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Abstract. Fatou components for rational functions in the Riemann sphere

are very well understood and play an important role in our understanding
of one-dimensional dynamics. In higher dimensions the situation is less well

understood. In this work we give a classification of invariant Fatou components

for moderately dissipative Hénon maps. Most of our methods apply in a much
more general setting. In particular we obtain a partial classification of invariant

Fatou components for holomorphic endomorphisms of projective space, and we

generalize Fatou’s Snail Lemma to higher dimensions.
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1. Main Result

Fatou components play an important role in our understanding of rational dy-
namics in the Riemann sphere, and in that setting they have been accurately de-
scribed. In higher dimensions the description of Fatou components is largely open.
In this work we give a classification of invariant Fatou components for moderately
dissipative polynomial automorphisms of C2, and in particular, for moderately dis-
sipative complex Hénon maps

(z, w) 7→ (p(z)− δw, z),

where p(z) is a polynomial of degree d ≥ 2.

Theorem 1. Let f : C2 → C2 be a non-elementary polynomial automorphism
of degree d ≥ 2, and δ = detDf be its Jacobian. Assume that f is moderately
dissipative, i.e.

(1) |δ| < 1

d2
.

Let Ω be an invariant Fatou component of f with bounded forward orbits. Then one
of the following three cases is satisfied.

(1) All orbits in Ω converge to an attracting fixed point p ∈ Ω. The component
Ω is biholomorphically equivalent to C2.

(2) All orbits in Ω converge to a properly embedded submanifold Σ ⊂ Ω, and Σ
is biholomoprphically equivalent to either the unit disk or an annulus. The
manifold Σ is invariant under f and f acts on Σ as an irrational rotation.

(3) All orbits in Ω converge to a fixed point p ∈ ∂Ω. The eigenvalues λ1 and λ2

of Df(p) satisfy |λ1| < 1 and λ2 = 1, and Ω is biholomorphically equivalent
to C2.

The only uncertainty in this classification is whether the submanifold in Case (2)
can actually be biholomorphically equivalent to an annulus.
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A rougher description of invariant Fatou components had been given in the work
of Bedford-Smillie, Fornæss-Sibony [10] and Ueda [32], which we will review in the
next section. Our contribution here is to prove that if an orbit in Ω converges to
the boundary, then all orbits must converge to a single semi-parabolic fixed point.

Remark 2. An important supplement to the above picture is that in cases (1) and
(3) the domain Ω contains a “critical point” of f (as long as the multipliers at p are
different), i.e., a point of tangency between the strong stable foliation in Ω and the
untable manifold of any saddle. This result had been obtained in [7].

Acknowledgement. We thank A. Eremenko, A. Gabrielov, and J. Milnor for in-
sightful comments. The first author was partially supported by the NSF and Balzan-
Palis Fellowship. The second author was supported by a SP3-People Marie Curie
Actionsgrant in the project Complex Dynamics (FP7-PEOPLE-2009-RG, 248443).

2. Background

In the 1960’s the astronomer Michel Hénon suggested that complicated behavior
observed in the Poincaré section of the Lorenz model would already occur for the
much simpler maps given by

(2) (x, y)→ (x2 + c− δy, x),

at least for specific parameters c, δ. These maps are now called Hénon maps and
have since become one of the most extensively studied dynamical systems, both in
the real and in the complex setting.

We will work with a more general definition of Hénon mappings. It was proved
by Friedland and Milnor [13] that every polynomial automorphisms of C2 is affinely
conjugate to either an affine map, an elementary map, or a finite compositions of
generalized Hénon mappings. Here f is a generalized Hénon mapping if f is of the
form

(3) (z, w) 7→ (p(z)− δw, z),

where p is a polynomial and δ ∈ C \ {0}. The dynamical behavior of affine and
elementary maps is easy to describe. Therefore we will only look at finite composi-
tions of Hénon maps, and for simplicity we will refer to these maps just as Hénon
maps.

Complex Hénon mappings have been studied extensively by Hubbard & Oberste-
Vorth [18], [19], [20], Bedford-Smillie [2], [3], Fornæss-Sibony [9] and many other
authors. A basic property of Hénon maps that will be useful to us is the existence
of the following filtration. For R > 0 sufficiently large we define

W = {(z, w) | max(|z|, |w|) ≤ R}(4)

V + = {(z, w) | |z| ≥ max(|w|, R)}, and,(5)

V − = {(z, w) | |w| ≥ max(|z|, R)}.(6)

One easily checks that for R > 0 large enough one has f(V +) ⊂ V + and f−1(V −) ⊂
V −. Moreover, the orbit of any point in V + will converge to the attracting fixed
point [1 : 0 : 0] on the line at infinity.

It follows that the escaping set

(7) I∞ =
⋃
n∈N

f−n(V +) = {z ∈ C2 | ‖fn(z)‖ → ∞}
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is one Fatou component, and that for any other Fatou component the forward
orbits are bounded. In this article we will, in the Hénon setting, only consider
Fatou components with bounded forward orbits.

Let us introduce Fatou components in a more general setting. LetX be a complex
manifold, and let f : X → X be a holomorphic map. We say that z ∈ X lies in the
Fatou set F of f if the family of iterates {fn} is normal in a neighborhood of z. A
connected component of the Fatou set is called a Fatou component.

When X is the Riemann sphere and f is a rational function the possible Fatou
components have been precisely described. Sullivan [29] proved in 1982 that every
Fatou component is (pre-)periodic, and periodic Fatou components had already been
classified in the works of Fatou & Julia Siegel and Arnol’d & Herman: an invariant
Fatou component is either the basin of an attracting fixed point, a parabolic basin,
a Siegel disk or a Herman ring (see Milnor [25]).

Fatou components in two complex variables have been studied by a number
of authors. In general there is no reason to believe that all Fatou components
are (pre-)periodic, but there has been some progress in describing periodic Fatou
components. Bedford-Smillie [3] have introduced the notion of a recurrent Fatou
component, which we will adopt here.

Definition 3. An invariant Fatou component Ω is called recurrent if there exists
a point z ∈ Ω whose orbit accumulates at a point in Ω.

Normality implies that a Fatou component is recurrent precisely when it contains
a recurrent orbit. If Ω is not recurrent then all orbits in Ω converge to ∂Ω. For ratio-
nal self-maps of the Riemann sphere the recurrent Fatou components are basins of
attracting fixed points, Siegel disks and Herman rings, while the only non-recurrent
components are basins of parabolic fixed points. Recurrent Fatou components in
two complex dimensions have been studied by Bedford-Smillie [3], Fornæss-Sibony
[11] and Ueda [32]. The following theorem combines results from [11] and [32].

Theorem 4. Let f be a Hénon map and suppose that Ω is a recurrent invariant
Fatou component. Then either:

(1) Ω is an attracting basin of some fixed point in Ω, and Ω is biholomorphic
to C2.

(2) there exists a one-dimensional closed complex submanifold Σ of Ω and
fn(K) 7→ Σ for any compact set K in Ω. The Riemann surface Σ is bi-
holomorphic to a disk or an annulus and f |Σ is conjugate to an irrational
rotation, or

(3) the domain Ω is a Siegel domain.

Recall that a Fatou component Ω is called a Siegel domain if there exists a
sequence of iterates fnj that converges on Ω to the identity map.

While there are still a number of open questions regarding Theorem 4, for exam-
ple whether the Riemann surface Σ in Case (2) can really be biholomorphic to an
annulus, the recurrent Fatou components are relatively well understood.

The situation was quite different for non-recurrent Fatou components. These
components have been studied by Weickert [34] and Jupiter-Lilov [22], but were far
less well understood.



