RIGIDITY FOR INFINITELY RENORMALIZABLE
AREA-PRESERVING MAPS
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ABSTRACT. Area-preserving maps have been observed to undergo a universal
period-doubling cascade, analogous to the famous Feigenbaum-Coullet-Tresser
period doubling cascade in one-dimensional dynamics. A renormalization ap-
proach has been used by Eckmann, Koch and Wittwer in a computer-assisted
proof of existence of a conservative renormalization fixed point. Furthermore,
it has been shown that infinitely renormalizable maps in a neighborhood of
this fixed point admit invariant Cantor sets on which the dynamics is “stable”
- the Lyapunov exponents vanish on these sets.

Infinite renormalizability exists in several settings in dynamics, for example,
in unimodal maps, dissipative Hénon-like maps, and conservative Hénon-like
maps. All of these types of maps have associated invariant Cantor sets. The
unimodal Cantor sets are rigid: the restrictions of the dynamics to the Cantor
sets for any two maps are C!'t®-conjugate. Although, strongly dissipative
Hénon maps can be seen as perturbations of unimodal maps, surprisingly the
rigidity breaks down. The Cantor attractors of Hénon maps with different
average Jacobians are not smoothly conjugated. It is conjectured that the
average Jacobian determines the rigidity class. This conjecture holds when
the Jacobian is identically zero, and in this paper we prove that the conjecture
also holds for conservative maps close to the conservative renormalization fixed
point.

Rigidity is a consequence of an interplay between the decay of geometry and
the convergence rate of renormalization towards the fixed point. Therefore, to
demonstrate rigidity, we prove that the upper bound on the spectral radius of
the action of the renormalization derivative on infinitely renormalizable maps
is sufficiently small.
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INTRODUCTION

Following the pioneering discovery of the Feigenbaum-Coullet-Tresser period
doubling universality in unimodal maps (Feigenbaum 1978), (Feigenbaum 1979),
(Tresser and Coullet 1978), universality — independence of the quantifiers of the
geometry of orbits and bifurcation cascades in families of maps of the choice of a
particular family — has been demonstrated to be a rather generic phenomenon in
dynamics.

Universality problems are typically approached via renormalization. In a renor-
malization setting one introduces a renormalization operator on a functional space,
and demonstrates that this operator has a hyperbolic fized point. This approach
has been very successful in one-dimensional dynamics, and has led to explana-
tion of universality in unimodal maps (Epstein 1986, Epstein 1989, Lyubich 1999,
Martens 1999), critical circle maps (de Faria 1992, de Faria 1999, Yampolsky
2002, Yampolsky 2003) and holomorphic maps with a Siegel disk (McMullen 1998,
Yampolsky 2007, Gaidashev and Yampolsky 2007). There is, however, at present
no complete understanding of universality in conservative systems, other than in
the case of the universality for systems “near integrability” (Abad et al 2000, Abad
et al 1998, Koch 2002, Koch 2004, Koch 2008, Gaidashev 2005, Kocié¢ 2005, Khanin
et al 2007).

Period-doubling renormalization for two-dimensional maps has been extensively
studied in (Collet et al 1980, de Carvalho et al 2005, Lyubich and Martens 2011).
Specifically, the authors of (de Carvalho et al 2005) have considered strongly dissi-
pative Hénon-like maps of the form

(1) F(xay) = (f($) - e(x,y),x),

where f(z) is a unimodal map (subject to some regularity conditions), and ¢ is
small. Whenever the one-dimensional map f is renormalizable, one can define a
renormalization of F', following (de Carvalho et al 2005), as

Racrm[F] :HiloFOF‘UOH,

where U is an appropriate neighborhood of the critical value v = (f(0),0), and H is
an explicit non-linear change of coordinates. (de Carvalho et al 2005) demonstrates
that the degenerate map Fi(z,y) = (f«(z),z), where f, is the Feigenbaum-Collet-
Tresser fixed point of one-dimensional renormalization, is a hyperbolic fixed point
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of Rycrnm- Furthermore, according to (de Carvalho et al 2005), for any infinitely-
renormalizable map of the form (1), there exists a hierarchical family of “pieces”
{B"}, organized by inclusion in a dyadic tree, such that the set

cr =Bz

is an attracting Cantor set on which F' acts as an adding machine. Compared to
the Feigenbaum-Collet-Tresser one-dimensional renormalization, the new striking
feature of the two dimensional renormalization for highly dissipative maps (1),
is that the restriction of the dynamics to this Cantor set is not rigid. Indeed,
if the average Jacobians of F' and G are different, for example, bp < bg, then
the conjugacy Flc, ; Gles is not smooth, rather it is at best a Hélder continuous

function with a definite upper bound on the Hélder exponent: o < % (1 + igg Z}f) <
1.

The theory has been also generelized to other combinatorial types in (Hazard
2011), and also to three dimensional dissipative Hénon-like maps in (Nam 2011).

Finally, the authors of (de Carvalho et al 2005) show that the geometry of these
Cantor sets is rather particular: the Cantor sets have universal bounded geometry
in “most” places, however there are places in the Cantor set were the geometry is
unbounded. Rigidity and universality as we know from one-dimensional dynamics
has a probabilistic nature for strongly dissipative Hénon like maps. See (Lyubich
and Martens 2011) for a discussion of probabilistic universality and probabilistic
rigidity.

It turns out that the period-doubling renormalization for area-preserving maps
is very different from the dissipative case.

A universal period-doubling cascade in families of area-preserving maps was
observed by several authors in the early 80’s (Derrida and Pomeau 1980, Helleman
1980, Benettin et al 1980, Bountis 1981, Collet et al 1981, Eckmann et al 1982).
The existence of a hyperbolic fixed point for the period-doubling renormalization
operator

RexwlF] :Agl oFoFoAp,

where Ap(z,u) = (Apz, pru) is an F-dependent linear change of coordinates, has
been proved with computer-assistance in (Eckmann et al 1984).

We have proved in (Gaidashev and Johnson 2009b) that infinitely renormalizable
maps in a neighborhood of the fixed point of (Eckmann et al 1984) admit a “stable”
Cantor set, that is the set on which the maximal Lyapunov exponent is zero. We
have also shown in the same publication that the conjugacy of stable dynamics is
at least bi-Lipschitz on a submanifold of locally infinitely renormalizable maps of a
finite codimension.

In this paper we improve the conclusions of (Gaidashev and Johnson 2009b),
and prove the following result.

Theorem A. The stable dynamics of infinitely renormalizable area-preserving maps
on the Cantor set Cp is rigid.

Specifically, for any two maps F' and G in the local stable manifold of the renor-
malization operator the conjugacy

Fley , Gles
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is C11T, j.e. h extends to a neighborhood of Cr as a differentiable map whose
derivative is Holder continuous of exponent o, with

o > 0.0129241943359375.

At the same time, the numerically measured value of the Holder constant is
larger.

a > 0.02770.

It has been conjectured that the average Jacobian determines the rigidity class
of Hénon-like maps. This conjecture holds for C® unimodal maps with a non-
degenerate critical point, for which the Jacobian is identically zero. In this paper we
prove that the conjecture also holds for conservative maps close to the conservative
renormalization fixed point. At the same time, the result of (de Carvalho et al 2005)
states that rigidity does not hold for strongly dissipative Hénon-like maps with
different average Jacobians.

An important ingredient of the proof is a new bound on the spectral radius of the
renormalization operator. We demonstrate that the spectral radius of the action of
DRgkw, evaluated at the Eckmann-Koch-Wittwer fixed point Frrw, restricted
to the stable manifold W of the infinitely renormalizable maps, is equal exactly to
the absolute value of the “ horizontal” scaling parameter

Repec (DRErw [FERW]IW) = [AFprw | = 0.2488 .. ..

Furthermore, we demonstrate that the single eigenvalue Ag, ., in the spectrum
of DRpxw[Frxw]| corresponds to an eigenvector, generated by a very specific
coordinate change.

We compute the spectral radius of the restriction of the spectrum of DR g gw [F*]
to the stable subspace minus the eigenvalues Ap,,, , and obtain the following
spectral bound, which is of crucial importance to our proof of rigidity.

Theorem B.
Repec (DRErw [F*)Iw) \ {A\Fprw } < 0.1258544921875.

The Cantor set of a renormalization fixed point can be seen as the limit set of
the iterated function system generated by two rescalings (see also “presentation
function” (Ledrappier and Misiurewicz 1985)). In this context, the pieces of the
Cantor set are images of branches of this iterated function system. These branches
are compositions of rescalings. The Cantor set of an infinitely renormalizable map
is obtained in a similar way. The pieces are also obtained as images of compositions
of rescalings. The convergence of renormalization imply that the rescalings in these
branches converge exponentially fast to the corresponding rescalings of the renor-
malization fixed point. In the one-dimensional context the exponential convergence
together with the comutativity of derivatives of rescaling is enough to show that
the small scale geometry of the Cantor sets is asymptotically the same, that is, to
show rigidity.
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In the area-preserving case, we still have the exponential convergence. However,
derivatives do not commute anymore. This noncommutativity introduces discrep-
ancies between the small scale geometry of the Cantor sets. These discrepancies will
disappear on asymptotic scale if there is fast enough convergence of the rescalings,
that is, fast enough convergence of renormalizations.

In the dissipative case, the pieces of the Cantor set are also obtained as im-
ages of long compositions of rescalings. These rescalings converge exponentially
fast to the correponding rescalings of the one-dimensional renormalization fixed
point. Although, the the two-dimensional nature of these rescalings decays super
exponentially fast, it is still strong enough to let the non commutativity destroy
rigidity.

