for ξ0. By Corollary 5.3, ξ0|I =

f−m ◦fn for some n,m ∈ N0. Hence ξ0 admits an analytic extension ξ̂0

to a neighborhood V of I as an element of the dynamical pseudo-group
Υf .

Let us puncture out from I all dyadic points of level ≤ n. Take any
complementary (open) interval J ⊆ I. Let ΩJ be the region bounded
by J and two external rays landing at ∂J (where the rays are selected
so that ΩJ does not intersect the wakes attached to ∂J). Since fn(ΩJ)
is disjoint from U0 ∪U−1, all branches of f−m are well defined on it, so

ξ̂0 extends analytically to ΩJ (mapping it to some ΩJ̃). We restrict this
map to the intersection of ΩJ with the filled Julia set K and extend it
continuously to the closure KJ of this set.

In this way, we extend ξ0 to all K \ U0, except finitely many limbs
attached to ∂U0. Let Sz be one of the wakes containing such a limb.
Its root z ∈ ∂U0 is a dyadic point of some level k. Let z̃ = ξ0(z). Since

ξ0 is Thompson, z̃ is also dyadic (of some level k̃), so there is a wake
Sz̃ rooted at z̃.

Recall that S0 is the sector bounded by ρ±
1
3 that contains U0. Then

fk and f k̃ conformally map Sz and Sz̃, respectively, onto S0. (If k or k̃
is 0, then f takes Sz, respectively Sz̃, to S0.)

Thus, we obtain a map ξz = f−k̃ ◦ fk : S → S̃ of pseudo-group
Υf . Restricting it to the filled Julia set, we obtain a homeomorphism
ξz : Kz → Kz̃ between the corresponding limbs. Putting these maps
together, we obtain an extension of ξ0 to a homeomorphism ξ : K\U0 →
K \ U0 that restricts to an element in Dyn(J ).

Let us show that the map ξ admits a global quasiconformal extension
to the complex plane. By definition, it has a conformal extension to
each non-central bounded Fatou component as a conformal map f−m ◦
fn. Since ∂U0 is a quasicircle and ξ0 : ∂U0 → ∂U0 is piecewise linear in
the inner angular coordinate, it is quasisymmetric. Hence it admits a
quasiconformal extension to U0 (Ahlfors-Beurling extension [BA]).

We now extend ξ to U∞. Let Ji be the arcs of ∂U0 considered above,
and let zi be their boundary dyadic points. Let Yi = ∂KJi and Zi =
∂Kzi be the corresponding Julia arcs. In the Böttcher coordinate, these
Julia arcs correspond to some arcs Yi and Zi tessellating the circle T.

Since ξ belongs to the dynamical pseudo-group Υf on each Yi and
Zi, it induces linear (in the outer angular coordinate of the circle T)
maps Yi → Ỹi and Zi → Z̃i . Moreover, since ξ0 preserves the cyclic
order in which the arcs Ji and points zi appear on ∂U0, these maps
form a single piecewise linear homeomorphism h : T → T. Applying
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the Ahlfors-Beurling extension once again, we obtain a quasiconformal
extension ĥ of h to U∞.

Note that h preserves the basilica lamination on T. It is so on

T \
⋃

∂Zi (= T \
⋃

∂Yi)

since ξ admits local homeomorphic extensions to C near any point of
J \ {zi}. It is also true at the points of

⋃
∂Zi. Indeed, the lamination

pairs the boundary points of each Zi (corresponding to the rays enclos-
ing the limb Zi). Since ξ maps the limb Zi to another limb Z̃i, the
boundary points of Z̃i = h(Zi) correspond to the rays enclosing Z̃i. So,

they are paired by the lamination. Hence ĥ descends to a homeomor-
phism of (C,K) providing us with the desired quasiconformal extension
of ξ to C. Here we also need the fact that the Julia set J is removable
for quasiconformal maps [Jo, Corollary 2 on p. 5 and Remark on p. 3].
We continue to denote this extension by ξ.