4 MISHA LYUBICH AND HAN PETERS

3. Outline of the Proof

Let us first describe the main difficulty for dealing with non-recurrent Fatou
components. If Ω is a non-recurrent Fatou component then all orbits converge
to the boundary ∂Ω. By normality there exists a sequence {fnj} that converges,
uniformly on compact subsets of Ω, to a limit map h : Ω → ∂Ω. In general the
map h is not unique and depends on the sequence (nj), we will see some examples
of this in Section 4. The main difficulty lies in the fact that a priori it is not even
clear whether the limit set h(Ω) is always unique.

Theorem 1 follows from several intermediate results, most of which hold in a more
general setting. If we do not assume that the Hénon map is moderately dissipative
then we still have the following.

Theorem 5. Let f be a Hénon map and suppose that Ω is a non-recurrent invariant
Fatou component. Then there exists a sequence {fnj} that converges uniformly on
compact subsets of Ω to a fixed point p ∈ ∂Ω. If the entire sequence {fn} converges
to p then the eigenvalues λ1 and λ2 of Df(p) satisfy |λ1| < 1 and λ2 = 1, and Ω is
biholomorphically equivalent to C2.

We also obtain results that lie outside the class of Hénon maps, for example the
following.

Theorem 6. Let f be a holomorphic endomorphism of P2 and let Ω be a non-
recurrent, invariant Fatou component. Suppose that the limit set h(Ω) is unique.
Then h(Ω) either consists of one point, or h(Ω) is an injectively immersed Riemann
surface, conformally equivalent to either the unit disk, the punctured unit disk or
an annulus, and f acts on h(Ω) as an irrational rotation.

Notice that both Theorem 5 and Theorem 6 give a precise classification of non-
recurrent Fatou components under the assumption that h(Ω) is unique. It is exactly
the uniqueness of h(Ω) that condition (1) is used for in Theorem 1

We note that in Theorem 6 all Fatou components are known to occur, except
for the punctured unit disk, whose possible existence is still an open question. We
will see that when the limit map is a single point, the condition on the eigenvalues
that holds for Hénon maps does not hold for holomorphic endomorphisms of P2.
Fatou components for holomorphic self-maps of projective space will be discussed
in Section 9

Let us now discuss the intermediate results from which Theorems 1, 5 and 6 will
follow. The first lemma that we will prove is the following:

Lemma 12. Let f be a holomorphic endomorphism of a complex manifold X of
dimension 2, and let Ω be a non-recurrent Fatou component. Let h = lim fnj be
a limit map on Ω of generic rank 1. Then h(Ω) ⊂ ∂Ω is an injectively immersed
Riemann surface.

Next we consider the set of all limit maps h : Ω→ ∂Ω, which we will denote by
Γf . We introduce a (not necessarily anti-symmetric) partial ordering on Γ (rougly,
by divisibility), and prove the following.

Lemma 24. The invariant minimal subsets of Γf are exactly equal to the maximal
equivalence classes. It follows that maximal elements exist: there exists an h ∈ Γf
so that if k ≥ h then h ≥ k.

The next result is the first that uses properties of Hénon maps.
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Lemma 26. Let f be a Hénon mapping, let Ω ⊂ C2 be a non-recurrent Fatou
component and let h ∈ Γf be maximal. Then h(Ω) is a fixed point.

Lemmas 24 and 26 together give that there must always be a limit map of rank
0, and if the limit set is unique then all orbits converge to this fixed point p. The
fact that the eigenvalues λ1 and λ2 of Df(p) must satisfy |λ1| < 1 and λ2 = 1 is a
local property that will be proved in this generalization of Fatou’s Snail Lemma:

Theorem 27. Let f : (Ck, 0)→ (Ck, 0) be a germ of a holomorphic mapping that
fixes the origin. Suppose that there exists an open set W with f(W ) ∩W 6= ∅ and
such that on W the iterates (fn) converge uniformly to the origin. Further suppose
that Df(0) has eigenvalues λ1, λ2, . . . , λk with |λ1| = 1 and |λi| < 1 for i ≥ 2. Then
λ1 = 1.

In the proof of Lemma 26 we will work in a normal hyperbolic setting, comparable
to Theorem (4.1) in Hirsch-Pugh-Shub [17]. In this setting the normal submanifold
is not necessarily compact, but we will prove uniform estimates on the geometry
of the normal submanifold, which will gives us a thickening of the strong stable
manifolds to obtain a stable lamination that fills up a neighborhood of the normal
submanifold. The existence of strong stable manifolds of definite size near points
whose orbits remain in a small neighborhood of a weakly hyperbolic fixed point will
also be used in the proofs of Theorem 27 and Lemma 31.

The final step in the proof of Theorem 5 follows from the following result.

Theorem 7. Let F be a holomorphic automorphism of C2 with a fixed point p,
such that F ′(p) has eigenvalues {1, λ}, with |λ| < 1, and that F −Id has multiplicity
k+ 1 in p. The attracting basin of p has then k components and each component is
biholomorphic to C2.

This result was first proved by Ueda in the case where k = 1 in [30], and gener-
alized to higher multiplicities by Hakim [15]. Note that if the multiplicity k + 1 is
not finite then there must be a curve of fixed points, which cannot occur for Hénon
maps, so Theorem 7 does imply the last statement of Theorem 5.

Once Theorem 5 is proved, the proof of Theorem 1 is completed by using the
bound on the Jacobian derivative to obtain a growth estimate for the Green’s func-
tion on stable manifolds. A classical result of Wiman is then used to prove that
the limit set must be unique. We note that this is the only point in the proof of
Theorem 1 where we use that f is an at least moderately dissipative polynomial
automorphism. Theorem 5 holds under the following weaker conditions.

Theorem 8. Let f be a holomorphic automorphism of a 2-dimensional complex
manifold X. Let Ω ⊂ X be a non-recurrent Fatou component. If there exists a
compact K ⊂ X so that all orbits in Ω converge to K, and so that f is volume
contracting at all points in K, then the conclusions in Theorem 5 hold.

We also note that here the invertibility of f is only necessary in order to conclude
that Ω is biholomorphic to C2.

The organization of the rest of this paper is the following. In the next section we
will describe all known examples of non-recurrent Fatou components in two complex
dimensions. In Section 5 we prove that the image of rank 1 limit maps is smooth.
In Section 6 we introduce the ordering on the set of limit maps and prove that the
maximal limit maps for Hénon maps are fixed points. In Section 7 we prove a higher
dimensional version of Fatou’s Snail Lemma, which completes the proof of Theorem
5. In Section 8 we discuss the possibility of non-unique limit sets, and prove that
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for moderately dissipative Hénon maps the limit set is unique, completing the proof
of Theorem 1. Finally in Section 9 we consider non-recurrent Fatou components in
projective space and prove Theorem 6.

4. Examples of non-recurrent Fatou components

While the only known examples of non-recurrent Fatou components of Hénon
maps are parabolic basins, for holomorphic endomorphisms several other examples
are known to occur.

For a description of the dynamics of Holomorphic endomorphisms of P2, see for
example the work of Hubbard-Papadopol [21] and Fornæss-Sibony [10], [12]. Fatou
components for holomorphic endomorphisms of P2 are known to be pseudoconvex
and Kobayashi hyperbolic [31], [11].

Recurrent Fatou components have been classified for holomorphic endomorphisms
and the classification is almost identical to the classification for Hénon mappings.