For convenience and readability, the paper is divided in two large logical parts,
“Rigidity for Infinitely Renormalizable Maps”, and “Spectral Properties of Renor-
malization”. We prove the main result of the paper in the first part; the second
part contains a collection of results concerning the renormalization spectrum, out
of which the most important is the spectral bounds on the stable and strong stable
renormalization manifolds.
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Part 1. Rigidity for Infinitely Renormalizable Maps

1. RENORMALIZATION FOR AREA-PRESERVING REVERSIBLE TWIST MAPS

An “area-preserving map” will mean an exact symplectic diffeomorphism of a
subset of R? onto its image.
Recall, that an area-preserving map that satisfies the twist condition

Oy (7 F(z,u)) #0

everywhere in its domain of definition can be uniquely specified by a generating
function S:

@ (Lsitem) : (5s0npy)> Si=0

Furthermore, we will assume that [ is reversible, that is
(3) ToFoT=F" where T(v,u)=(v,—u).
For such maps it follows from (2) that
Si(y,x) = Sa(x,y) = s(x,y),
and

(4) <_S<Z,x>> - <s<:éy,y>)'
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It is this “little” s that will be referred to below as “the generating function”.
If the equation —s(y,z) = w has a unique differentiable solution y = y(z,u), then
the derivative of such a map F' is given by the following formula:

— e
(5) DF(z,u) = L R P
sz, y(z,u) — sa(z, y(u, u)) 2o S?Ey&iﬁfusﬁ

The period-doubling phenomenon can be illustrated with the area-preserving
Hénon family (cf. (Bountis 1981)) :

Hy(z,u) = (—u+1— az?, z).

Maps H, have a fixed point ((—1++/1 + a)/a, (=14 +/1 + a)/a) which is stable
(elliptic) for —1 < a < 3. When a; = 3 this fixed point becomes hyperbolic: the
eigenvalues of the linearization of the map at the fixed point bifurcate through
—1 and become real. At the same time a stable orbit of period two is “born”
with Hy(z4,25) = (x5,24), 2+ = (1 £ +va —3)/a. This orbit, in turn, becomes
hyperbolic at as = 4, giving birth to a period 4 stable orbit. Generally, there exists
a sequence of parameter values ay, at which the orbit of period 2*~! turns unstable,
while at the same time a stable orbit of period 2* is born. The parameter values
aj, accumulate on some as,. The crucial observation is that the accumulation rate

(6) lim 2Tk g 791
k—oo Q41 — Ak
is universal for a large class of families, not necessarily Hénon.
Furthermore, the 2¥ periodic orbits scale asymptotically with two scaling pa-

rameters
(7) A=-0.249..., p=0.061...

To explain how orbits scale with A and p we will follow (Bountis 1981). Consider
an interval (ay,ar+1) of parameter values in a “typical” family Fj,. For any value
a € (ak,ary1) the map F, possesses a stable periodic orbit of period 2¥. We
fix some «j within the interval (ag,ar+1) in some consistent way; for instance,
by requiring that DFO%: at a point in the stable 2*-periodic orbit is conjugate,
via a diffeomorphism Hy, to a rotation with some fixed rotation number r. Let
P}, be some unstable periodic point in the 28—1_periodic orbit, and let p; be the
further of the two stable 2F-periodic points that bifurcated from pj.- Denote with
di, = |p}, — pk|, the distance between p; and pj. The new elliptic point py is
surrounded by (infinitesimal) invariant ellipses; let ¢; be the distance between py
and p), in t he direction of the minor semi-axis of an invariant ellipse surrounding
Pk, see Figure 1. Then,

1 dp, A Pk 1 _ Cl

— =— lim — =— lim — = lim
A k—oo dk+1 ’ M k—o0 Pp41 ’ A2 k—00 Cp41 ’

where py is the ratio of the smaller and larger eigenvalues of D Hy(py).
This universality can be explained rigorously if one shows that the renormaliza-
tion operator

(8) REKW[F]:A;ﬂloFoFoAF7

where A is some F-dependent coordinate transformation, has a fixed point, and
the derivative of this operator is hyperbolic at this fixed point.
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p’_k

d_k
c_k

FI1GURE 1. The geometry of the period doubling. py, is the further
elliptic point that has bifurcated from the hyperbolic point pj,.

It has been argued in (Collet et al 1981) that Ag is a diagonal linear transforma-
tion. Furthermore, such Ap has been used in (Eckmann et al 1982) and (Eckmann
et al 1984) in a computer assisted proof of existence of a reversible renormalization
fixed point Fgxw and hyperbolicity of the operator Rgxw .

We will now derive an equation for the generating function of the renormalized
map A;l oFoFoAp.

Applying a reversible F' twice we get

(—sé,x')) : <s<x'Z,Z>> B <_s<5,2)> : <<Zyy>>

According to (Collet et al 1981) Ap can be chosen to be a linear diagonal trans-
formation:

Ap(z,u) = (A, pu).
We, therefore, set (2/,y') = (\x, \y), Z(Az, Ay) = z(z,y) to obtain:

¥ <—is<xz,xx>> ; (—séfm) F2F<s<2yxy>) B (isékw)’

where z(z,y) solves
(10) s(Az, 2(z,y)) + s(Ay, 2(2,y)) = 0.

If the solution of (10) is unique, then z(z,y) = z(y,x), and it follows from (9)
that the generating function of the renormalized F' is given by

(11) 5(z,y) = w's(2(z,y), \y).

One can fix a set of normalization conditions for § and z which serve to determine
scalings A and p as functions of s. For example, the normalization s(1,0) = 0 is
reproduced for § as long as z(1,0) = 2(0,1) = 1. In particular, this implies that

s(Z(2,0),0) =0,

which serves as an equation for A. Furthermore, the condition 9;s(1,0) = 1 is
reproduced as long as u = d12(1,0).
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We will now summarize the above discussion in the following definition of the
renormalization operator acting on generating functions originally due to the au-
thors of (Eckmann et al 1982) and (Eckmann et al 1984):

Definition 1.1. Define the prerenormalization of s as

(12) PEKW[S] :SOG[S],

where

(13) 0 = s(z,Z(z,y)+ sy, Z(z,y)),
(14) Glsl(z,y) = (Z(z,y),y)

The renormalization of s will be defined as

1
(15) Rexwls] = ;PEKW[S] oA,
where

AMz,y) = Az, \y), Perxwl[s](A,0) =0 and p=X hPrrxw|s](),0).

Definition 1.2. The Banach space of functions s(x,y) = Z;')E':o cij(x—PB) (y—pB),
analytic on a bi-disk
Dy(B) = {(z,y) € C*: |z — B < p, |y = BI < p},
for which the norm
Isllp = > leijlp™
§,§=0
is finite, will be referred to as AP (p).
AP (p) will denote its symmetric subspace {s € A%(p) : s1(x,y) = s1(y,2)}.

We will use the simplified notation A(p) and As(p) for A°(p) and A°%(p), respec-
tively.

As we have already mentioned, the following has been proved with the help of a
computer in (Eckmann et ol 1982) and (Eckmann et al 1984):

Theorem 1. There exist a polynomial so.5 € A%®(p) and a ball B,(so.5) € A%5(p),
0=6.0x 1077, p = 1.6, such that the operator Rpxw is well-defined and analytic
on By(s0.5).

Furthermore, its derivative DREKW|BQ(SOA5) is a compact linear operator, and
has ezactly two eigenvalues

61 =8.721..., and

1
62 = X
of modulus larger than 1, while
spec(DREKW|BQ(SO_5)) \ {01,602} C{2€C:|z| <v},
where

(16) v < 0.85.
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Finally, there is an sP5W € B,(so.5) such that

Rixw [sFEW] = sPEW.
The scalings A, and i, corresponding to the fized point sP5W satisfy
(17) A« € [—0.24887681, —0.24887376],
(18) s € [0.061107811,0.061112465].

Remark 1.3. The bound (16) is not sharp. In fact, a bound on the largest eigen-
value of DRgxw (sEEW), restricted to the tangent space of the stable manifold, is
expected to be quite smaller.

The size of the neighborhood in A?(p) where the operator R is well-defined,
analytic and compact has been improved in (Gaidashev 2010). Here, we will cite a
somewhat different version of the result of (Gaidashev 2010) which suits the present
discussion (in particular, in the Theorem below some parameter, like p in A% (p),
are different from those used in (Gaidashev 2010)). We would like to emphasize
that all parameters and bounds used and reported in the Theorem below, and,
indeed, throughout the paper, are numbers representable on the computer.

Theorem 2.
There exists a polynomial s° € A(p), p = 1.75, such that the following holds.
i) The operator Rxw is well-defined and analytic in Br(s) C A(p) with

R = 0.00426483154296875.

ii) For all s € Bpr(s°) with real Taylor coefficients, the scalings A\ = \[s] and
w = pls] satisfy

0.0000253506004810333

—0.27569580078125

0.121036529541016,

o
A —0.222587585449219.

< <
< <

iti) The operator Rexw is compact in Br(s?) C A(p), with Rexw(s] € A(p),
P = 1.0699996948242188p.

Definition 1.4. The set of reversible twist maps F' of the form (4) with s € By(5) C
AL (p) will be referred to as F°(3):

(19)  FPr(3) ={F: (x,—s(y,x)) = (y,s(x,y))| s € B,y(3) C AZ(p)}.
We will also use the notation

FA(35) = For(3).

We will finish our introduction into period-doubling for area-preserving maps
with a summary of properties of the fixed point map. In (Gaidashev and Johnson
2009a) we have described the domain of analyticity of maps in some neighborhood of
the fixed point. Additional properties of the domain are studied in (Johnson 2011).
Before we state the results of (Gaidashev and Johnson 2009a), we will fix a notation
for spaces of functions analytic on a subset of C2.
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Definition 1.5. Denote Oy(D) the Banach space of maps F : D + C2, analytic
on an open simply connected set D C C?, continuous on D, equipped with a finite
maz supremum norm || - ||p:

I1E|lp :max{ sup |Fi(z,u)|, sup |F2(a:,u)|}
(z,u)€D (z,u)€D

The Banach space of functions y : A— C, analytic on an open simply connected
set A C C2, continuous on DA, equipped with a finite supremum norm || - ||.4 will
be denoted O1(A):

lyllp = sup |y(z,u)l.
(z,u)eD

If D is a bidisk D, C C? for some p, then we use the notation
-l =1 llo, -

The next Theorem describes the analyticity domains for maps in a neighbor-
hood of the Eckmann-Koch-Wittwer fixed point map, and those for functions in a
neighborhood of the Eckmann-Koch-Wittwer fixed point generating function. The
Theorem has been proved in two different versions: one for the space A%°(1.6)
(the functional space in the original paper (Eckmann et al 1984)), the other for the
space A4(1.75) — the space in which we will obtain a bound on the renormaliza-
tion spectral radius in the stable manifold in this paper. To state the Theorem in
a compact form, we introduce the following notation:

Po.5 = 1.6, Po = 1757

005 =6.0x10"", 0o = 5.79833984375 x 10™*,
while sg.5 (as in Theorem 1) and sg will denoted the approximate renormalization
fixed points in spaces A%5(1.6) and A(1.75), respectively.