It remains to show that ξ respects the Böttcher coordinates of all
non-central bounded Fatou components. In each such component U
it has the form f−m ◦ fn and maps it to another such component
Ũ . The claim now follows from the fact that the Böttcher coordinate
of a bounded Fatou component with dynamical distance k to U0 is
φ0 ◦ fk. Indeed, since in the construction above n is chosen so that
fn(U) does not contain the postcritical points, we have that n is at
most the dynamical distance from U to U0. If l ∈ N0 is such that n+ l
is the dynamical distance from U to U0, then for the branch of f−l that
takes U0 to fn(U), the map ξ in U is given by f−m ◦ f−l ◦ fn+l. We
conclude that m+ l is the dynamical distance from Ũ to U0 and for an
appropriate branch of f−(m+l) the map ξ in U is given by

f−(m+l) ◦ fn+l.

This is equivalent to saying that ξ respects the Böttcher coordinates.
�

5.0.4. Thompson-like action. The Thompson group T is based on dy-
adic points, iterated preimages of the fixed point 1 under the doubling
map g. More generally, one can consider iterated preimages of any
periodic cycle α and define the associated Thompson-like group Tα.
I.e., the elements of Tα preserve the set Dα of all preimages of the
elements of α under the iterates of the map g, the break points are
at Dα, and the slopes are integer powers of 2. The above discussion
readily extends to this setting, and in particular, we have the following
counterpart of Corollary 5.3.
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Corollary 5.5. Any element of the Thompson-like group Tα is piece-
wise dynamical.

In what follows, we let α = {1/3, 2/3}. Let T bα be the subgroup
of the Thompson-like group Tα consisting of homeomorphisms T→ T
that preserve the basilica lamination.

Lemma 5.6. Any piecewise dynamical homeomorphism ξ : J → J
induces a homeomorphism ξ∞ : T → T that belongs to T bα. Moreover,
the map Dyn(J )→ T bα, ξ 7→ ξ∞, is a group isomorphism.

Proof. It follows from the definition that any piecewise dynamical
homeomorphism ξ of J has a homeomorphic extension to U∞, and
therefore, by Lemma 3.4, the induced homeomorphism ξ∞ of T pre-
serves the basilica lamination. The rest of the properties of ξ∞ follow
from the assumption that ξ is piecewise dynamical.

Conversely, any such map ξ∞ extends to a homeomorphism of C \D
and hence descends to a homeomorphism ξ of J by Lemma 3.4. The
homeomorphism ξ has to be piecewise dynamical because such is ξ∞
according to Corollary 5.5.

The statement about the map ξ 7→ ξ∞ being an isomorphism follows
immediately from the relation

ψ∞ ◦ ξ∞ = ξ ◦ ψ∞.
�

One element of T that will be useful in what follows is the rotation
ρ(z) = −z. It is given by f−2 ◦ f 2, where the branch of f−2 is chosen
so that f−2(α) = −α.

6. Inversion of J

In this section we define an inversion ι of J that along with the action
of the Thompson group T on J generates a group whose elements
approximate every quasisymmetric self-map of J quantitatively. We
recall that Jα = ∂Kα, where Kα is the limb rooted at α that contains
the boundary ∂U−1 of the bounded Fatou component U−1 containing
−1. Also, J0 = (J \ Jα) ∪ {α}.

Lemma 6.1. There exists a quasisymmetric homemorphism ι of J
that fixes α, interchanges Jα and J0, and satisfies

ι2 = id .

Moreover, ι has a global quasiconformal extension to C and respects the
Böttcher coordinates of all bounded Fatou components.
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Proof. We define ι by ι = f on Jα, and ι = f−1 on J0. Here we
choose the branch of f−1 that fixes α. We prove that so defined ι is
quasisymmetric by showing that it extends to a quasiconformal map of
C.

In each bounded component of the Fatou set whose closure intersects
Jα we extend ι by ι = f , and in each such component whose closure
intersects J0 we extend it by ι = f−1. In particular, it is immediate
that if U is any bounded Fatou component and ∂Ũ = ι(∂U), then this
extension of ι respects the Böttcher coordinates of U and Ũ .

The map ι has obvious conformal extensions to both wakes in C
bounded by the two external rays in U∞ landing at α. These extensions
are conjugate by φ∞ to the maps g(z) = z2 for 1/3 ≤ e(θ) ≤ 2/3 and
z 7→ −

√
z for −1/3 ≤ e(θ) ≤ 1/3, respectively, where the principal

branch of the square root is selected. We can use the Ahlfors–Beurling
extension [BA] to extend this piecewise linear map to a quasiconformal
map of C \ D onto itself. This quasiconformal extension is conjugated
back by φ∞ to a quasiconformal map of U∞ onto itself that agrees with
ι on the boundary of U∞.