Theorem 9 (Fornaess-Sibony, Ueda). Suppose that f is a holomorphic self-map
of P2 of degree d ≥ 2. Suppose that Ω is an invariant recurrent Fatou component.
Then either:

(1) Ω is an attracting basin of some fixed point in Ω,
(2) there exists a one-dimensional closed complex submanifold Σ of Ω and

fn(K) 7→ Σ for any compact set K in Ω. The Riemann surface Σ is bi-
holomorphic to a disk or an annulus and f |Σ is conjugate to an irrational
rotation, or

(3) the domain Ω is a Siegel domain.

Examples of non-recurrent Fatou components in P2 can easily be constructed by
taking a cross product of two polynomials. For example, if p is a polynomial with
a parabolic petal, and q is a polynomial of the same degree with a Siegel disk, then
the map p × q : C2 → C2 extends to a holomorphic endomorphism f of P2. The
map f has a Fatou component Ω where all orbits converge to a holomorphic disk,
properly embedded in ∂Ω, on which f acts as a rotation.

This idea cannot be applied to products of rational functions, so the product of a
parabolic petal and a Herman ring cannot be obtained as easily. This can however
be done in the following way.

Example 10. Let g be a rational function that has two distinct Fatou components
Ω1 and Ω2, where the former is a Herman ring and the latter a parabolic petal.
Then g × g is a holomorphic endomorphism of P1 × P1 with a Fatou component
Ω1 × Ω2. Now we use a construction due to Ueda which was also used by Fornæss
and Sibony to construct examples of recurrent Fatou components in [11].

Let ρ : P1 × P1 → P2 be defined by ρ([z : t], [w : s]) = [zw : ts : zs+wt]. Then ρ
exactly identifies pairs (a, b) and (b, a), and we see that ρ pushes the action of g× g
down to P2. The new map f : P2 → P2 has a Fatou component Ω biholomorphic
to Ω1 × Ω2. We see that all orbits converge to an annulus A ⊂ ∂Ω, and f acts on
A as an irrational rotation.

Suppose that the sequence fnj converges on Ω to a rank 1 limit map h : Ω→ ∂Ω
as before, and assume that h(Ω) does not depend on the sequence (nj). In [34]
Weickert showed that the action of f on the limit set h(Ω) can be lifted to a
holomorphic self-map F of the unit disk ∆, and that F is either conjugate to an
irrational rotation or Fn → ∂∆, locally uniformly on ∆. Weickert gave examples
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of the former, but stated that he has no examples of the latter nor a proof that
it cannot occur. Our Example 10 shows that it can indeed occur. We can think
of the universal cover of the annulus A to be an infinite horizontal strip, and it is
clear that the lift of a rotation to this strip can be given as a horizontal translation.
But that means that for the lift F : ∆ → ∆ all orbits converge to a point on the
boundary ∂∆. However, note from Theorem 6 that if h(Ω) is biholomorphic to a
disk itself then the action of f is indeed conjugate to a rotation.

To summarize we now have seen three distinct examples of non-recurrent Fatou
components:

(1) all orbits converge to a single fixed point,
(2) all orbits converge to a holomorphic disk, on which f acts as an irrational

rotation, and
(3) all orbits converge to an annulus, on which f acts as an irrational rotation.

We note that these are the three components that arise immediately by com-
bining 1-dimensional Fatou components. Is this everything, or can there be 2-
dimensional Fatou components that are fundamentally different from combinations
of 1-dimensional Fatou components?

5. Smoothness of Rank 1 limit Sets

The main step towards the proof of Lemma 12 is made in Proposition 11 below.
We give an elementary analytic proof here, and we will give two more sophisticated
but shorter proofs in the appendix.

Proposition 11. Let f : (C, 0)→ (C2, 0) be the germ of a holomorphic map whose
image is singular at the origin in C2. Let U be a neighborhood of 0 where f is
defined. Then there exists an ε > 0 so that for every g : U → C2 with ‖f − g‖U ≤ ε
we have that g(U) ∩ f(U) 6= ∅.

Proof. Without loss of generalization we may assume that U contains a neighbor-
hood of the unit disk ∆. After changing coordinates, both on the the domain and
the target, we can further assume that f is of the form

(8) f(x) = (f1(x), f2(x)) = (xp, xq + h.o.t.),

where q > p ≥ 2 (the Puiseux expansion). After a further change of coordinates
on the target of the form (z, w) 7→ (z, w − α(z)) we may assume that none of the
exponents occuring in f2(x) are divisible by p.

Let k be the greatest common divisor of all the exponents occuring in f , and
write

(9) f(x) = f̃(y) = (ym, yn + h.o.t.),

where y = xk, m = p/k and n = q/k. Then near (0, 0) ∈ C2 the image of f is given
by the equation

(10)

m∏
j=1

(w − f̃2((z
1
m )j) = wm + αm−2(z)wm−2 + · · ·+ α0(z) = 0,

as in the Weierstrass Preperation Theorem. The fact that

(11) αm−1(z) =
∑

f̃2((z
1
m )j)

vanishes follows from our earlier assumption that none of the exponents in f2 were
divisible by p. Note that for every j = 0 · · ·m − 2 the coefficient αj(z) is divisible
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by zl, where l ≥ 2q
p . Hence we can rewrite Equation 10 to obtain that a point (z, w)

near (0, 0) lies in the image of f if and only if

(12)
wm

zlr(z, w)
= 1,

where we write r(z, w) for the remainder. Now suppose that g is a holomorphic
function defined on ∆, close to f in a manner that we will specify shortly. In order
to show that g(∆) ∩ f(∆) 6= ∅ it is sufficient to show that there exists an x ∈ ∆
such that

(13) φ(x) =
g2(x)m

g1(x)lr̃(x)
= 1.

If g is sufficiently close to f then by Rouché’s Theorem both the numerator and
denominator of φ have exactly pq

k zeroes, counting multiplicity. Moreover, the value
of φ(x) will be close to 1 on ∂∆. Let us for the purpose of contradiction assume
that f(U) and g(U) do not intersect. Then it follows that f(∆) and g(∆) do not
intersect for sufficiently small perturbations of g. Hence we may assume that the
meromorphic function φ has zeroes and poles distinct from each other, exactly q
zeroes, each of multiplicity m, and at least p poles of multiplicity at least l.

Let us change coordinates on the target by post-composing φ with the map

(14) θ = x→ x

x− 1
,

effectively switching the roles of 1 and ∞ while keeping 0 fixed. Then by our
assumption φ̃ = θ ◦ φ is bounded and close to infinity on the boundary ∆, still has
q zeroes, each of multiplicity m, and takes on the value 1 in at least p points of
multiplicity at least l. Let

(15) R = min{|φ̃(x)| | x ∈ ∂∆}.

Then by the maximum principle V = φ̃−1(∆R) is a disjoint union of finitely many

simply connected domains. Since φ̃ is a branched covering of degree pq
k from V to

∆R, the Riemann Hurwitz Theorem gives that the Euler characteristic of V satisfies

(16) χ(V ) ≤ pq

k
χ(∆R)− q(m− 1)− p(2q

p
− 1) =

pq

k
− pq
k

+ q− 2q+ p = q− p < 0.

But this is a contradiction since the Euler Characteristic of a finite union of disks
is positive. �

We stress that in Proposition 11 we consider perturbations of the map f , not
of the defining equation for f(∆). For example, if f = (x2, x3) then the image is
given by {w2 − z3 = 0}, which can easily be perturbed to {w2 − z3 = ε}, which
does not intersect the original cusp. Note that in this example the topology has
changed: the intersection of {w2 − z3 = ε} with a ball centered at the origin is no
longer simply connected.

The following is a direct consequence of Proposition 11.