Theorem 3. There exists a polynomial sg such that the following holds for all
Fe ]-'g’p(s,g), B8=0.50rB=0.

i) There exists a simply connected open set D = D(S, 05, pg) C C? such that the
map F is in O2(D).
ii) There exist simply connected open sets D = D(p, 08, p3) C D, such that Qﬂ R?
is a non-empty simply connected open set, and such that for every (z,u) € D and
s € By, (sg) C AZ(pg), the equation
(20) 0=u+s(y,2)
has a unique solution y[s|(z,u) € O1(D). The map

S s yls]

is analytic as a map from By, (sg) to O1(D).
Furthermore, for every x € m,D, there is a function U € O1(D,,(B)), that
satisfies
y[s](z, U(z,v)) = v.
The map
Y:y[s]—U
is analytic as a map from O1(D,,(B)) to By,(sp).
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Remark 1.6. It is not too hard to see that the subsets ]-'5"’(85), B=0 or0.5, are
Banach submanifolds of the spaces Oo(D(B, 05, ps). Indeed, the map

(21) T: s+ (y[s],sohls]),

where y[s|(z,u) is the solution of the equation (20), and h[s](x,u) = (z,y[s|(z,u)),
is analytic as a map from B,,(sg) to O2(D(B, 08, ps) according to Theorem 3, and
has an analytic inverse

(22) I7':F m,FoglF),

where g[F|(x,y) = (z,U(x,y)), and U is as in Theorem 3.

We are now ready to give a definition of the Eckmann-Koch-Wittwer renormal-
ization operator for maps of the subset of a plane. Notice, that the condition
Prrwls](A,0) = 0 from Definition 1.1 is equivalent to

F(F<)\’ —S(Z(/\7 0)7 )‘))) = <0a O)a
or, using the reversibility
A=m, F(F(0,0)).
On the other hand,

—s(z(y(z,u),x),x) = —Prrwls](y(z,u),z) = u,

and
0uPexwls|(y(z,u),z) = Perxwlsh(y(z,u), v)y2(z,u)
= Perwlsh(y(z,u),x) m(F o F)a(x,u) = —1,
then
Perw(s]i1(A,0) 7, (F o F)2(0,0) = —1,
and

_ -
" R P00

Definition 1.7. We will refer to the composition F o F as the prerenormalization
of F', whenever this composition is defined:
(23) PEKV[/[F]:FOF.

Set

Rexwl|F] = A lo PexwlF] oA,
where
—A

7o Percw [F12(0,0)’

whenever these operations are defined. Rgxw [F] will be called the (EKW-)renormalization
of F.

Az, u) = Az, pu), X=mPrxwl[F](0,0), pn=

Remark 1.8. Suppose that for some choice of B, o and p, the operator Rexw
and the map I, described in Remark 1.6, are well-defined on some B,(sg) C A2 (p).
Also, suppose that the inverse of I exists on Z(By(sg)). Then,

Repxw =ToRprgw oI !
on Fg’p(s/g).
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2. STATEMENT OF MAIN RESULTS
Consider the dyadic group,
(24) {0,1} = lim{0, 1}",
where 1&1 stands for the inverse limit. An element w of the dyadic group can be

represented as a formal power series w — Z;OZO wi4+12%. The odometer, or the
adding machine, p : {0,1}>° — {0,1}°° is the operation of adding 1 in this group.
We are now ready to state our main theorems.

Main Theorem 1. (Ezistence and Spectral properties) There exists a polynomial
s0 : C?2 — C, such that

i) The operator Rpxw is well-defined, analytic and compact in B,,(so) C
As(p), with

p=1.75 o= 579833984375 x 10~*.

ii) There exists a function s* € B(so) C As(p) with
r=11x10"1°,

such that
REKW[S*] = s*.

ili) The linear operator DRpxw[s*] has two eigenvalues outside of the unit
circle:

1
8.72021484375 < §; < 8.72216796875, 4§y = o

where

—0.248875313689 < A, < —0.248886108398438.

iv) The complement of these two eigenvalues in the spectrum is compactly con-
tained in the unit disk. The largest eigenvalue in the unit disk is equal to
A, while
spec(DRgxw(s*]) \ {01,062, A} C {2 € C: |z| <0.1258544921875 = v}.
The Main Theorem 1 and Theorem 1 imply that there exist codimension 2 local
stable manifolds Wg .y, (s*) C Ag(1.75) and W5 (s#EW) < AJ5(1.6) of the
operator Rerw .

Compactness of the operator Rgxw in neighborhood of s* implies that there
exists a strong “submanifold”

of codimension 1 in Wg ., (s*), such that the contraction rate in W . (s*) is
bounded from above by v:

IRExws] = Rexw(8lll, = OW™)

for any two s and 5 in Wy (s*).
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Definition 2.1. The set of reversible twist maps of the form (4) such that s €
WRekw (8%) C A (1.75) will be denoted Wrrw, and referred to as infinitely
renormalizable maps.

The set of reversible twist maps of the form (4) such that s € Wg, . (s*) C
As(1.75) will be denoted W3 e -

The set of reversible twist maps of the form (4) such that s € W%ZKW (sEEWY ¢
AY5(1.6) will be denoted Wiy

Recall the Definition 1.4.
Definition 2.2. Set,

Wg(g) = WE‘KWH}—;'75(§)7
W,(3) = Wigw N F, (),
WPP(3) = Wakw NFy>h0(3).

Naturally, these sets are invariant under renormalization if p is sufficiently small.

Notice, that, among other things, this Theorem restates the result about exis-
tence of the Eckmann-Koch-Wittwer fixed point and renormalization hyperbolicity
of Theorem 1 in a setting of a different functional space. We do not prove that
the fixed point s* coincides with s®X"W from Theorem 1, although the computer
bounds on these two fixed points differ by a tiny amount on any bi-disk contained
in the intersection of their domains.

Main Theorem 1 will be proved in Part 2.

Main Theorem 2. (Stable Set)
There exists 0 > 0 such that any F € W,(so), admits a “stable” Cantor set
Cr C D with the following properties.

i) For all x € Cp the mazimal Lyapunov exponent x(x; F) exists, is F-
mvariant, is equal to zero:

x(x; F) =0,

i L log { |DF(x)e] } .

i—oo i o]
uniformly for all v € R?\ {0} and = € Cr.
ii) The Hausdorff dimension of Cr satisfies

dimy (Cr) < 0.794921875.

ili) The restriction of the dynamics F|c,. is topologically conjugate to the adding
machine.

and

Main Theorem 3. (Rigidity) Let s* and Cr be as in Main Theorems 1 and 2.
There exists o > 0, such that for all F' and F in W,(s*),

F|CF ;F‘Cﬁ7

where h extends to a neighborhood of Cr as a differentiable transformation, whose
deriwative Dh is Holder continuous with the Hélder exponent

a > 0.0129241943359375.
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3. EXISTENCE OF THE INVARIANT STABLE CANTOR SETS

Parts i)—iii) of Main Theorem 2 for F' € W2-?(s¥5W) have already been proved
in (Gaidashev and Johnson 2009b) with the help of the so called presentation func-
tions. We will, however, redo this proof in the setting of the space A4(1.75).

Set ¢ = Ap and ¥ = F o Ap, these are the two presentation functions of F.
Clearly, for any two F' € W,.(sg), where r and sg are as in Main Theorem 1,

Cin® 0

R™[F] _ * _ _ n
DZ/JO (CL',’LL) D¢O(x7u) 0|/\*‘n 02|)\*|n O(|>‘*| )7
and, similarly,
Dy a,w) = Di (2, u) = O™,
Furthermore, set
(25) Uy = ¢g and WY =9,
(26) UE = gl oo b= (wr, L w,) € {0, 1)

Lemma 3.1. For every F € W,.(sg), r = 1.1 x 10710, there exists a simply con-
nected closed set B € D NR2, where D is as in Theorem 3, such that the following
holds.
1) BY(F) =9¢ (Br) C Br and Bi(F) = I (Br) C Br are disjoint, F(B{(F))N
BY #0, and
(27) max{|| DL || B, | DYE 1B} <0, 6 = 0.41796875.
2) There exists € > 0 such that
dist { By, 0D} > c.
Proof. Part 1) First, we verify the following on the computer:
v (B)C B, wi(B)C B and F(uy(B)) Ny (B)#0

for all ' € W,(s¢), where
(x — 0.469970703125)° | (u + 0.0399169921875)°

0.81994628906252 0.3013610839843752
The fact that BeD is proved in Part 2 of this proof. We also check that the sets
¥§ (B) C B and ¢{ (B) C B are disjoint.

One can now add another set B C B, so that the set

Bp =5 (B) i (B)N B

would be simply connected. For example, the ellipse B c B,
(z — 0.0.469970703125)> u? <1yeB

0.5299987792968752 0.002370119094848632 — ’
intersects each of ¥’ (B), ¥F(B) along a single arc, and hence, Bp is indeed simply

connected (see Figure 3), and satisfies the claim.
Notice, that all numbers used in this Lemma are representable on a computer.

B ={(r,u) € R?: <1} e DNR2

B ={(z,u) e R?:

Part 2) A computer bound on D N R? (see Theorem 3) has been obtained with
the help of the interval Newton operator. We will now recall the definition of this
operator (cf. (Neumaier 1990)).
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FIGURE 2. Sets ¢{ (B) (magenta), ¥ (B) (cyan) and B (blue).

Let h: A C R™ — R", and let Dh be an interval matrix valued function such
that [Dh(z)];; € [D(h)(x)]i;, for all z € A. Let X C A be a Cartesian product
of finite intervals, & € X, and assume that if A € Dh(X), then A is non-singular.
The interval Newton operator is defined as:

N(h,X,2) = & — (Dh)"}(X)h(z).
The main properties of N is that if N(h,X, ) C intX, then there exists a unique
solution to h(xz) = 0 in X, which is contained in N(h, X, ), and if N(h, X, 2)NX =
(), then there is no solution to h(z) =0 in X.