Combining the above quasiconformal extension of ι with the confor-
mal extensions into bounded Fatou components, we obtain a homeo-
morphism of C that is quasiconformal on the Fatou set. But the Julia
set of a postcritically finite polynomial is removable for quasiconformal
maps [Jo], and so we get a quasiconformal map of C. Such a map is
quasisymmetric, and hence ι is quasisymmetric on J . �

We call the homeomorphism ι the inversion with respect to α. The
composition σ = ρ ◦ ι with the rotation ρ, given by ρ(z) = −z, acts
as a shift to the right by one on the infinite chain C of bounded Fatou
components that intersect the real line. This follows from the fact
that σ preserves C and takes ∂U−1 to ∂U0. Moreover, σ respects the
Böttcher coordinates of all bounded Fatou components, except that
σ : U−1 → U0 is 180◦-rotation in the Böttcher coordiantes. (In general,
we will say that a map h : U → V between bounded Fatou components
rotates the Böttcher coordinate if φU ◦ h ◦ ψV is a rotation of the disk
D.)

These remarks allow us to derive the following property:

Lemma 6.2. The group T̂ generated by the Thompson group T and ι
acts transitively on the vertices of T. Moreover, let U be an arbitrary
bounded Fatou component, and let p be the shortest combinatorial chain
in T that joins U0 to U . Then there exists t ∈ T̂ with the following
properties:
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(i) t(U) = U0 and t respects the Böttcher coordinate;

(ii) for any bounded Fatou component V /∈ p, the map t : V → t(V )
respects the Böttcher coordinate;

(iii) for any bounded Fatou component V ∈ p, the map t : V → t(V )
rotates the Böttcher coordinate by some dyadic angle.

Proof. Suppose that p = {U0, U1, . . . , Uk = U}. We will argue by
induction on k. The base k = 0 is obvious. In general, the component
U1 touches U0, and so the base point of U1 corresponds to a dyadic
point on ∂U0. The group T contains rotations by any dyadic angle,
and hence acts transitively on the dyadic points of ∂U0. Thus there
exists an element t1 ∈ T such that t1(U1) = U−1. The elements of T
preserve the combinatorial distance on T, and therefore t1(U) has the
same combinatorial distance k to U0 as U . Now we apply the shift σ
to take U−1 to U0. The combinatorial distance from σ ◦ t1(U) to U0 is

k − 1, and we can apply the inductive hypothesis. Let t2 ∈ T̂ be an
element given by the inductive hypothesis that takes σ ◦ t1(U) to U0.

The map t′ = t2 ◦ σ ◦ t1 ∈ T̂ takes U to U0. Moreover, σ ◦ t1
respects the Böttcher coordinates of all non-central bounded Fatou
components except U1, on which it rotates the coordinate by 180◦.
On U0 itself, it rotates the Böttcher coordiate by some dyadic angle.
By the inductive assumtion, t′ ∈ T̂ respects the Bötcher coordinate
for all V /∈ p and rotates it for all V ∈ p by some dyadic angles.
Finally, by postcomposing t′ with a rotation γ in T , we can ensure that
t = γ ◦ t′ : U → U0 respects the Böttcher coordinate as well. �

7. Proof of Theorem 1.1

Let n ∈ N be arbitrary and let Πn = {Jk, k = 1, 2, . . . , 2n+1} be the
partition of J by Julia arcs described in Section 3. We replace the map
ξ restricted to each Jk by a piecewise dynamical map as follows.

Lemma 7.1. Let ξ be a topologically extendable η-quasisymmetric map
of J . Then there exist N ∈ N0 and a finite family F of Julia arcs that
depend only on η and have the following property. For all n ≥ N , for
any J ∈ Πn, if J̃ = ξ(J), then there exists M ∈ N0 with Λ̃ = fM(J̃) ∈
F . Moreover, Λ̃ is the closure of a connected component of J \{z̃1, z̃2}
for some global cut-points z̃1, z̃2 ∈ ∂U0, and f−M is conformal in a
neighborhood of Λ̃.