Lemma 12. Let f be a holomorphic endomorphism of a complex manifold X of
dimension 2, and let Ω be a non-recurrent Fatou component. Let h = lim fnj be
a limit map on Ω of generic rank 1. Then h(Ω) ⊂ ∂Ω is an injectively immersed
Riemann surface.
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Proof. Let z ∈ Σ = h(Ω) and let x ∈ Ω be such that h(x) = z. Since h is rank 1
there exist a small disk D through x such that h is non-constant on D and such
that for some small neighborhood U of x, the image h(U) equals h(D). We first
show that h(D) is smooth for D small enough.

By reparametrizing we may assume that x = 0, D is the unit disk, and h maps
0 ∈ D to (0, 0) ∈ C2. Suppose for the purpose of a contradiction that h(D) is
singular at (0, 0). After a change of coordinates we can write h(ζ) = (ζp, ζq+h.o.t.)
with q > p ≥ 2 and q not divisible by p, as in the proof of Proposition 11. But then
it follows from Proposition 11 that for j large enough, the set fnj (D) intersects
h(D). This is a contradiction since fnj (D) ⊂ Ω and h(D) ⊂ ∂Ω. Therefore the
image h(D) is a smooth Riemann surface.

Now let y ∈ Ω be such that h(y) = h(x). Let V be a small neighborhood of y.
Suppose for the purpose of contradiction that the images h(V ) and h(U) do not
agree as germs. Then we have that h(U) and h(V ) are both holomorphic graphs
over a straight disk through z, and intersect only in z. It follows that for j large
enough fnj (U) must intersect h(V ), and again we have a contradiction. It follows
that h(U) and h(V ) agree as germs, and h(Ω) is therefore smooth. �

6. Ordering of limit maps

Let us begin with a useful observation due to Weickert:

Lemma 13 ([34]). If Ω is an invariant Fatou component with a limit map h =
lim fnj , then h(Ω) is invariant under f . In particular, if h(Ω) is a point then it is
fixed under f .

Proof. Let z ∈ h(Ω) and write z = h(x) for some x ∈ Ω. Then f(x) ∈ Ω, and since
f and h commute we have f(z) = f(h(x)) = h(f(x)) ∈ h(Ω), and the conclusion
follows. �

Remark 14. Since we are dealing with invertible maps, the same argument shows
that the limit set h(Ω) is completely invariant under f .

Let us now recall the definition of a Fatou map.

Definition 15. Let f be a holomorphic endomorphism of a complex manifold X.
A holomorphic map φ from a complex analytic space R into X is called a Fatou
map for f if {f j ◦ φ} is a normal family.

Lemma 16. Let X be a 2-dimensional complex manifold and f be a holomorphic
endomorphism of X. Let Ω be a non-recurrent Fatou component, and suppose that
{fnj} converges uniformly on compact subsets of Ω to a rank 1 limit map h : Ω→
∂Ω. Then the inclusion map from Σh = h(Ω) into X is a Fatou map.

Proof. Let us denote the inclusion map by φ. Let m1,m2 . . . be an increasing
sequence of integers and let K1 ⊂ K2 ⊂ . . . be a compact exhaustion of Ω. For each
l we can choose j(l) large enough so that

(17) ‖fnj(l)+ml(z)− fml ◦ h(z)‖ < 1

2l
,

for z ∈ Kl. By the definition of the Fatou component Ω we obtain that a sub-
sequence of fnj(l)+ml converges uniformly on compact subsets of Ω. But then it
follows that there is a subsequence of fml ◦ h(z) that converges uniformly on com-
pact subsets of Ω, which implies that the corresponding subsequence of fml ◦ φ
converges uniformly on compact subsets of Σ. �
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The normality of the family (fn) restricted to Σh allows us to introduce a natural
ordering on the family of limit maps.

Definition 17. Given a non-recurrent Fatou component Ω for f , we define

(18) Γf := {h : Ω→ ∂Ω | ∃n1, n2, . . . : fnj |Ω → h}.

Remark 18. The set Γf , equipped with the topology of uniform convergence on
compact subsets of Ω, is compact. The map f acts on Γf both by pre- and post-
composition, which by commutativity of the iterates of f induce the same action
on Γf . It is well known that for any continuous group action on a compact set
there exists a minimal invariant subset. These subsets are exactly the maximal
equivalence classes with respect to the ordering that we introduce in this section.

Remark 19. The set Γf is remeniscent of the Sushkevich kernel for almost periodic
semigroup actions, compare [23].

Now let h ∈ Γf be a rank 1 limit map with image Σh ⊂ ∂Ω. We have seen in
Lemma 16 that the inclusion map Σ→ X is a Fatou map. Let fml be a convergent
subsequence on Σ, converging to a map φ : Σ→ φ(Σ).

Lemma 20. The map φ ◦ h is an element of Γf .

Proof. Write h = lim fnj . Then there exist j(l) large enough such that the iterates
fml+nj(l) converge to φ ◦ h, uniformly on compact subsets of Ω. �

We would like to say that in the setting of Lemma 20 that k = φ ◦ h is larger
than h. Instead we will use the following equivalent definition.

Definition 21. Let h = lim fnj ∈ Γf and let k ∈ Γf . If there exists a sequence
(ml) in Z+ such that for any sufficiently large {j(l)} we have that

(19) k = lim fml+nj(l) ,

uniformly on compact subsets of Ω, then we say that k ≥ h. This ordering is
reflexive and transitive, but not necessarily anti-symmetric. For example, if f acts
as a rotation on h(Ω), then Γf is equivalent to S1, and k ≤ h for any h, k ∈ Γf . By
considering h and k equivalent if h ≥ k and k ≥ h we do obtain a partial ordering
on the equivalence classes.

Lemma 22. Let h, k ∈ Γf , and write Σh = h(Ω). Then k ≥ h if and only if there
exists an sequence {ml} in Z+ such that fml converges on Σh to φ : Σh → ∂Ω and
k = φ ◦ h.

Proof. Let us write h = lim fnj . If k = φ ◦ h, with φ = lim fml , then it follows
immediately that for j(l) large enough we have that k = lim fml+nj(l) , so k ≥ h.

To prove the other direction, suppose that k ≥ h, which by our definition means
that there exist a sequence {ml} in Z+ so that for j(l) large enough k = fml+nj(l) .
Since the inclusion map from Σh into X is a Fatou map, we can restrict to a
subsequence of {ml} if necessary so that fml converges on Σ to a map φ : Σh → ∂Ω.
It follows that φ ◦ h = k. �

Lemma 23. If h, k ∈ Γf and k ≥ h, then k(Ω) ⊂ h(Ω). Moreover, if x, y ∈ Ω are
such that h(x) = h(y) then k(x) = k(y).

We note that Lemma 23 follows immediately from Lemma 22.
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Lemma 24. The invariant minimal subsets of Γf are exactly equal to the maximal
equivalence classes. In particular, there exists an h ∈ Γf so that if k ≥ h then
h ≥ k.

Proof. Suppose that ω ⊂ Γf is a maximal equivalence class. It follows immediately
from the definition of the ordering that the closure of the orbit under f of any h ∈ ω
is equal to ω, so ω is a minimal invariant subset.

On the other hand, suppose that V ⊂ Γf is a minimal invariant subset, let h ∈ V
and suppose that there exists an k ∈ Γf with k ≥ h. By the minimality of V the
map h must lie in the closure of the orbit of k under f , so by Lemma 22 we have
that h ≥ k. Hence h lies in a maximal equivalence class ω, which as we have seen
is also a minimal invariant subset. But then ω must equal V , which completes the
proof. �

We prove the following.

Lemma 25. Suppose that hmax lies in a maximal equivalence class in Γf . Suppose
that h has rank 1 and write Σh = hmax(Ω). Then the tangential derivatives along
Σh of the maps (fn) are uniformly bounded away from 0 and ∞ on compact subsets
of Σh.