To obtain the bound on D NR?, we have verified the containment property for
N(h(w,u)7Y, il), where

Y={yeR: |y <175}, and hg.,(y) =u+s(y,z),

specifically, we have shown that there exists a non-empty set D C R2, such that for
all (z,u) € D

(28) 0 ¢ Dhyu(Y),
and
N(h(L,u)aYag) cY.

In particular, (28) implies via the Implicit Function Theorem that there exists
an open neighborhood D of D in €2, such that h, ., (y) = 0 has a solution y(z,u)
for all (x,u) € D with y being an analytic function on D. We verify that B e
[—0.4,1.4] x [-0.6,0.6] C D. Clearly, the boundary of D is a definite distance away

from any set compactly contained in D N R2.
[

Set BY' = v&' (Br), BY = ¢f(Br), and define “pieces”
B =9[l(Br), we{o,1}"
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One can view {0, 1}" as an additive group of residues mod 2" via an identification

n—1

w — E wk+12k.
k=0

Let p: {0,1}™ — {0,1}", be the operation of adding 1 in this group. The following
Lemma has been proved in (de Carvalho et al 2005), and it’s proof holds in our
case of area-preserving maps word by word:

Lemma 3.2.

1) The above families of pieces are nested:
BEF cBE, we{0,1}"7', wvwe{o,1}.
2) The pieces BEY, w € {0,1}" are pairwise disjoint.
3) F permutes the pieces as follows: F(BL) = Bf(w
p(w) = 0", then F(BE)n BE, # 0.
4) diam(BE) < const 6.
5) dimpy(Cr) < —log(2)/log(#) < 0.794921875, where

o

(29) cr=() U BL

n=1we{0,1}"

) unless p(w) = 0". If

We will denote
C* = CF* .

Since the set B from Lemma 3.1 contains (0,0), so does each piece B{. It follows
from part 3) of Lemma 3.2 that the set (J,c(g,1yn BF contains iterates F((0,0))
up to order 2. Therefore, the Cantor set Cr is the closure of the orbit of zero.

Recall the definition of the odometer p from Section 2. Lemma 3.2 implies the
following:

Corollary 3.3. The restriction F|c, is homeomorphic to the odometerp : {0,1}>° —
{0,1}°° wia h : {0,1}*° — Cp defined as

h(w) = ﬂ B’El’wz...’wn'
n=1

4. LYAPUNOV EXPONENTS

Recall, the definition of the upper Lyapunov exponent of (p,v) € (D NR?) x R?
with respect to F":

— 1 ;

where |||| is some norm in R?. The maximal Lyapunov exponent of p € (D N R?)
with respect to F' is defined as
X(p; F) = sup x(p,v; F).
[[v]|=1
The following Lemma about the existence of hyperbolic fixed points for maps in
a small neighborhood of the renormalization fixed point map F* is a restatement
of a result from (Gaidashev and Johnson 2009a) in the setting of the functional
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space A4(1.75). The proof of the Lemma is computer-assisted (see (Gaidashev and
Johnson 2009a)).

Lemma 4.1. Every map F C FF(so), withr = 1.1 x 10710 and p = 1.75, possesses
a hyperbolic fized point p* € D, such that

1) mpt € (0.577606201171875,0.577629923820496), and m,pf = 0, where
Tz GTe projections on the x and u coordinates;
2) DF(p%) has two negative eigenvalues.

e’ € (—2.0576171875, —2.057373046875),

el € (—0.486053466796875, —0.48602294921875),

corresponding to the following two eigenvectors:

st = [1.0, —(0.77978515625, 0.779815673828125)], and u’ = T(s").

This Lemma implies existence of hyperbolic 2"-th periodic orbits for maps in
W,.(s0). Let O, (F) denote such 2"-th periodic orbit of F' € W,(sq), specifically:

2" —1

Ou(F) = |J FI(¥E.™)),

i=0
where pf™ is the fixed point of F}, = R"[F] € W,.(s0). We will also denote
n oi—1
pon =V (p™™), pl = FXi=me2 (o).

Consider the stable and unstable invariant direction fields on the 2"-th periodic
orbit O, (F). At every point pf, w € {0,1}" of O, (F), these directions are given
by
(30) u
(31) s

The angles between these vectors and the positive real line will be denoted by
al and BE.

= DY (p")u™
DY (p"™)s™™.

)

€y ey

Lemma 4.2. The set U2 (O, (F)UCk is in the set of reqular points for F', specif-
ically,

1) The decomposition
R = B (%) @ B+ (o) = span{st'} @) span{ul’}

s invartant under
DF : D x R? — R?,
The Lyapunov exponents
log |e"™ |

X-( F) = —x+(m F) = —7—, 2 € Ou(F),

where e’ is as in Lemma 4.1, exist, are F-invariant, and
1 DF?
lim 2+ log [IDEF*(x)v]| ] _ Y (s F),
i—00 i o]

uniformly for all v € Ex(pE)\ {0};
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2) The Lyapunov exponent
XOO =0, z¢€Cp,

exists, is F'-invariant, and

DF?
i g {1

=00 [i] o]

uniformly for all v € R?\ {0}.
Proof. 1) Let i = ¢q2" + k, k = 291 4 2/2 . 4 2/m < 2" then
DF*(p{)sgn DFM " (pg)sh, = DF*(F®" (p§.)) - DF®" (pon)Son
= DF*pf) - D (W o Fro (95) ) (b )st
= DF*pf)- D (Fio (\Iff;)” )

. DFY ( (wE) " (ot ) )) - D (W5 (pE)sE
= DF(pf.) - DL (™) - DF2(p™) - D (¥5.) " (f)st,
= DF*(pg.) - DYG. (p"™) - DER(p"™)s™

DF*(pg.) - DUE, (p™) - (e)as™™
= (e")IDF*(pk.) - st..

Denote C), and ¢, - upper and lower bounds on the derivative norm of F' on
O, (F). Then

(32) cnlel|9llsga |l < I DF*(pge)sgn || < Crilel"[9]Isgell,
and,
DF(pf.)sk. k log{|e"™
hml_wo -~ log P(po)s()”} < lim ~logC, + = 10g{| Fy, } = m,
i st oo 7 2n
DF(pf.)st. k 1
lim, .~ log ['(pp‘))s‘)” > Jim Zlogey + Llog{le” [} = Og{‘e il
t [El 1ol
therefore, the limit
DF(pk.)sE.
fm L 1og [12F @856
1—>00 ’L ||SO”
exists, and is equal to
log{|e [}
x—(n; F) = —

A similar computation demonstrates that

|DFZ(Pon)u0”||] _logf{lef"[} _
[l | 2

lim * log { x—(n; F).

i—00 1

2) Clearly, the above implies stability of the accumulation locus of the periodic
orbits O, (F), that is for any F' € W,.(s¢), and any z € Cp, v € R? \ {0},

1 ,
x> = lim - log [||DF*(z)v||] = 0.
—00 1
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5. EXISTENCE OF THE CONJUGACY ON THE STABLE DYNAMICS FOR INFINITELY
RENORMALIZABLE MAPS

In this Section we will demonstrate the existence of the conjugacy on the Cantor
sets for maps on the renormalization stable manifold.

For any w™ = {w1,...,w,} € {0,1}", and F' € W,(sg), where r and sy are as in
Main Theorem 1, define kL, , formally as:

Wi = Wi o (W)™,

and
(hE) ™ = Wi (w5

Let w € {0,1}*°. We will demonstrate that the map

(33) hE = lim Ak,
n—oo
and its inverse
F —1 — . F —1
(34) (h‘w) - nh—>néo (hw”> 9

are well-defined at each point y € C, coded by w.
Notice that if ' < r is sufficiently small, then for any F' € W, (s¢),

B* = BY = BF n B*
is again, a zeroth generation piece for the Cantor sets Cp and C.. Clearly, the map
hE. is real-analytic on B, , and

hE, (B;;n) - BE,.

*., denote 2’ = AL, (), and

wn w

Next, given z € B

(35) @on = (U5) " (2), a4 = \Ilfj:+1 o oUbrt(zn), k<n, aln=aum,

and consider

-1
RE (@) = W (@) = WEn 0 (W) (@) = 9 0 (Vo) (@),

Since
U @) = W, i) + [ U5 @anin) = Wi @uri )|
= aun + O(AJ"),

we get

BE(@) = hE (&) = U (2m) — WEi(am + O(MI™).

w WhWn 41

Notice, that

WOt (e +) = W (ale) + U0 (e + o) — U (aln)]
= x;k—l + D\IIEZ*l(j-:uk) - C
= x:uk*1 + O(GC),

where !, is a point in the interval [:c;k + e, x;k} Therefore,



20 DENIS GAIDASHEV, TOMAS JOHNSON, AND MARCO MARTENS

U (@un + ONI™) = WE oW 0. 0 WE=2 0 WE (g + O(IA]")
= UL oWlio. oWh (2l s +O(0|N]™))
= g, (@ + 00" A
= '+ 00"\,
which implies that the limit
R (ys) = lim hia (y)
exists, and since hE, (y*) € BE, for all n > 1, the point h% (y) is the point y% € Cp

coded by w.
A computation similar to the above shows that the map (34) is also well-defined,

and
his (V) = Y-
Finally, we show that the map h'" : C, — Cr,
R (yo) = hj (y),
is a conjugacy of the dynamics of F, with that of F' on their Cantor sets. First,
notice that for any w” = {wy,ws,...,w,} € {0,1}"

n oi—1
U = FXizii? o Apo...oAp,_,0AR, ..