Proof. We first note that ξ has a K-quasiconformal extension to C,
where K depends only on η. Indeed, it follows from Lemma 4.1 that
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the homeomorphism ξ∞ of T defined by

ψ∞ ◦ ξ∞ = ξ ◦ ψ∞

has a K-quasiconformal extension to C \D, where K depends only on
η. Since φ∞ is conformal in U∞, it implies that ξ has an extension to
U∞ as a K-quasiconformal homeomorphism. Likewise, the discussion
preceding Lemma 4.1 implies that ξ has K-quasiconformal extension
to each bounded Fatou component, perhaps with a different K but
that depends only on η. By [Jo], the Julia set J is removable for
quasiconformal maps, and therefore the claim follows.

Assume that the Julia arc J in the statement of the lemma is deter-
mined by adjacent external rays ρ1, ρ2 ∈ Rn with landing points z1, z2,
respectively. There are two cases to consider: z1 = z2 and z1 6= z2.

If z = z1 = z2, then z is the root of a bounded Fatou component U
such that ∂U ∈ J , and J = Jz = ∂Kz, where Kz is the limb rooted at z.
Since any homeomorphism of J preserves the set of global cut-points,
ξ(z) is such a point. Moreover, from [He, Proposition 10.8] applied to
the quasisymmetry ξ it follows that there exists N ∈ N0 that depends
only on K such that if n ≥ N , then J ∈ Πn implies that the Julia
arc J̃ does not contain ∂U0. Roughly speaking, [He, Proposition 10.8]
states that if A and B are overlapping sets in a metric space with the
diameter of A being smaller than the diameter of B, then an application
of a quasisymmetric map with controlled distortion cannot spoil this
relationship between the diameters of the corresponding images of A
and B too much, quantitatively. In particular, it follows from the proof
of Lemma 2.1 that ξ(z) is the root of the bounded Fatou component Ũ
such that ∂Ũ = ξ(∂U). Let M ∈ N0 be the dynamical distance from
Ũ to U0. Then Λ̃ = fM(J̃) = J0, and the claim follows in this case,
with F consisting of the single element J0. We have z̃1 = z̃2 = α. The
fact that f−M is conformal in a neighborhood of J0 follows from the
assumption that M is the dynamical distance from Ũ to U0.

Now assume that z1 6= z2. We know from Lemma 3.1 that there
exists a bounded Fatou component U such that z1, z2 ∈ ∂U . As above,
there exists N ∈ N0 that depends only on K such that if n ≥ N , then
for J ∈ Πn we have that J̃ does not contain ∂U0. Let Jz1 = ∂Kz1 and
Jz2 = Kz2 , where Kz1 ,Kz2 are the two limbs that are attached to J at
z1 and z2, respectively.

The egg yolk principle applied to an appropriate branch of f−n im-
plies that diamJzi ≥ c diamJ, i = 1, 2, for some c > 0 that does not

depend on n or J . Let J̃i = ξ(Jzi), i = 1, 2. Since ξ is quasisym-

metric, an application of [He, Proposition 10.8] gives that diamJ̃i ≥
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c̃ diamJ̃ , i = 1, 2, where the constant c̃ depends only on K. Since f
is hyperbolic, there exist constants C = C(f) > 0 and M ∈ N0 with
the following properties. First, for Λ̃ = fM(J̃) we have diam(Λ̃) ≥ C.
Then, there exist a point p ∈ Λ̃ and r > 0, such that Λ̃ is contained in
the disc B(p, r/4). Finally, the disc B(p, r) does not contain 0 and 1,
i.e., the postcritical points of f . In particular, r ≥ 2C. Since there are
only finitely many large limbs of J , the claim about the existence of
a finite family F would follow if we show that there is a lower bound
depending only on K for diamfM(J̃i), i = 1, 2. If both fM(J̃1) and
fM(J̃2), are not contained in B(p, r/2), then

diamfM(J̃i) ≥ r/4 ≥ C/2, i = 1, 2.

If fM(J̃i) is contained in B(p, r/2) for some i = 1, 2, then the claim
follows from the egg yolk principle applied to f−M in the disc B(p, r),
and the fact that diamJ̃i ≥ c̃ diamJ̃ , i = 1, 2.