Proof. By Lemmas 12 and 13, Σh is an invariant injectively immersed Riemann
surface, so we can indeed talk about tangential derivatives. Let K be a compact
subset of Σh. Since the inclusion map is a Fatou map, we immediately obtain that
on K the modulus of the tangential derivatives is uniformly bounded from above.
Suppose for the purpose of contradiction that moduli of the tangential derivatives is
not bounded away from 0. Then we can a sequence of iterates (fnj ) and a sequence
of points aj so that aj → a ∈ K and such that the tangential derivative of fnj at
aj goes to 0. By restricting to a convergent subsequence we obtain a limit map

(20) φ = lim fnj |Σh
,

with φ′(a) = 0. By Lemma 22 we have that φ ◦ hmax = k ∈ Γf , and k ≥ hmax.
Hence by Lemma 12 φ(Σh) = k(Ω) is smooth, which implies that φ : Σh → σk is
d : 1 near the point a, for some d > 1. But then it follows from Lemma 23 that k
is strictly larger than h, which contradicts the maximality of h. �

We will now restate and prove Lemma 26, formulated in Section 3, which will
conclude the proof of the first part of Theorem 5.

Lemma 26. Let f be a Hénon mapping, let Ω ⊂ C2 be a non-recurrent Fatou
component and let h ∈ Γf be a maximal limit map. Then h(Ω) consists of a single
fixed point.

Proof. If h has rank 0 then the desired follows from Lemma 13. So assume for
the purpose of a contradiction that h has rank 1. Recall from Lemma 12 that
Σh = h(Ω) is an injectively immersed Riemann surface, and from Lemma 25 that
on any compact subset of Σh the tangential derivatives of the family {fn} are
uniformly bounded away from 0 and ∞.

Recall from [2] that Σh is a bounded set, contained in the polydisk

(21) W = {(z, w) ∈ C2 | |z|, |w| ≤ R},

for some sufficiently large R depending on f .
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Since Ω is non-recurrent, the Jacobian derivative δ of f necessarily satisfies |δ| <
1. Let z ∈ Σh and let D be a relatively compact holomorphic disk in Σh, centered
at z. For x ∈ Σh and m > 0 we define the tangent cone

(22) Cmx = {v = v1 + v2 ∈ Tx(Σh)⊕Nx(Σh) | |v2| ≤ m|v1|}.
Since Ω lies in the compact set W , the map f is volume contracting and the tan-
gential derivatives of the iterates f j along Σ are uniformly bounded from above and
away from 0, we can find N ∈ N and 0 < m′ < m so that

(23) dfN (Cmx ) ⊂ Cm
′

fN (x),

for every integer n and every x ∈ fn(D).
Note that since the sequence of iterates (fn) restricted to Σh is a normal family,

the second derivatives of fn along Σh are bounded from above on D, uniformly over
n. Hence we can make D smaller if necessary so that for every n the holomorphic
disk fn(D) is a graph over the the complex line through fn(z) tangent to Σh.
It follows that, by again decreasing D if necessary, we can extend the invariant
cone fields Cm and Cm

′
on each fn(D) to a bidisk centered at fn(z) whose radii

are independent of n. Here the axes of these bidisks are the tangent and normal
directions of Σh at fn(z).

By standard construction (see for example [17]) there exists through every x ∈ D
a strong stable manifold W s(x). Moreover, the uniform size of the bidisks guaran-
tees that the stable manifolds through x ∈ D extend almost vertically through the
bidisk containing D. Hence we obtain a stable foliation, filling a neighborhood of D.
But since the sequence of iterates is normal when restricted to D, the iterates also
form a normal family in the union of these stable manifolds, which implies that Σh
does not lie on the boundary of the Fatou set but in the interior. This contradicts
our hypothesis and completes the proof. �

Of course Lemma 26 does not rule out the existence of rank 1 limit maps. It
does follow that given any rank 1 limit map h ∈ Γf , there exists a sequence fnj

that converges uniformly on compact subsets of Σh = h(Ω) to a fixed point in Σh .

7. Parabolic Basins

Let f be a Hénon map with a non-recurrent Fatou component Ω, and suppose
that {fn} converges uniformly on compact subsets of Ω to a point p ∈ Γf . Since
the Jacobian derivative of f must be strictly less than 1 in absolute value, at least
one of the eigenvalues must have modulus strictly less than 1. As p lies in the Julia
set, it cannot be an attractive fixed point, and since there is uniform convergence
to p on an open subset, p cannot be a hyperbolic fixed point. It follows that the
other eigenvalue must have modulus exactly equal to 1. In fact, we now prove that
the other eigenvalue must be equal to 1.

Theorem 27. Let f : (Ck, 0) → (Ck, 0) be a germ of a holomorphic mapping that
fixes the origin. Suppose that there exists an open set W with f(W ) ∩W 6= ∅ and
such that on W the iterates (fn) converges uniformly to the origin. Further suppose
that Df(0) has eigenvalues λ1, λ2, . . . , λk with |λ1| = 1 and |λi| < 1 for i ≥ 2. Then
λ1 = 1.

Proof. After changing coordinates we may assume that the eigen vector correspond-
ing to λ1 is (1, 0, . . . , 0) and all other eigen vectors of Df(0) are orthogonal to
(1, 0, . . . , 0).
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Recall that we have a strong stable manifold through 0 of complex dimension
k − 1. Since this strong stable manifold is locally a graph over the hyperplane
{z1 = 0} we can locally change coordinates such that the local stable manifold of 0
is equal to the hyperplane {z1 = 0}. We denote by C a (not necessarily unique) C∞
center manifold through 0. Since there may not be a holomorphic center manifold
we cannot assume that there is a holomorphic change of coordinates that maps the
center manifold to the z1-plane, but we do have that C is tangent to the z1-plane
at 0.

Let V be a small ball centered at 0 so that f |V is invertible and acts weakly
hyperbolically. That is, we choose V small enough such that {(v, v′) ∈ T (V ) | |v| ≥
‖v′‖} is an invariant cone field. We denote by K the subset of points in V whose
orbits stay in V , so in particular for every z ∈ Ω we have that fn(z) ∈ K for large
enough n ∈ N. By choosing V small enough we have that for every point z ∈ K we
locally have a strong stable manifold through z that extends to the boundary of V .
It follows from the invariant cone field that the strong stable manifolds are close to
vertical , that is, for every pair (x, x′), (y, y′) in a local stable manifold we have that
‖x′ − y′‖ < |x− y|.

Let w ∈W be such that f(w) also lies in W . Then for some N ∈ N we have that
fn(W ) ⊂ V for all n ≥ N . We write W ′ = fN (W ).

Then through every point in W ′ we have a local stable manifold as noted before.
Since the strong stable manifolds are close to vertical they must intersect the z1-
plane in a unique point. We denote by h : K → Cz1 the holonomy map induced by
the strong stable manifolds: h maps a point z ∈ K to the intersection of the strong
stable manifold through z with the z1-plane. Then U = h(W ′) is a connected subset
of Ω ∩ Cz1 that contains the points u = h(fN (w)) and v = h(fN+1(w)). Note that
v is not necessarily equal to f(u) since the z1-plane is not invariant, but v lies in
the strong stable manifold through f(u). Also note that U cannot contain 0: if U
did contain 0 then Ω would contain a neighborhood of 0 which would contradict
our assumptions.