Denote
An,F = AF0 ©...0 Aan2 o Apni17

then we have for all w™ € {0,1}", different from 1™,

-1 n i— n i
(W) o FoRE, = (FERIOI T Op, oat o S o R

i—1

@™ oA, poArLo (FY)” Zimiei?
— (F*)Z?zl pw)i2' ™ A oA;% o - Tisip(w)i2 7t
F1+E?=1 w; 287t OAn,F OA;’I* o (F*)fz?:l w; 2871
= (FERIOT oA oA o A po Ayl o ()T
= I
This equality holds on B, w # 1™. If w™ = 1", then p(w™) = 0", and we have
on Bl" N (F*)il (B()n)
—1 ” "
(M) 0 Fohf = AuioA o F¥ ohupodrlo (F) 2 o F?
= A,«0F, OA;’I* o (F*)72n oF*
= A,.o0F,o0 AT_L; o (F*)_Qn oAp 0 A;)i o F*
= Ap.oF,o0 (F*)f1 o A;}* oF*
= Ap.oF,o(F" -1 OA;}* o F*.

)
Notice, that every B, contains point {(0,0)}. This, together with the fact that

diam(B{.) = O(6™), implies that
Yo = B = {(0,0)}.
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We, therefore, have
ApsoFyo(F) T oAy Lo F*(yie) = ApuoF,o(F*) " oA;(0,0)
= A,.0F,o0 (F’k)71 (0,0)
O(IA]"O(As]™).-

In the limit n — oo:

—1
(humy) o F o hE(yie) = (0,0) = g
and
F -1 Fy, o* * (%
(hp(w)) OFohw (yw) =F (yw)

6. EXISTENCE OF THE DERIVATIVE OF THE CONJUGACY FOR MAPS ON THE
STRONG STABLE MANIFOLD

We will now demonstrate existence of derivatives of the conjugacy. To be more
precise, given F' € W5 (so) (with 7/ < r as in the previous Section), and w € {0,1}°°,
we will show that the map

(36) DhE = lim DnE,

n—r oo

exists at the point y € C, with coding w, and that

(37) hig (y5) — hi (y5) = Dh (ys) (vl — v5) + o(lys — i)
(in particular, h is a homeomorphism on C,).

Given v € R? and @ € Byna,,,,, consider

DhE.(x)v — DhE,

Whwn 41

(2)0 = [ DOE (wn) - D (W5) " (@)

-1
DV @) D (Vi) @]

where we have used the notation (35).

Since
F, — Fn
\ijn+1 (anwn+1) - \IIZnJrl ('rwnwn+1) + |:\I’wn+1 (anwn+l) - \I’:er (anwn+l ):|
= x,n +OW"),
we get

DhE, (z)v — DA, (z)v = DUE, (zyn) - D (U5 (2)v

WhWp 41
-1
— DU (wun + OW™) - DUE:, (@une ) D (V5,,,) (@)
D (V)" (x).

Let N > 1 be fixed, and n = mN. Notice, that

Ut (e +¢) = WO (alu) + [O0E (2l + ¢) — WEk (2]
= 2l +DU(F ) e

= x:uk*1 + 0(90),
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where &/, is a point in the interval [/ . + ¢, 2/ .]. Therefore,

DY, (zun +OW™)) =
= DVE (2, + O™ ') DUf (2. + O")0"?)
S DU (2n + O(0™))
= DUE (2/,) I+ 0w™)e" ") DU (22) - (I+ O(™)o"?)
DU (@) - (T4 OW™))
= DV} (z,)  I+0@™)e" ) -
L DUEN (@ ) - (T+ O™ )
DUEN (2l ) (I+0@™)en N1 .

WN+1\"WWN+1
DU () (T4 O™ 2N
Fm 1 n n—(m-— —
DU N (e - (T4 O (DN

D\I/fjgg 1(:5me) (]1+@(y")9"—mN)
D\I/FN ( ;NH).. DfoFw Y(a! on) - (H+(O)(y”)0”*2N)

WN+1 W2 N

DU 0N (@ aywgs) e DUEN=1 () (T O™ )

W(im—1)N+1
(38) = Hm{x: Nor (@ wiongr) oo DUINITN (@ ) - (T O™

We estimate the norm of the above expression using the following Lemma

Lemma 6.1. For any w* € {0,1}°°, and all F € W,(sq), where r and sq are as in
the Main Theorem 1,

(39) IDUE 5, < ao=0.00383651256561279,

(40) IDUE, 5, < a1 =0.00383651256561279,

(41) |DEE, (z)v]] > by =0.000013950102593,
z€Bo, llvl=1

(42) |DEE, (z)v]] > b =0.000013958149969.

T€B1, HUH 1

Proof. The proof is done by brute force computer aided estimates of the above
norms. O

ke = max{ 2 N
4= ma b by

More, generally, similar maxima for a general N, not necessarily equal to 4, will
be denoted k.
Notice, that according to Lemma 6.1,

We will denote

/@% < 4.072601318359375.
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We will now fix N =4 in (38), and permute the factors

(43) (I+O(™)em—N)
in (38) to the end of the expression. Notice, that every time (43) exchanges places
with the matrix D\I/FN’ N (@ Niena) D\I/f%i‘l(xLNi), which is of the form

DUF, as in the Lemma above, the term proportional to O(v™) in (43) at most
acquires a multiplicative factor of k4:

DUE (zon +OW™)) = J[DUINN (@ viowin) o DU (aln0) -

[ @+sg-"—Noem).
The difference of
N =[] @+ syom—Now™),

from identity satisfies

Mo =T < exp Zlog (1+0(KN9N)”” ")] -1

Le=1

< exp C'Z (,%NGN)mfi y"] -1

L i=1
< exp |C' "G”R%Z (HNHN)_] -1
L =1
KNGN
< C/ ’rLen m _1
< exp_ v KN,%NHN—l]

< " (VNQNF;N)m,

where we have used that kx8Y > 1 and Ky v < 1. Therefore,

IDhfue,, ., (&) — Dhl.(@)ll = | DYS.(2,0) -
Ny - DUE 1 (@ ni1) - D (\p;nﬂ)*l (zn) — 1[}
D(¥5.) " (@)

= IDYE.(aln) - No - (T4 O@™) =1 D (¥) " ()]
= |[DU.(aln) - [Ny =T+ Ny, - O@™)] - D (U5) " ()]
= |IDYE.(a)n) - [0 0"KR) + O@™)] - D (¥5,) 7" ()]
< CrZmren

(44) = C(H;\;V H)n.

and since

(45) v = ki 16 < 0.86541748046875,

clearly, the limit (36) exists.
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We will now demonstrate (37). We have for any two y and y% in C,, such that
w and @ coincide in the first n positions, that is w™ = &™:

h (W) = hs (s) = hin (i) = hign () + (hes (W) — hin () + (e (y3) — 15 (y5))
= Dhu(yz) (v —y5) + oyl —ys) + 0(0"v")
= (Dhg(ys) +00™) (vi = vs) + oyl — ys) + 00" v").
Therefore,
his () = hi (ys) — D (y3) (Wi —wz) = O0") (s — va) +olys, — yi) + O(0"v")
= I
As |y — y%| — 0 (necessarily, n — 00), the right hand side I of (46) satisfies

1] " N "™
s — Yol ")+ 0 ) b

where
(46) b = min{by, by },

with b; as in Lemma 6.1.

Since v, v and 0"v"b~ % < 0.88 are all less than 1, we have that
I

— i — —0

v — vzl

as y — y2, and (37) is verified.

7. HOLDER PROPERTY OF THE DERIVATIVE ON W3 s

Proposition 7.1. Let w,w’ € {0,1}*°, w # ', and let =}, and =, be two points
in the Cantor set C, whose codings are w and w'. Then,

(47) IDh () — DR (a3 )| < Cla, — x|,
where C' is some constant independent of w and W',

. [Nlogy Nlogf 1
_ ~ = 1> 0.0129241943359375
@ mm{Llogb’ logb L[~ ’

v is as in (45), 0 is as in (27), N =4,

ilogb
N log6

(48)

(49) L=

[+1o1

and b is as in (46).

Proof. Suppose that w and w’ coincide in the first n positions, and differ in n+ 1-st,
for some n > 2L (if n < 2L then |z} — z,| is bounded from below by a constant
depending on L only, and (47) can be satisfied by a choice of C'). Set

k:[%}qm.

We have that such z and z, both lie in the piece B,» C B, and therefore, on
one hand,

(50) ab® < |zf —at)| < e,
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and, on the other hand,

IDR (27) = Dh(ei)ll - < IDhG (27) = Dhg (@)l + DA (x) — Dhi (x7)|
+IDhgi () = DR (2%) |
< Cy* +|IDhG () — Dhi(x7)].

To estimate | DAL, (z}) — DhE, (x|, we first recall that, according to Lemma
3.1, the zero generation piece B is compactly contained in the domain D of definition
of I'*, while By and By are compactly contained in B. Therefore, the piece B can
be made smaller: there exist § > 0, a compact set B’ € B and a complex §-
neighborhood B® of B, B € B® € D C C?, such that

dist {B',0B°} > ¢,
and such that B’ is a zero-generation piece for the hierarchy of covers of the Cantor
set Cr, and B/, € B .

Recall, that hgk is real-analytic on the piece B, and therefore, on B/ ,. We
have

F * F * * *
||Dh‘wk (xw) - Dh’wk (xcu’)” < Dk"xw - xw")
where Dj, is a bound on the second derivative of hf » on the piece B:}k:
D?hE, . B/, x R? x R? — R?.
Now, notice that b~ is a lower bound on the contraction rate of distances by

&k
D\IISk on B. We denote by",
ko
bs’
d—0
the contraction rate of distances by D\Ilfk on B?. Then

2=

b,

k

dist (0B’,, B..) > oby .
According to the previous Section, |[DhE, |gs, is bounded. We can now use
Cauchy estimates to obtain that the operator norm of the second derivative satisfies

c
R PR —

5
We get
* * 02 * *
DR (%) — Dl ()|l < Civ® + — |, — 2l .
0b;
Notice, that by our choice of n and k, if § is sufficiently small, then

1 S klog b(;’
L~ nlogb

and

Nlogf 1 _ Nlogb B klogbs
logb L logb nlogb’

which implies that

(51) bR > T
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We can now use (51), (50) and the definition (48) of « to finish the demonstration
of the claim of the Proposition:

* * C * *
||Dh5($w)_Dh5’( w’)H < Cl’yk_’_ i|xw_xw’|
5o
n C
< Ot 4 2pn
5o
n C n
< OO + %baw
< Clet —al|¢

8. RIGIDITY OF INFINITELY RENORMALIZABLE MAPS

Existence of the well-defined maps h and Dh on the Cantor set C,, together
with the condition (37), implies via the Whitney Extension Theorem, that for all
F € W,.(s0) the map h extends to a C* map on a neighborhood O of C,. Such h is
analytic on O\ C,, and according to the previous Section, Dh is Holder of exponent
a on all of O.