The claim that, in the case z1 6= z2, the map f−M is conformal in a
neighborhood of Λ̃ follows from the assumption that Λ̃ is contained in
B(p, r/4) and B(p, r) does not contain either 0 or 1.

Finally, Λ̃ is the closure of a connected component of J \ {z̃1, z̃2},
where z̃1 = fM(ξ(z1)), z̃2 = fM(ξ(z2)), and these points belong to the
boundary of a bounded Fatou component V . The component V does
not have to be U0. However, since diam(Λ̃) ≥ C = C(f), the dynamical
distance m ∈ N0 from V to U0 depends only on C. The set fm(Λ̃) is
a connected component of J \ {fm(z̃1), fm(z̃2)}, and fm(z̃1), fm(z̃2)
belong to ∂U0. Moreover, if we replace each element Λ̃ ∈ F by fm(Λ̃),
all the other properties will be unchanged since m depends only on C,
and hence only on f . This completes the proof. �

Lemma 7.2. Let Λ = J0, and let Λ̃ be a Julia arc from the finite family
F guaranteed by Lemma 7.1. Then there exists a piecewise dynamical
homeomorphism T of Λ \ {α} onto Λ̃ \ {z1, z2}.

Proof. If, in the notation of Lemma 7.1, z̃1 = z̃2, the present lemma
is trivial. Otherwise, the intersection of Λ̃ with ∂U0 is an arc with
dyadic endpoints. In the Böttcher coordinate of U0 the intersection
Λ ∩ (∂U0 \ {α}) corresponds to the open arc I0 = T \ {1}, and the
intersection Λ̃ ∩ (∂U0 \ {z̃1, z̃2}) corresponds to an open arc I1 on T.
Thus we can apply Lemma 5.1 to get a piecewise linear map τ from I0

onto I1 with only dyadic break points and with slopes that are integer
powers of 2. The map τ corresponds to a piecewise dynamical map T
from Λ onto Λ̃ as described in Section 5, specifically in Lemma 5.4. �
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Let Λ = J0. For n large as in Lemma 7.1, we consider a tiling
of J into the Julia arcs Ji, i = 1, 2, . . . , 2n+1, of Πn. For each i =
1, 2, . . . , 2n+1, there exists ni ∈ {n, n + 1} such that fni maps Ji onto
Λ. Let J̃i = ξ(Ji), and Λ̃i = fMi(J̃i), where Mi is the constant from
Lemma 7.1 corresponding to J̃i. Now, let us replace the map ξ on
Ji \ {zi1, zi2}, where zi1, z

i
2 are the endpoints of Ji, by the map τi =

f−Mi ◦ Ti ◦ fni , where Ti is the piecewise dynamical map from Λ \ {α}
onto int Λ̃i that comes from Lemma 7.2. Pasting these 2n+1 maps
together, we obtain a global piecewise dynamical map τ ∈ Dyn(J ).

We next prove that τ is quasisymmetric on J with a controlled
distortion function η by showing that it has a quasiconformal extension
to the whole plane with a controlled dilatation K. We do this by
showing that τ can be quasiconformally extended into each bounded
Fatou component and into the basin at infinity, so that the dilatation
is controlled. Let U be an arbitrary bounded Fatou component of f .
If the dynamical distance m from U to U0 is greater than n, the map
τ has a conformal extension into U . Indeed, it is defined in ∂U as a
single element of the pseudo-group Υf . Assume now that m is at most
n. Then the boundary of U is partitioned by its intersection with the
elements from Πn into the dyadic intervals of level n−m. Let t be the
piecewise dynamical map of ∂U that is the restriction of τ to ∂U . It
agrees with ξ at the endpoints of the dyadic intervals above. Now we
need two more lemmas concerning circle maps.

For a homeomorphism ξ of T and a finite set E ⊂ T we denote by
ξE the linear interpolation of the restriction ξ|E of ξ to E.

Lemma 7.3. For any distortion homeomorphism η, there exists a dis-
tortion homeomorphism η′ with the following property. If ξ is an η-
quasisymmetric map of the unit circle T and E is a finite subset of
T such that all the complementary intervals of E in T have the same
angular length, then ξE is η′-quasisymmetric.