Let ψ be a conformal map from the unit disk ∆ to U that maps 0 to u, and
define

(24) φn(ζ) =
π1 ◦ fn ◦ ψ(ζ)

π1 ◦ fn(u)
,

where π1 is the (straight) projection onto the z1-plane.
Note that since fn(U) avoids the strong stable manifold W s(0), the maps φn are

well-defined and φ(ζ) 6= 0 for any ζ ∈ ∆. It is clear that φn(0) = 1 for every n, and
it follows from the invariant cone field for f in V that fn(Ω) is ”almost horizontal”
and the map φn is univalent. It follows that the family {φn} is normal. Moreover,
we note that φn(ψ−1(v)) → λ1, and by Hurwitz Theorem it follows that any limit
map of the family must be univalent. Then we must a constant ε > 0 such that
|φ′n(0)| > ε for any n ∈ N. Hence by the Koebe 1

4 -Theorem we have that

(25) d(φn(0), ∂(φn(∆))) >
1

4
ε,

and hence

(26) d(π1(fn(u)), ∂(π1f
n(Ω))) > ε̃|fn(u)|.

Now let j ∈ N be such that d(λj1, 1) < ε̃
2 .
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Let us write fn(u) = un = (xn, yn), with xn ∈ Cz1 and yn ∈ Ck−1. For large
n we claim that ‖yn‖ < |xn|2. Indeed, w lies in the stable manifold of a point in
the invariant center manifold C, and the distance d(un, C) decreases exponentially.
The claim follows from the fact that C is tangent to the z1-plane at 0. Hence
it follows from the fact that the local stable manifolds in V are vertical and the
uniform convergence of fn on U that for large n we have

(27) d(π1(xn), h(xn)) <
1

8
ε̃|un|.

It follows from the fact that the local stable manifolds through un are almost
vertical and un → 0 that for large n we have that

d(h(un), h(un+j)) <
2

3
ε̃|un|,(28)

while

d(h(un), ∂(hfn(U))) >
3

4
ε̃|un|.(29)

It follows from estimates (28) and (29) that h(un+j) lies in h(fn(U)) and hence
that V ∩Ω∩Cz1 contains a Jordan curve that winds around the origin. The vertical
foliation through this Jordan curve plus the maximum principle now give us that Ω
contains a neighborhood of 0, which is in contradiction with the assumption that
0 ∈ ∂(Ω). �

Lemma 26 and Theorem 27 combined with Theorem 7 together imply Theorem
5. Let us note that the dynamical behavior of a germ f : (Ck, 0) → (Ck, 0) with
eigenvalues λ1, . . . , λk satisfying λp1 = 1 and |λi| < 1 for i ≥ 2 is very well understood
due to the following result of Di Giuseppe [6].

Theorem 28 (Di Giuseppe). Let f = (f1, . . . , fk) be a semi-hyperbolic germ as
above. Then up to holomorphic conjugacy one of the following is satisfied:

(i) f1(z) = λ1z1;

(ii) f1(z) = λ1z1 + akz
kq+1
1 + o(‖z‖kq+1),with ak 6= 0 and k ≥ 1.

Moreover, in case (i), f is locally topologically conjugate at the origin with g := df0;
and in case (ii), f is locally topologically conjugate at the origin with g(z) := (λ1 +

zkq+1
1 , λ2z2, . . . , λkzk).

Di Giuseppe’s result actually applies in greater generality: |λi| > 1 is allowed for
i ≥ 2 as long as there is quasi-absence of resonance. In our setting quasi-absence of
resonance is automatically satisfied.

8. Uniqueness of the limit set

Let f be a holomorphic endomorphism of a complex manifold X, and let Ω be a
non-recurrent Fatou component for f .

Question 29. Given a holomorphic endomorphism of a complex manifold X with
a non-recurrent Fatou component. Is it possible for the limit set h(Ω) to depend on
the map h ∈ Γf?

Although non-uniqueness may be hard to imagine for Hénon mappings or holo-
morphic endomorphisms of P2, the following construction gives an affirmative an-
swer to the above question. The complex manifold will be be a domain in C2.
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Theorem 30. There exists an open connected set D ⊂ C2 and a map f : D → D
such that {fn} is normal on D, all orbits fn(z) converge to ∂D and h(D) depends
on h ∈ Γf .

Proof. We let

(30) f(z, w) = (p(z), qz(w)),

where

(31) p(z) = z − z3 + h.o.t.

is such that

(32) p(
1√
u

) =
1√
u+ 1

,

for u in the strip S = {0 < Im(u) < 2π}. We define the map qz(w) by

(33) qz(w) =
φ(p(z))

φ(z)
w,

where

(34) φ(z) = 1− ei 1z .

The domain D is given by Ω×C, where Ω contains the z-values that correspond
to u-values in the half-strip S. Note that φ(z) 6= 0 for any z ∈ Ω, so the map f is
well defined.

Let K be a compact subset of Ω. Then pn(z) converges to the origin along the
positive real axis, uniformly for z ∈ K. Moreover, we have that

(35) max
z,z′∈K

dist(
1

pn(z)
,

1

pn(z′)
)→ 0.

Hence given any increasing sequence in N we can find a subsequence {nj} for which

(36) e
i 1

p
nj (z) → 0,

with |θ| = 1, uniformly for z ∈ K. Given that

(37) wn =
φ(fn+1(z))

φ(fn(z))
· · · φ(f(z))

φ(z)
w =

φ(fn+1(z))

φ(z)
w0,

it follows that {fn} is normal on Ω×C. The first coordinate zn will always converge
to the origin, so all the orbits (zn, wn) converge to ∂D.

To see that h(D) depends on the sequence {nj}, note that by choosing the nj ∈ N

appropriately we can make sure that e
i 1
znj converges to 1 for some initial (z0, w0). It

follows that (znj
, wnj

) converges to (0, 0) for any starting point (z, w) in a compact
subset of D.

On the other hand, we can make sure that e
i 1
znj converges to −1 for some point

z0. In this case the map h will satisfy h(z, w) = (0, 2
zw) and the image of h is the

complex line {0} × C, showing that the image h(D) depends on the subsequence
{fnj}. �

We note that the above construction is quite different from a Fatou component
of a Hénon map or a holomorphic map of projective space. The map f is not
defined on the boundary of D, and f cannot be extended holomorphically to any
neighborhood of 0.
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Let us return to our Hénon map f with a non-recurrent Fatou component Ω. If
h(Ω) depends on h ∈ Γf , then by Lemma 26 there must exist both an k ∈ Γ of rank
0 (for example any maximal h), and an h ∈ Γ of rank 1. The latter follows from
the following classical argument, already used in higher dimensions by Jupiter and
Lilov in [22]. The union of the limit sets must be connected, the image of a rank
0 limit map is a fixed point, and a Hénon map has only finitely many fixed points.
Therefore if all limit maps have rank 0, the limit map is unique. The same argument
holds for holomorphic endomorphisms, the fact that these maps have only finitely
many fixed points was proved by Fornæss and Sibony in [10].

So let us suppose that there exist limit maps in Γf both with rank 0 and with
rank 1. Let us call k a limit map of rank 0. Then p = k(Ω) is a fixed point, and since
f is dissipative, p is either a hyperbolic fixed point or a semi-attracting fixed point.
In either case there exists a strong stable manifold W s(p), which is biholomorphic
to the complex plane.

Lemma 31. Let f be a Hénon map and Ω be an invariant non-recurrent Fatou
component with bounded forward orbits. Suppose that a subsequence fnj converges
uniformly on compact subsets of Ω to the fixed point p, which necessarily has a
strong stable manifold W s(p). Further suppose that the limit set {p} is not unique.
Then there exists a sequence of iterates fml that converges uniformly on compact
subsets of Ω to a rank 1 limit map h : Ω→W s(p).