Part 2. Spectral Properties of Renormalization

1. COORDINATE CHANGES AND RENORMALIZATION EIGENVALUES
Let D and D be as in the Theorem 3. Consider the action of the operator
(52) Ro[F]=A,'oFoFoA,

on Oz(D), where
A* (l‘, u) = (/\*J), M*U),

with A\, and p. being the fixed scaling parameters corresponding to the Collet-
Eckmann-Koch as in Theorem 1.

According to Theorem 1 this operator is analytic and compact on the subset
.7:8'5’1‘6(30,5)7 0 = 6.0 x 1077, of Oz(D), and has a fixed point Fgxw . In this
paper, we will prove the existence of a fixed point s* of the operator Rgxw in a
Banach space different from that in Theorem 1. Therefore, we will state most of
our results concerning the spectra of renormalization operators for general spaces
A2 (p) and sets F2*(s*), under the hypotheses of existence of a fixed point s*, and
analyticity and compactness of the operators in some neighborhood of the fixed
point. Later, a specific choice of parameters 3, p and ¢ will be made, and the
hypotheses - verified.

Let S = id + 0 be a coordinate transformation of the domain D of maps F|,
satisfying

DSoF=DS.

In particular, these transformations preserve the subset of area-preserving maps.
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Notice, that
(id4+eo) P oFo(id+er) = F4e(—ocoF 4+ DF-0)+O(c?)
= F+cehpy,+O0().

Suppose that the operator Ry has a fixed point F* in some neighborhood B C
O3(D), on which Ry is analytic and compact. Consider the action DRy[F|hp,, of
the derivative of this operator.

DRy[Flhpe = 0c(A;" o (F +ehy)o (F+ehy)oA) =0
de (A;'o(id+eo) ' oFoFo(id+erol,)|e—o
= Al [~0oFoF+D(FoF)-o]oA,
(53) = Al hpops oA
Specifically, if F' = F*, one gets
DRo[F*\hp+ g = hp-r, T=A;'-00A,,
and clearly, hp+ » is an eigenvector, if 7 = Ko, of eigenvalue . In particular,
K=Mpl, >0, j>0
is an eigenvalue of multiplicity (at least) 2 with eigenvectors hp- , generated by

(54) O'il,j(mv U) = (xi+1uja O)7 0-1'2,j (Jf, U) = (07 xiuj+1)a

while
[i:/’éi)‘*_lajzoa and /f:)\ili:laizoa
are each eigenvalues of multiplicity (at least) 1, generated by

(55) 0'1_17]»(],‘,’11) = (uj70)a and 012,—1('1:’”) = (073:7:)’

respectively.

Next, suppose S7, S§ = Id, is a transformation of coordinates generated by a
function o as in (54)-(55), associated with an eigenvalue x of DRy[F™*]. In addition
to the operator (52), consider

-1
(56) Ro[F) = AV o (S7y) 0 FoF oSy oA,
where the parameter ¢,[F] is chosen as
1 *
(57) tolF] = ——7———[IE(®)(Ro[F] — F")|Ip,
Kllhpeollp

E (k) being the Riesz spectral projection associated with k:

! /(z — DR[F*])"'d=

= omi

E(k)

(v - a Jordan contour that enclose only & in the spectrum of DRy[F*]).

We will now compare the spectra of the operators Ry and R,,. The result below
should be interpreted as follows: if hp« , is an eigenvector of DRy[F*| generated
by a coordinate change id + €0, and associated with some eigenvalue x, then this
eigenvalue is eliminated from the spectrum of DR, [F*], if its multiplicity is 1.
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Lemma 1.1. Suppose, there exists a map F* in some O2(D), and a neighborhood
B(F*) C Oy(D), such that the operators Ry and R, are analytic and compact as
maps from B(F*) to O2(D), and Ro[F*] = R,[F*] = F*.
Then,
spec(DRy[F*]) = spec(DR,[F*]) U{k}.
Moreover, if the multiplicity of k is 1, then
spec(DRy[F*]) \ spec(DR,[F*]) = {k}.

Proof. Since DR,[F*] and DRy[F*] are both compact operators acting on an
infinite-dimensional space, their spectra contain {0}.
Suppose h is a eigenvector of DRy[F*] corresponding to some eigenvalue ¢, then

DR,[F*]h = DRy[F*h

+ AL (DF ( g[F*]>1h> o F* 0 F* 057 1o A,
+ AT [D ((Sgg[p*])l o F*o F) 057
- (DrS7 )| 0 A
= Sh+ AT (Dp (S;;[F*])_lh> oA, o F"
(58) + [DF* ATt (DeST pgh) | o A

(we have used the fact that F™* satisfies the fixed point equation), where
t,[F]=0 and DpSY pqh= 0. [S - +Eh]} = (Dpt,[F*]h) o
More specifically,
to[F* +ch] = —r7 hpeolip [ E(k) (Ro(F" + €h) — F) |Ip
= —ex hp oI5 |E(k) (DRo[F*]h) [|p + O(e?)
= —elhr-ollp s8] (E(r)R) o + O(e?),
= —elhr ol 5718 (E(k) (E@)R)) | + O(),
and
(59)  Dpto[F*Th = 0c [t [F" + ehl] g = —[|hr- ol p' 67 0] (E(k) (E(O)R)) |-
If § =k and h = hp+ , then
Dpt,[F*]h = —1

(recall, that E(§)? = E(J)) and
-1
AL ( S ) )oA*oF*+DF*oA*1~(DFS;’U[F*]h)oA*
= —A; L.goA,oF*+ DF*. AL 1 O'OA]
= [ coF*+ DF* 0]
- _K/hF*,aa

therefore
DR, [F*|hp« s = 0.
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Now, suppose h is an eigenvector of DRy[F™*] corresponding to the eigenvalue § #
Kk, hence, h # hp« o, then, since E(k)E(d) = 0, so is Dpt,[F*]h, and DSy ph-
It follows from (58) that
DR,[F*lh = 6h.

Vice verse, suppose h is an eigenvector of DR, [F*] corresponding to an eigen-
value § # k, then,

Dpto[F*lh = =k |hpe ol | E(k) DRo[F*]h|p,
and by (58) and a similar computation as above, for a € R,
DR()[F*}(]”L + ahF*’U) = alth*’o— + DR()[F*VL

-1
= akhpey+Oh— (A*l : (DF (S71) h> oA, o F*

+ [DF* AT (DpSpgh) | oA
= akhp«, + 0h+ ||hp- o|| 5" | E(K)DRo[F*]h|phpe o

Let,
@ — NE(8)DRo[F"]hp
|hpsollp(0 — k)
then h + ahp- , is an eigenvector of DRy[F*] with eigenvalue 6.

(]

Lemma 1.2. Suppose that there are 3, ¢ and p, and a function s* € A2(p) such
that the operator Rpiw is analytic and compact as maps from fg*p(s*) to O9(D),
and
Rexwl|F*] = Ro[F™] = F*,
where F* is generated by s*.
Then, there exists a neighborhood B(F*) C FP:(s*), in which Ry is analytic and
compact, and

spec(DRo[F*]| 1. p(re)) = spec(DREKW[F*]|TF*}-§,9(S*)) u{1}.
Proof. Let 0§ and 0§ o be as in (54), then
O'l
Se O)O(xa 'LL) = ((1 + G)SU,’U,), hF,acl) 0 T+ DFE - ('/vao)v

0_2
Seoyo(xau) = (I7(1+€)u)7 hF,o-%0 =m '+ DF - (Ovﬂ-u)'
Now, notice, that the operator Rpxw[F] can be written as

2
90,0

ol -1 -1 o2 ol
Rexw|[F] = Ao <St;ﬁW[F]> o <STEKW[F]) OFOFOSr;}iw[F}OSt;ﬁW[F]OA*’
where
7 F'(F(0,0))
s

1 , [F}_ WIF(F(O,O)) L )\*(1+tEKW[F]) .
LR e (F o F)2(0,0)  pamg(F o F)2(0,0)

texwl|F] =

0_1
Notice, that that t ggw [F], rexw [F], and therefore the transformations St;’ﬁw[F]
2 1
and S:;’;W[F}, depend ounly on Pggw[F]. Therefore, the maps F +— S:EO‘;W[F] and

2
F S:;; wiF) are analytic (differentiable). In particular, by the continuity of
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Frs S wlF] and F S () there exists a neighborhood B(F™) C FPr(s*),
such that Ry is compact in B(F*) In particular, both DRy[F*] and DRggw [F*]

exist, and are compact linear operators.
For any F € B(F*) and h € Tp-F2*(s*),

D Rgxw|F)h = DRy[F]h

—1 —1
1 01, 027 ok
+ A <D <St}21:W[F] hlolSewiry) oFeF OSEIZW[F] Strw F) © s

F
) -1 ) -1
+ AL D((S;OLSW[FO ° (Si’;;iwm) oFoFos]e [F]) ( ngﬁwmh) o A
1 -1 2 -1 1
v an(stn) (or () #)orerestitn st
1 -1 2 -1 1
+ AY|D ((Sfﬁﬁw[p]> ° (S:;ﬁwm) °F°F> ' ( STZ;?W[F]h)] 0 S im © A
2 -1 1
= DRy[F)h — (Dptpxw!|F Jloapgo (ngﬁwm) oFoFoS ODW[F] S:.E‘);SW[F] oA,
-1 ) ~1
+ (DrterwlF ( :;;Sw o (Sf;ﬁW[FJ oFOFOS’I’E}iw[F]) 005’01 oA,
— (Dprggwl|F D( :;’;’W ) 00870 oFoFoS:EiﬁW[F] OStUi?w[F] oA,
-1 ) -1 )
+ (DprexwlF D ( :};’;W o (S:gﬁw[F]) oFoF) 00’8,01 OSZS’}SW[F] oA,.