Proof. Let d denote the angular distance on T. Since ξ is η-quasi-
symmetric, [He, Proposition 10.8] gives that there exists a constant
L ≥ 1 that depends only on η such that for any three distinct points
o, p, q ∈ E with d(o, p) = d(o, q), we have

(7.1) d(ξ(o), ξ(p)) ≤ Ld(ξ(o), ξ(q)).

Let a denote the angular length of each complementary interval of
E. To verify that ξE is quasisymetric with a distortion function that
depends only on η, it is enough to check that there exists a constant
C ≥ 1 that depends only on η and has the following property. If
o, p, and q are arbitrary points on T with d(o, p) = d(o, q) = δ, for



26 MIKHAIL LYUBICH AND SERGEI MERENKOV

some δ > 0, then d(ξE(o), ξE(p)) ≤ Cd(ξE(o), ξE(q)). We consider the
following cases.
Case 1: δ ≤ a and o, p, q are contained in the same complementary
interval of E. This case is trivial and C = 1 because ξE is linear on
each such interval.
Case 2: δ ≤ a and o, p, q are not contained in the same complementary
interval. We assume that o and p are contained in the closure of the
same complementary interval I of E and q is in the adjacent interval
I ′. Let us assume that ξE scales I by s and it scales I ′ by s′. We know
from (7.1) that s/L ≤ s′ ≤ Ls. Let c ∈ E be the common point of the
intervals I and I ′. Then

d(ξE(o), ξE(q)) = d(ξE(o), ξE(c)) + d(ξE(c), ξE(q)) = sd(o, c) + s′d(c, q).

For the last expression we have

sd(o, q)/L ≤ sd(o, c) + s′d(c, q) ≤ Lsd(o, q).

Combining this with the assumptions that d(o, p) = d(o, q) and that
ξE scales I by s, we conclude that

d(ξE(o), ξE(p))/L ≤ d(ξE(o), ξE(q)) ≤ Ld(ξE(o), ξE(p)),

and so C = L in this case.
Case 3: a < δ ≤ 3a. This case reduces to a repeated application of the
proof of Case 2 at most 3 times. We conclude that C = L + L2 + L3

works in this case.
Case 4: δ > 3a. Let Io, Ip, and Iq be the closures of the complementary
intervals of E that contain o, p, and q, respectively. Since ξE agrees
with ξ at the endpoints of each such interval, there exist o′, p′, and q′

in Io, Ip, and Iq, respectively, such that ξE(o) = ξ(o′), ξE(p) = ξ(p′),
and ξE(q) = ξ(q′). Now,

d(ξE(o), ξE(p))

d(ξE(o), ξE(q))
=
d(ξ(o′), ξ(p′))

d(ξ(o′), ξ(q′))
≤ η

(
d(o′, p′)

d(o′, q′)

)
≤ η

(
δ + 2a

δ − 2a

)
≤ η(5),

and the claim follows in this case with C = η(5). �

Lemma 7.4. Let L be a finite family of orientation preserving piece-
wise linear homeomorphisms between intervals of T. Let ξ be an ori-
entation preserving homeomorphism of T and let E be a finite subset
of T such that all complementary intervals of E in T have the same
length. Suppose that t is an orientation preserving piecewise linear
homeomorphism of T that agrees with ξ on the set E. Moreover, as-
sume that for each complementary interval I of E there are M,n ∈ N0
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with gM ◦ t ◦ g−n being an element of L defined on gn(I). Then there
exists a constant L ≥ 1 that depends only on L such that the map ξ−1

E ◦t
is L-bi-Lipschitz.

Proof. The assumption implies, in particular, that there is a finite
family L0 of orientation preserving linear maps between intervals of T,
that depends only on L, such that for each complementary interval I
of E in T the map gM ◦ ξE ◦ g−n is an element of L0. Therefore the
map gn ◦ ξ−1

E ◦ t ◦ g−n is a homeomorphism of gn(I) that belongs to a
finite family, depending only on L, of orientation preserving piecewise
linear homeomorphisms. Hence there exists L ≥ 1 that depends only
on L such that gn ◦ ξ−1

E ◦ t ◦ g−n is an L-bi-Lipschitz homeomorphism
of gn(I). Since g is the scaling map (by the factor 2) in the angular
metric, the map ξ−1