Proof. Since f has only finitely many fixed points, we can find an ε > 0 so that
B2ε(p) contains no fixed points besides p. Further decrease ε if necessary so that
(1) there exists a dominated splitting on B2ε(p) and (2) there exists a z ∈ Ω whose
orbit enters and leaves B2ε(p) infinitely often. The dominated splitting guarantees
the existence of a strong stable manifold in Bε through every point whose orbits
remains in Bε. These strong stable manifolds lie properly in Bε.

Let 0 < ε′ < ε be such that f−1(Bε′(p)) ⊂ Bε(p). Then there exist increasing
integers m1,m2, . . . and k1, k2, . . . such that for every integer l

(1) fml(z) ∈ Bε(p) \Bε′(p),
(2) fml+j(z) ∈ Bε(p) for j = {1, . . . , kl}, and
(3) fml+kl(z) ∈ B 1

2l
(p).

By restricting to a subsequence if necessary we may assume that fml converges
uniformly on compact subsets of Ω to a limit map h : Ω → ∂Ω. Denote x = h(z).

Note that x must lie in Bε(p) \Bε′(p), and hence cannot be a fixed point. Therefore
h must have rank 1.

Note that the orbit of x must remain in Bε. If not, there could not be points
fml(z) arbitrarily close to x whose orbits approach p arbitrarily nearly before leaving
Bε. Since the orbit of x remains in Bε, the dominated splitting guarantees the
existence of a unique strong stable manifold W s(x).

The limit set h(Ω) either intersects W s(x) locally only in x (where by locally we
refer to the topology on the Riemann surfaces h(Ω) and W s(x)), or locally coincides
with W s(x). By normality of the family fn restricted to h(Ω), the tangential
derivatives of the family fn must be uniformly bounded, locally in h(Ω). Therefore
it follows that there is a neighborhood of x in h(Ω) for which the orbits stay in
B2ε(p), which implies the existence of strong stable manifolds through any point
in h(Ω). Hence if W s(x) and h(Ω) intersect locally only in x, the strong stable
manifolds fill some neighborhood of x. It follows that the orbits of all points in a
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small neighborhood of x remain in B2ε(p), which contradicts the fact that x is the
limit of the sequence fml(z). Hence h(Ω) and W s(x) must locally coincide.

By Lemma 13, h(Ω) is invariant under f , and by Lemma 26 there must be a
sequence of iterates on h(Ω) that converges to a fixed point, which in this case
can only be p. This is not possible unless W s(x) = W s(p). Hence h(Ω) must be
contained in W s(p). �

Lemma 32. Let h ∈ Γf be of rank 1 so that h(Ω) ⊂ W s(p). Then h(Ω) lies in
J = J+ ∩ J−.

Proof. Since h(Ω) lies in W s(p), it is clear that h(Ω) lies in K+. It is equally clear
that no point of h(Ω) can lie in the interior of K+, as it would imply normality of
the sequence of iterates in a neighborhood of the point. Therefore h(Ω) lies in J+.

Let x ∈ h(Ω), and let z ∈ Ω be such that h(z) = x. Suppose for the purpose
of contradiction that x does not lie in K−. Then there is an N ∈ N such that
f−N (x) ∈ V −. Write h = fnj . Then we see that for j large enough f−N (fnj (z)) =
fnj−N (z) also lies in V −. But this is a contradiction, as nj −N → ∞ as j → ∞.
Therefore h(Ω) ⊂ K−. Since f is dissipative, J− = K− and we are done. �

The following Lemma completes the proof of Theorem 1.

Lemma 33. Let f be a Hénon map of degree d, whose Jacobian determinant δ
satisfies

(38) |δ| < 1

d2
,

and let p be a fixed point that is not attracting. Suppose that Ω is an invariant non-
recurrent Fatou component with a limit map h = lim fnj that maps Ω into W s(p).
Then h(Ω) = {p}.

Finally, we will make use of a subharmonic version of the classical result by
Wiman [33] (see also [14], Ch. V, Thm 1.3) which is also a particular case of a
(subharmonic version) of the Denjoy-Carleman-Ahlfors Theorem, see [28] and [16],
§4.6. It had been recently used in the same context by Dujardin and the first author
in [7], see Remark 2 in the Introduction. (In the context of one-dimensional complex
dynamics, it had been earlier used by Eremenko and Levin [8].)

Theorem 34 (Wiman). Let g be a non-constant subharmonic function on C whose
order of growth is less than 1/2, i.e., g(z) = O(|z|ρ) for some ρ < 1

2 . Then all
components of {g = 0} are bounded.

Proof of Lemma 33. Suppose for the purpose of a contradiction that h(Ω) is not
equal to {p}, in which case h must have rank 1. By the classical Poincaré Theorem,
the restriction f |W s(p) is globally linearizable, i.e., there exists a a biholomorphism
Ψ : C→W s(p) that satisfies the functional equation

(39) Ψ(λ−1ζ) = f−1(Ψ(ζ)),

where λ is the stable multiplier of p. Note that by our assumption,

(40) λ ≤ δ < 1

d2

Let us now consider the backward Green function G− : C2 → R

G−(z) = lim
n→+∞

1

dn
log ‖f−nz‖.
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It is a non-negative plurisubharmonic function vanishing on K− and satisfying the
functional equation

(41) G−(f−1z) = dG−(z).

Let us restrict this function to W s(p) and pull it back to C, i.e., let g = G− ◦ Ψ.
This is a non-negative subharmonic function on C vanishing on

Ψ−1(K−) ⊃ Ψ−1(h(Ω)) =: Λ.

Note that Λ is connected and by (39) is invariant under the scaling z 7→ λ−1z.
Hence it is an unbounded continuum in C.

Moreover, by (39 and (41), it satisfies the functional equation

g(λ−1z) = d g(z).

It follows that

g(z) = O(|z|ρ), with ρ = − log d

log λ
< 1/2,

where the last estimate follows from (40).
By the Wiman Theorem, all components of {g = 0} are bounded, contradicting

unboundedness of Λ. �

Remark 35. As we have alluded earlier, the original Wiman Theorem was con-
cerned with entire (rather than subharmonic) functions. In fact, it can be directly
used in our context as well, using the coordinate function w instead of the Green
function G−.

9. Holomorphic endomorphisms of projective space

In this section we give a description of Fatou components under the assumption
that the image of the limit map h = lim fnj is independent of the sequence (nj).

Before we prove Theorem 6, let us note that for holomorphic endomorphisms of
P2 we cannot expect the same description as for Hénon maps in Theorem 5. First
of all, we have already seen in Example 10 a Fatou component Ω for which all
orbits converge to an invariant disk or annulus lying in the boundary of Ω. Also,
even in the case where all orbits converge to a point p ∈ ∂Ω, we cannot expect
the eigenvalues λ1 and λ2 of Df(p) to satisfy |λ1| < 1 and λ2 = 1. Of course, if
one of the eigenvalues λ1 satisfies |λ1| < 1, then |λ2| = 1 and Theorem 27 implies
that λ2 = 1. However, by taking the cross product of two polynomials of the same
degree that both have a parabolic fixed point, we can obtain an example of a Fatou
components where all orbits converge to a point p ∈ ∂Ω with Df(p) = Id.

Naively one might then expect that at least one of the eigenvalues has to equal
1, but the examples below show that this does not hold either. The first map has
a quasi-parabolic fixed point, as studied by Bracci and Molino in [4].