Specifically, if F' = F™*, then (cf. (53))

DRpgw([F*lh = DR(][F*]h+(DFtEKW[F*]h)hF*,g&O
(60) + (Dprpgw[F*h) hp- o2 .
Next
S:.;)ISW[F]h = (DrtpxwlF]h7,;,0),
D SZE;W[F]h = (0, Dprexwl|F)hmy,),
m DP, F]h(0,0
Drptpgw|Flh = EKVAV[ Jn(0,0)

)\*DFtEKw[F]h )\*ﬂ'w (DPEKW[F]h>2 (0,0)

Dprpxw(Flh = p72 (F o F)2(0,0) B s (7'1'QC(FOF)Q(O,O))2
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If h = hp. 51, then

DPEKW[F]]’L(QJ,’U,) = (_ﬂ-xPEKW[F](JT,U)+7TwPEKw[F]1(.r,u)Jj,
T Perw [Fli(z,u)z),
T2 DPrgw [F|h(0,0) = —7m,Pprw[F](0,0) = -\,
Drtepxw([Flh = -1,
A

DFTEKw[F]h =

a7z (F o F)3(0,0)
_ )\* <_7TIPEKW[F]2(0, O) + WzPEKW[F]1,2(O7 0)0)
s (o (F 0 F)(0,0))

207

DpS/%° h = (—7,0),

texw[F]

—1
0_1
Dr (S7520) 1 = (700

Similarly, if h = hp« o2 , then

DPrrgw([Fh(z,u) = (m:Prrw|[F)2(x,u)u,
—mu Perw [F](x,u) + m, Ppw [Fl2(z, u)u) ,
72 DPerw|FIR(0,0) = 0,
Dptgxw|Flh = 0,
Dprggwl[Flh = -1,
DFS:EﬁW[F]h = (0, —m),

) -1
Dp <S:;ﬁW[F]> h = (0,7,).

Therefore, if h = h‘F*,oé . we get
DRpgw|F*lh = A;'DPgrw[F*lho A, + A7 1, F o FoA,
+ AN D (F o F)- (~m,,0)] 0 A,
+ (DF’I"EKw[F*}h) hF*’US,o'
= A [DPpxw [F*|h + 7 Pexw [F¥]
— (mePerw [Fl17e, 7 PExw [F172)] 0 Ay
+0
= 0.

If h= hF*ﬂ?),o’ then
DRpgw[F*lh = A;'DPggw[F*lho Ay + A m,FoFoA,
+ A [D(FoF)-(0,—m,)] oA,
+ (Drtprw[F*h) hp- o3
= AN [DPegw[F*h + mu Percw [F7)
— (Mo PErw[Flomu, T PErw [Fl2my)] 0 Ay
+0
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If h is an eigenvector of DRy[F*] associated with a non-zero eigenvalue k, h #
hp« o1, and b #+ hp« 52 , then for any constant a and b
DREKw[F*Kh + ahF*ydéyo + bhF*’og,O) =
= DRy[F*|h + ahpe g1+ bhpe 52+

+ (DFtEKW[F*] (h +ahpe gy, + bhF*Jg,O)) B

v”é,o
+ (Drrprew(F7) (h+ ahpe gy +bhpe o3 ) ) e o,
= Hh —+ ahF*76(1) o + bhF*,J% o —+

+ (DFtEKW[F*] (h + bhF*,og,U)) hpe gy, — ahpe

1080
+ (DFrEKW[F*] (h n ahF*’UéYO» B o3, — bl o2
=xh+ mhF*Jé .t K/QhF*’ag o
where
El[h] = DFtEKw[F*]h7 Kg[h] = DFTEKw[F*]h,
and we see, that if a[h] = k1/k and b[h] = ka/k, then

h + ahF*vo'é.O + bhF*

2
90,0

is an eigenvector for DRpxw [F*] with the eigenvalues .
On the other hand, if h is en eigenvector of DRgxw [F*] associated with the
eigenvalue k # 1, then
h—ahp. o1 —bhp-

is an eigenvector of DRy[F™*] associated with k.

2
90,0

2. STRONG CONTRACTION ON THE STABLE MANIFOLD

Lemma 2.1. Suppose that 8, 0 and p are such that the operator

1
RO[S] = f’PEKw[S] o /\*

[
has a fized point s* € B, C A%(p), and Ry is analytic and compact as a map from
B, to AX(p).

Then, the number \. is an eigenvalue of DRy[s*], and the eigenspace of A
contains the eigenvector

(61) b (2,y) = s7(z,y)a® + s3 (2, 9)y” + 25" (2, y)y.
Proof. Consider the coordinate transformation
S. = p—
(x,u) (:C—i—ex ’1+2ex>
(62) = (z,u)+ eaio(x, u) — 260’%)0(.1‘, u) 4+ O(€?),
V1+4dey —1
(63) St y,v) = <+2§y o /1 4ey> :

for real €, |e| < 4/(p+ |B]) (recall Definition 1.2).
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Let s € A%(p) be the generating function for some F, then the following demon-
strates that S=1 o F o S, is reversible, area-preserving and generated by

$(z,y) = s(z+ex® y + ey®) (1 + 2ey) :

z Se T+ ex
(—8(y+€y2,a:+€x2)(1+26x)) - (—8(y+ey2,x+ex2)>
x’ F v
N <—S(y’vx’>> B (S(x’7y’>>
2

y+ey Sct y
A\ sz + e,y + ey?) sz +ex?y+ ey?)(1 + 2¢ey) )
Next,
S(@,y) = s(x,y) + esi(@,y)a” + esa(@,y)y® + 2s(z,y)y + O(¢*).
We will demonstrate that
Ve (@,y) = 57 (2,y)2" + s5(2,y)y” + 25" (2, y)y.
is an eigenvector of DRg[s*] of the eigenvalue A.. Notice, that
81’(/}5 :al'(/)sOIa I(l‘,y):(y,l‘>,
and therefore, the function s + e, € AZ(p).
Consider the midpoint equation
0=0(¢*) + sz, Z(z,y) +eDZ[s]s(x,y)) + s(y, Z(x,y) + eDZ[s]ts(x,y))
+ sz, Z(2,y)) + sy, Z(z,y))

for the generating function s + eys. We get that

Us(@, Z(x,y)) + s (y, Z(,y))
52(1'7 Z(x,y)) + 32(y7 Z(x,y)) ’

Z[SWs(l‘a y) =
and

DPEKWz/)s(xvy) = sl(Z(x,y),y)DZ[s]z/)S(x,y)+1/)S(Z(x,y),y)
— 9s (Z(x s(x, Z(x,y))Z + s(y, Z(2,y))Z
- B 2w y) + saly. Z(wy)
SQ(xa Z(I'7y))Z(SU,y)2 + SQ(ya Z(x,y))Z(:ay)z
52($,Z($,y))—‘rSg(y,Z(.’E,y))

751(Z($, y)7y)

—|—51(Z(JZ, y)7 y)Z('Ta y)2
Sl(yv (

)y?

Y) 2
_Sl(Z(xay)7y) SQ(JI,Z({L' y)) + 82(y7 ( )) + SQ(Z(mvy)vy)y
(T si(x, Z(x,y))z?
@) 9) G T 0) + (. 2 w)

+2s(Z(2,y),y)y

The terms on line 2 add up to zero (the numerator is equal to zero because of
the midpoint equation), and so do those on lines 3 and 4. We can also use the
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equalities

sa(w, Z(x,y)) + s2(y, Z(x,y)) = _W

02 Pexw(s|(z,y) = s20Z(x,y),y) +s1(Z(x,y),y) Za2(, y)

(the first one being the midpoint equation differentiated with respect to y) to reduce
the 5-th line to

O Prrw!s](x,y)y*.
The 6-th line reduces to

M Perw|s)(z,y)z?
after we use the midpoint equation differentiated with respect to x:

51(177 Z(‘Tﬂ y))
so(z, Z(z,y) + s2(y, Z(x,y) = ey

To summarize,

DPerwis(z,y) = Perwlsl(z,y)a® + 0Perwlsl(z.y)y* + 2Perw|s(z, )y
= YPosw(s)(T:Y)-
Finally, we use the fact that
MO Prrw [s](Asx, Asy) = 0; (P[s] (A, Asy))
to get
DRy[s*|ths = Asthe.
(I

The Lemma below, whose elementary proof we will omit, shows that A, is also
in the spectrum of DRy|[F.]:

Lemma 2.2. Suppose that 3, 0 and p are such that s* € AP (p) is a fived point of
Ro, and the operator Ry is analytic and compact as a map from B,(s*) to AZ(p).
Also, suppose that the map I, described in Remark 1.6, is well-defined and analytic
on B,(s*), and that it has an analytic inverse T=' on I(B,(s*)). Then,

spec ((DRO[F*]) |TF*}‘§”’(5*)) = spec (DRy[s"]) .

in particular,
A« € spec (DRo[Fy]) .

At the same time, it is straightforward to see that the spectra of DRy xw [Frxw]

and DR prw [sEPEW] are identical.

Trprw

Lemma 2.3. Suppose that 3, 0 and p are such that s* € A%(p), and the operator
Rerw is analytic and compact as a map from B,(s*) to A2(p). Also, suppose that
the map I, described in Remark 1.6, is well-defined and analytic on B,(s*), and
that it has an analytic inverse T=1 on I(B,(s*)). Then,

spec ((DREKW[F*]) |TF*J-'§”’(5*)> = spec (DRgxwls*]),

in particular,
A € spec (DRerw(s™]).

For(s*)
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In Part 1 we saw that the convergence rate in the stable manifold of the renor-
malization operator plays a crucial role in demonstrating rigidity. It turns out that
the eigenvalue X\, is the largest eigenvalues in the stable subspace of DRgrw[Fy,
or equivalently DR g w[s*]. However, it’s value |A.| &~ 0.2488 is not small enough
to ensure rigidity. At the same time, the eigenspace of the eigenvalue A, is, in the
terminology of the renormalization theory, irrelevant to dynamics (the associated
eigenvector is generated by a coordinate transformation). We, therefore, would
like to eliminate this eigenvalue via an appropriate coordinate change, as described
above.