E ◦ t is L-bi-Lipschitz on each I, and therefore on all
of T. �

Lemmas 7.3 and 7.4 imply that the restriction of the map τ to the
boundary of each bounded Fatou component U has aK ′-quasiconformal
extension to U , where K ′ depends only on η. The set E in Lemma 7.3
is the set of dyadic points at level n − m, where m is the dynamical
distance from U to U0. The finite family L in Lemma 7.4 comes from
Lemmas 7.1 and 7.2. Indeed, Lemma 7.1 guarantees the existence of
a finite family F of subsets of J such that for any Julia arc J ∈ Πn

we have Λ̃ = fM(ξ(J)) ∈ F for some M ∈ N0. Lemma 7.2 then gives
a piecewise dynamical map T from Λ \ {α} onto Λ̃ \ {z1, z2}, in the
notations of that lemma. Because the family F is finite, the family
of such maps T is finite. Now, if the defining external rays of J land
on the boundary of U and if we assume for simplicity that Λ = fn(J)
rather than Λ = fn+1(J), then we have T = fM ◦ τ ◦ f−n, where
the inverse branches of f are chosen appropriately. Passing to the
Böttcher coordinates of U and Ũ = ξ(U) we conclude that the map
gM−m̃ ◦ t ◦ g−(n−m), belongs to a finite family L, where t is the conju-
gate map of the map τ by φU , and m̃ is the dynamical distance from Ũ
to U0. Since ξE is η′-quasisymmetric and ξ−1

E ◦ t is L-bi-Lipschitz, we
conclude that t = ξE(ξ−1

E ◦ t) is η′ ◦L2-quasisymmetric, where L2 is the
scaling map by L2. Thus, the Ahlfors–Beurling extension [BA] gives
that there exists K ′ ≥ 1 that depends only on η′ and L, and hence only
on η, such that the map t has a K ′-quasiconformal extension into D.
Conjugating back via Böttcher coordinates we conclude that τ has a
K ′-quasiconformal extension into every bounded Fatou component U .

To deal with the unbounded component U∞, we first apply Lem-
ma 3.2 and then proceed in the same way as for bounded Fatou compo-
nents, i.e., using Lemmas 7.3 and 7.4. The finite set E in this case is the
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set ψ(Dn), where ψ is the bi-Lipschitz map guaranteed by Lemma 3.2.
The crucial difference is that, unlike the case of bounded Fatou com-
ponents, the boundary of U∞ touches itself and one has to be careful
to preserve the basilica lamination. By Lemma 3.4, any topologically
extendable homeomorphism ξ of J induces a homeomorphism ξ∞ of
T that preserves the basilica lamination. By Lemma 4.1, ξ∞ is η′-
quasisymmetric (with η′ depending only on η). As ξ is replaced by a
piecewise dynamical map τ , the map ξ∞ is replaced by a Thompson-like
element τ∞ satisfying

ψ∞ ◦ τ∞ = τ ◦ ψ∞.
Such a map τ∞ necessarily respects the basilica lamination. By Lem-
mas 7.3 and 7.4, the map τ∞ is η′′-quasisymmetric with η′′ that de-
pends only on η′ and hence only on η. Therefore it extends to a K ′′-
quasiconformal homeomorphism of C \D (with K ′′ depending only on
η′′, and ultimately, only on η).

Thus, the map τ has a K ′′-quasiconformal extension to U∞ as well,
where K ′′ depends only on η. Putting this together, we obtain a K-
quasiconformal extension of τ from J into each Fatou component of f ,
where K = max{K ′, K ′′}. We denote this extension by τ as well. As
above, the polynomial f is postcritically finite, and, according to [Jo],
the Julia set J is removable for quasiconformal maps. The map τ is
hence K-quasiconformal in the whole complex plane, and therefore η′-
quasisymmetric for some η′ that depends only on η. Its restriction τ
to J is thus also η′-quasisymmetric.

Lemma 7.5. Any piecewise dynamical map τ of J belongs to the group
T̂ generated by T and ι.

Proof. It is proved in Lemma 6.2 that the group T̂ acts transitively
on the set of bounded Fatou components. Suppose that τ(∂U0) = ∂Ũ0

and let g ∈ T̂ be such that g(∂U0) = ∂Ũ0. Then g−1 ◦ τ keeps ∂U0

invariant, and so, without loss of generality, we assume that τ keeps
∂U0 invariant. Note that Lemma 2.1 implies that such τ sends the root
of each U 6= U0 to the root of Ũ = τ(U).