Example 36. Let us first construct an example where both eigenvalues have mod-
ulus 1 but one of the eigenvalues is not equal to 1. Let f : C2 → C2 be given
by

(42) f(z, w) = (z(1 + z), λw(1 + z)),

where |λ| = 1. Let us write (zn, wn) = fn(z, w). It is clear that zn only depends on
z0, and
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(43) zn = z0

n−1∏
i=o

(1− zi).

Similarly,

(44) wn = w0

n−1∏
i=o

(1− zi).

So we see that if zn converges to 0 then so will wn, and the basin of the origin is
given by Ω× C, where Ω ⊂ C is the parabolic basin of the map z 7→ z(1 + z).

This map does not extend holomorphically to P2, but we can consider the fol-
lowing modification.

(45) f(z, w) = (z(1 + z) + zd, λw(1 + z) + wd),

where d ≥ 3. It is easy to see that the dynamical behavior near the origin is similar,
yet this map extends holomorphically to P2. Hence we see that for any |λ| = 1 there
exist a holomorphic endomorphism of P2 with a parabolic basin and corresponding
eigenvalues equal to 1 and λ.

With a little more effort we can construct a parabolic basin in P2 where neither
eigen value equals 1.

Example 37. Again we first consider a selfmap of C2.

(46) f(z, w) = (eiθz(1 + zw), e−iθw(1 + zw)).

We claim that for any θ ∈ R this map has a parabolic basin at the origin. Notice
first that in a neighborhood of the origin, the axes are completely invariant. We
also have that zn+1wn+1 = znwn(1 + znwn). Writing y for zw we obtain

(47) yn = y0

n−1∏
i=0

(1 + yi)
2.

We also have that

(48) zn = z0

n−1∏
i=0

(1 + yi),

and

(49) wn = w0

n−1∏
i=0

(1 + yi).

We therefore see that if yn → 0 then zn, wn → 0 as well, and we conclude that the
origin has a parabolic basin.

Again the map f does not extend to a holomorphic endomorphism of P2, but we
can consider a similar modification

(50) F (z, w) = f(z, w) + (zd, wd),

where d ≥ 7 and the map does extend to P2.

Lemma 38. The holomorphic map F has an open set of orbits converging uniformly
to the origin.
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Proof. Let (z0, w0) 6= 0 be such that the following induction hypotheses are satisfied
for some ε > 0:

(i) |z0| < ε, |w0| < ε,

(ii) | z
2
0

w0
| < ε, |w

2
0

z0
| < ε,

(iii) |Re(z0w0)| < 0, |Im(z0w0)| < ε|Re(z0w0)|.
A straightforward calculation shows that, as long as ε is small enough, the hy-

potheses are also satisfied for (zn, wn), and (again assuming that ε is small enough)
that zn and wn both converge to 0. �

We now restate and prove Theorem 6.

Theorem 6. Let f be a holomorphic endomorphism of P2 and let Ω be a non-
recurrent, invariant Fatou component. Suppose that the limit set h(Ω) is unique.
Then h(Ω) either consist of one point p, or h(Ω) is a injectively immersed Riemann
surface, conformally equivalent to either the unit disk, the punctured unit disk or
an annulus, and f acts on h(Ω) as an irrational rotation.

Proof. If h(Ω) is a point then we are done, so we may assume that h has rank 1.
By Lemma 12 the image Σh = h(Ω) is a injectively immersed Riemann surface,
invariant under f . By the work of Weickert [34], Σh is hyperbolic. We claim that
every orbit in Σh is recurrent in the topology of Σh. If not there would be an orbit
in Σ accumulating on a point in ∂Ω \ Σh, which by Lemma 16 would imply that
h(Ω) is not unique.

A hyperbolic Riemann surface either has a diskrete automorphism group, or is
biholomorphic to the unit disk, the punctured unit disk or an annulus. By Lemma
24 we may assume that h is minimal. Hence f : Σ→ Σh is an automorphism, and
as we noted above its action on Σh is recurrent. As was shown in [10], a holomor-
phic endomorphism of P2 can only have finitely many fixed points. Therefore the
automorphism group of Σh cannot be diskrete. Hence Ω must be the unit disk, the
punctured unit disk or an annulus, and f acts on Σh as an irrational rotation. �

We note that it is unknown whether h(Ω) can be equivalent to a punctured disk.

10. Appendix: Perturbations of Singular Riemann Surfaces

We give two alternative proofs of Proposition 11, which we first restate.

Proposition 11. Let f : (C, 0)→ (C2, 0) be the germ of a holomorphic map whose
image is singular at the origin in C2. Let U be a neighborhood of 0 where f is
defined. Then there exists an ε > 0 so that for every g : U → C2 with ‖f − g‖U ≤ ε
we have that g(U) ∩ f(U) 6= ∅.
Geometric proof. The following argument is a more geometric presentation of the
argument given in the main body of the paper. To fix the idea, let us assume
that the image of f is the standard cusp {w2 = z3}. Let us include into into a
holomorphic foliation F with leaves

Lλ = {w2 = λz3}, λ ∈ Ĉ.

Let us puncture out 0, and consider the space O of leaves in the punctured neighbor-
hood of the origin. This space has a natural Riemann orbifold structure (supported
on the sphere) whose local charts are obtained by taking local transverals to F and
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slicing the leaves to it. There are two orbifold points on O: the leaf w = 0 is an
orbifold point of order 3 and the leaf z = 0 is an orbifold point of order 2. So, the
Euler characteristic of O is equal to 1/2 + 1/3 < 1.

Let [λ] be the point of O corresponding to the leaf Lλ. The function g naturally
induces a holomorphic orbifold map g : U → O that does not assume value [λ = 1]
but whose boundary values are close to this point. It follows that g is proper over
O \ B, where B is a small neighborhood of [1]. Hence g is an orbifold branched
covering over O \B of some degree d. By the orbifold Riemann-Hurwitz Theorem,
the Euler characteristic of g−1(O \ B) is at most d · χ(O \ B) < 0. On the other
hand, it follows from the Maximum Principle that g−1(O\B) is the union of disks,
which has a positive Euler characteristic.

In general, consider the foliation with leaves {wm = λzlr(z, w)} (using notation
of (12)). The space of its leaves in the punctured neighborhood of 0 is an orbifold
with Euler characteristic leass than 1 (as it has at least two orbifold points, and
one of them has order at least 3). The rest of the argument is the same. �

Topological proof The following argument was proposed to us by Gabrielov and
Milnor.

We recall a few facts that can be found in [24]. Let us consider a small closed ball
B = Bε in C2 bounded by a 3-sphere S = ∂B. We may assume that V := f(U)∩B
lies properly in B, and we denote its intersection with S by γ. If ε is chosen
sufficiently small then γ is a non-trivial knot in S. Moreover, there exists a retraction
π : B \ V → S \ γ.

Let us consider the component U0 of g−1(B) containing 0. Then g : U0 → B is
a singular 2-cell bounded by a knot η in S. Since g(U0) is disjoint from V , we can
retract it by π to S \ γ. We obtain a singular 2-cell ∆ in S \ γ bounded by η.

Since g is close to f , the knots γ and η are parallel. [Two disjoint knots are
called parallel if they bound an embedded annulus S1 × [0, 1] → S . It is easy to
see that if both knots are smooth and η is a small C1-perturbation of γ, then the
knots are parallel.] Let A be the embedded annulus bounded by γ ∪ η. Then the
sum D := ∆ +A is a singular 2-cell bounded by γ. We can apply to it the following
classical result, proved by Papakyriakopoulos in [26]:

Lemma 39 (Dehn’s Lemma). Let D be a singular 2-cell in S3 bounded by a knot
γ that has an annular neighborhood in D. Then there exists an emebedded 2-cell D′

bounded by γ.∗

It follows that the knot γ is trivial – contradiction. �
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