Welcome to the preprint server of the Institute for Mathematical Sciences at Stony Brook University.

The IMS preprints are also available from the mathematics section of the arXiv e-print server, which offers them in several additional formats. To find the IMS preprints at the arXiv, search for Stony Brook IMS in the report name.
 

PREPRINTS IN THIS SERIES, IN PDF FORMAT.
* Starred papers have appeared in the journal cited.


L. Keen and C. Series
Continuity of Convex Hull Boundaries
Abstract:

In this paper we consider families of finitely generated Kleinian groups {$G_\mu$} that depend holomorphically on a parameter μ which varies in an arbitrary connected domain in $ \mathbb{C}$. The groups $G_\mu$ are quasiconformally conjugate. We denote the boundary of the convex hull of the limit set of $G_\mu$ by $\partial C(G_\mu)$. The quotient $\partial C(G_\mu)/G_\mu$ is a union of pleated surfaces each carrying a hyperbolic structure. We fix our attention on one component Sμ and we address the problem of how it varies with μ. We prove that both the hyperbolic structure and the bending measure of the pleating lamination of $S_\mu$ are continuous functions of $\mu$.

Pages