Let U be any bounded Fatou component of f and Ũ = τ(U). Let φU
and φŨ be the Böttcher coordinates of U and Ũ , respectively. Since τ is
assumed to be piecewise dynamical, the restriction of the map φŨ◦τ◦ψU
to the unit circle is an element of the Thompson group T of the unit
circle. Here ψU = φ−1

U . Moreover, this map respects the Böttcher
coordinate for all but finitely many bounded Fatou components U .
This follows immediately from the fact that there are only finitely many
global cut-points used in the definition of a piecewise dynamical map.
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Let t be the smallest subtree of T that contains U0 and such that τ
respects the Böttcher coordinate of every bounded Fatou component U
that is not a vertex of t. Let k be the number of vertices of t. We prove
by induction on k that there is an element g of T̂ such that τ = g ∈ T̂ .
If k = 1, then there exists θ ∈ T such that θ−1 ◦ τ is the identity
element on ∂U0. Moreover, since θ respects the Böttcher coordinate of
each bounded Fatou component U 6= U0, then θ−1 ◦ τ is necessarily the
identity in the Böttcher coordinate of every U , and so it is the identity.

Now suppose the result is true for k − 1. Let U be a leaf of t, i.e.,
a degree one vertex, and let Ũ be the leaf of t̃ that corresponds to U
under τ . Let p be the unique path from U0 to U in t. By Lemma 6.2,
there is an element gU ∈ T̂ such that gU(∂U) = ∂U0 and gU respects
the Böttcher coordinates of all bounded Fatou components V with
the possible exception of V being a vertex of p. Likewise, there is
an element gŨ ∈ T̂ that has the same properties with respect to Ũ

and t̃. Also, gU and gŨ respect the Böttcher coordinates of U and Ũ ,
respectively.

Then the restriction of gŨ ◦ τ ◦g
−1
U to ∂U0 equals to the restriction of

an element θU ∈ T , and hence gŨ ◦ τ ◦ g
−1
U ◦ θ

−1
U is the identity on ∂U0.

Moreover, since τ takes the root of U to the root of Ũ , the map θU fixes
the root α of U0. The map g = g−1

U ◦ θU ◦ gU is then an element of T̂
that keeps U invariant, fixes the root of U , and respects the Böttcher
coordinate of every V 6= U . In the Böttcher coordinates of U and Ũ ,
the map τ ◦ g−1 is the identity. Also, it is the identity in Böttcher
coordinates of every vertex V that is not in t. Now we can apply the
induction. �

Recall that in [BF] the authors studied the Thompson-like group
T bα of piecewise linear homeomorphisms of the unit circle that preserve

the basilica lamination. Obviously, our group T̂ generated by T and
ι is isomorphic to a subgroup of T bα. The following is an immediate
corollary of Lemmas 5.6 and 7.5.

Corollary 7.6. The groups T̂ and T bα are isomorphic.

To finish the proof of Theorem 1.1 we need to show that τ approaches
ξ on J uniformly as n goes to infinity. Indeed, as one moves further
away from the vertex of T that corresponds to U0, the diameters of the
corresponding bounded Fatou components go to 0. This follows from
the fact that f is hyperbolic. Moreover, the diameter of each Jk ∈ Πn

goes to 0 as n→∞. This, along with the fact that τ agrees with ξ at
all the preimages of α under fn, finishes the proof of Theorem 1.1. �
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Ann. of Math. (2) 177 (2013), no. 2, 591–643.

[CFP] J. W. Cannon, W. P. Floyd, W. R. Parry, Introductory notes on Richard
Thompson’s groups, Enseign. Math. (2) 42 (1996), no. 3–4, 215–256.

[CG] L. Carleson, Th.W. Gamelin, Complex dynamics, Springer, New York, 1993.
[D] A. Douady, Description of compact sets in C. In: “Topological Methods

in Modern Mathematics, A Symposium in Honor of John Milnor’s 60th
Birthday”, Publish or Perish, 1993.

[DH] A. Douady, J. H. Hubbard, Étude dynamique des polynômes complexes.
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