However, first we would like to identify the eigenvector corresponding to the
eigenvalue \, for the operator Rpxw. This vector turns out to be different from

d)s*-

Lemma 2.4. Suppose that 8, o0 and p are such that the operator Rpxw has a fived
point s* € AZ(p), and Rerw is analytic and compact as a map from B,(s*) to
Ag(p). Also, suppose that the map I, described in Remark 1.6, is well-defined and
analytic on By(s*), and that it has an analytic inverse T=' on Z(B,(s*)).

Then, the number A\, is an eigenvalue of DRErw/(s*], and the eigenspace of A
contains the eigenvector

where

U =s"— (si(z, y)z + 55(, y)y).

Proof. Notice, that 1 is of the form

¢($a ?J) = wu - w$7
where
VYo (2,y) = s1(2,y)x + s5(x,y)y

is the eigenvector of DRy[s*] corresponding to the rescaling of the variables x and
y, while

Yu(z,y) = s"(2,y)

is the eigenvector corresponding to the rescaling of s. ¥, (z,y) and v, (z,y) corre-
spond to the eigenvectors hp. 51 ~and hp. 52 , respectively, of DRo[F”].

Recall, that hp« ;1 and hp- .2 =~ are eigenvectors of DRy[F*], with eigenvalue

1, and eigenvectors of DREKW[F*] with eigenvalue 0.
By Lemma 2.1 1)~ is an eigenvector of DRy, the corresponding eigenvector of
DRy is hp« 51 952 - Thus, ¢s+ + 9 corresponds to the vector

EKW
(65) hyx> " = hpe gt 202 = hpe gt Fhpe g2
To finish the proof, it suffices to prove that

DRegwhiEW = \.hJEW.
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By (60)

DRprw([F*|hEEW = DRexw|F lhp 01 202,
DRo[F*]hp- 01 _202
(DFtEKW[ Vg ot 202 O) hpe i

*
<DF7”EKW [F™]h ,0}70—2050) hp« o2,

Ahipe g1

‘700

+ o+

ol =203,
+ (DFtEKW[ Nhpe ot g 202 0) hps oy
+ (DFTEKW[F Jhpe o1 20 0) hpe 52
The result follows if
DFtEKW[F*]hF*,a},f%fO = -\
and

Drrpgw F*|hp- o1 —202 ) = As-
Indeed, as in the proof of Lemma 1.2. If h = hp. ol o then

DPrxw[F*h(z,u) = ( (me Perw [F*](z,u))? + 7. Perw [F*]1 (z, u)x?,
mu Perw [F* (z, u)z?)
T DPprw [F*1h(0,0) = —(mPerw[F*](0,0))? = —AZ,
Drtegwl[F'lh = -\,
A2

D Flh =
Frexw|[F] T (F* 0 F*)2(0,0)

+ A (=271 Pexw[F*](0,0)m; Pexw [F*]2(0,0)
o Perw[F*]1,2(0,0)0?)
11 (72 (F* 0 F*)5(0,0))?

If h=hp« 52 , then
DPrxw[F*lh(z,u) = (mPerw[F*]2(z,u)zu,

_7T:1;PEKW [F*](l‘7 U)WUPExw[F*](LL', u)
+ru Perw [F™]2(z, u)zu),

o DPrrw [F*1h(0,0) = 0
Drtprw[F*lh = 0

Ao (70 Prgcw [F*12.2(0,0)0 + 702 Prscw [F*]2(0, 0)0

DFTEKW[F*]h = 0+ (7T EKW[ ]272( ) + EKW[ ]2( ) )

i (T (F* 0 F*)5(0,0))°
O

Definition 2.5. Suppose s* is a fized point of the operator Ry (or, equivalently,
Rexw ). Set, formally,

Plsl(z,y) = (1 +2ty)s(G(&(x,y))), and R[s] = p~'Pls]o A,

=0.
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where
0 = s 2(xy)+ sy, Z(z,y)),
1
t = —————||E(\)(R — s,
>\*||¢5*lelp” (A)(Rexwl(s] — 87|
(66) 0 = P[sl(A,0),
(67) po = A0iPls|(A,0),
(68) &(zyy) = (z+ta’,y+ty?),
YEEW s as in (64), G as in (14), and E is the Riesz projection for the operator

DREKV[/[S*].

We will quote a version of a lemma from (Gaidashev 2010) which we will require
to demonstrate analyticity and compactness of the operator R. The proof of the
Lemma is computer-assisted. Notice, the parameters that enter the Lemma are
different from those used in (Gaidashev 2010). As before, the reported numbers
are representable on a computer.

Lemma 2.6. For all s € Br(s®), where
R = 5.47321968732772541 x 1073,

and s° is as in Theorem 2, the prerenormalization Prrw|s] is well-defined and
analytic function on the set

D, =D, (0) = {(z,y) € C*: |z| <, |y| <r}, r=0.51853174082497335,

with
12|, < 1.63160151494042404.

We will now demonstrate analyticity and compactness of the modified renor-
malization operator in a functional space, different from that used in (Eckmann
et al 1984), specifically, in the space A;(1.75). It is in this space that we will
eventually compute a bound on the spectral radius of the action of the modified
renormalization operator on infinitely renormalizable maps.

Proposition 2.7. There exists a polynomial sy C Br(s®) C As(1.75), where R
and s° are as in Lemma 2.6, such that the operator R is well-defined, analytic
and compact as a map from B,y (s0), 0o = 5.79833984375 x 1074, to A4(1.75), if
By, (s0) C Br(s%) contains the fived point s*.

Proof. The polynomial sg has been computed as a high order numerical approxi-
mation of a fixed point s* of R.

First, we get a bound on ¢ for all s € B;(so):
1
it = sErw IEQAD)(Rexwl(s] — s
Al EE W, o

1 *
< WHREKW[S]*S [lo-

We estimate the right hand side rigorously on the computer and obtain

(69) It| < 2.1095979213715 x 107,

The condition of the hypothesis that s* € Bs(sg) is specifically required to be able
to compute this estimate.
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Notice that according to Definition 2.5 and Theorem 2, the maps s — ¢ and,
hence, s — & are analytic on a larger neighborhood Bg(s®) of analyticity of Rgxw .
According to Theorem 2 and Lemma 2.6, the prerenormalization Prxw is also
analytic as a map from Br(s) to As(r), r = 0.516235055482147608. We verify
that for all s € Bs(so) and ¢ as in (69) the following holds:

(70) {&(2,y): (v,y) €D} €Dy, 7' =|A|p,
where A\_ = —0.27569580078125 is the lower bound from Theorem 2. Furthermore,
1> 2)tlp

with ¢ as in (69). Therefore, the map s — P[s] is analytic on Bs(so).

Since the inclusion of sets (70) is compact, R[s] has an analytic extension to
a neighborhood of Di .75, R[s] € As(p'), p > 1.75. Compactness of the map
s+ R]s] now follows from the fact that the inclusions of spaces As(p’) C As(p) is
compact. O

Recall, that according to Lemma 2.2, A, is an eigenvalue of DRy[F*] of multi-
plicity at least 1. According to Lemma 1.2, A, is in the spectrum of DRgrw[Fy],
and according to Lemma 2.3, A\, € DRgrw|[s*].

Proposition 2.8. Suppose that 3, p, o and the neighborhood B,(s*) < A(p)
satisfy the hypothesis of Lemma 2.2. Furthermore, suppose that the operator R is
analytic and compact in By(s*).

Then

spec(DRErw([s*]) \ { <} C spec(DRIs*]),

and YEEW is an eigenvector of DR|[s*] associated with the eigenvalue 0.

In addition,

spec(DR[s*]) C spec(DRerwls"]),
and if My ¢ spec(DR[s*]), then A\ has multiplicity 1 in spec(DRgrw[s*]).
Proof. First, notice the difference between the definition of A in (1.1)
s(G(A,0))=0
and in Definition (2.5)
s(GA+1tX2,0)) =0

(we will use the notation Agxw below to emphasize the difference). This implies
that if D;Aprw[s]t is an action of the derivative of Agxw [s] on a vector ¢, then

D A[s*]tp = DsApkw[s*]t) — NI Dst[s*|¢
is that of the derivative of A[s].

Similarly,
Doprewls o = [01(s" 0 G)(A,0) + A07(5" 0 G) (A, 0)] DoAprw [0
+ MDD, Prrw[s v ><A*,o>
Dou[s T = [01(s" 0 G) (A, 0) + \3(5" 0 G)(As, 0)] D
+ MO0 (DsPerwl[s™ | )(/\*’0)

+ X02(s" 0 G) (A, 0) Dytls™ 1
Dspprwls' T — 01 Perwl[s*] (A, 0)AZDst[s™ ]y
= DSNEKW[S*]¢ - )\*M*Dsf[S*W
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Therefore,

RSN = DRegwl[s 10 + 2\, (Dat[s*0) sy + Mi (DPprwls*] - (D)) o

2

AZ .
- Dst[S*]¢;DPEKW[S Jo X+ (7, my)

+ A Dst[s™]Ys
= DRexwl[s*|v — X (Dst[s*|¢)) Ds™ - (mg, my) + A (Dst[s™]0) s*
T A (Dst[s™]9) s
(1) =DRexw(s ] + A (Dstls*]0) 25

where

D;st[s™]¢ A RS IZHEO) (DRexw[s™19) [,
Ds&i[s™N(z,y) = (D ty) (2%, y°)
1W}EKWH,;IIIE( ) (DRexw [s°19) Ilp (22, y%).

Similarly to Lemma (1.1), we get that if ¢ is an eigenvector of DRprw[s*]
associated with the eigenvalue § # A, then ¢ # »EEW and
E) (DRerw(s]Y) = 0E(A)Y =0,
so is Dgt[s*]9), and
R[S*M} = DREKw[S*]l// = 51/)
If § = A\, and ¢ = »EEW  then
DSt[s*]/w = _17 Dsgt[‘g*]w(‘r?y) = _(332>y2)7

and therefore,
and PEEW is an eigenvector of DR[s*] associated with the eigenvalue 0.

Vice verse, by (71), if ¢ is an eigenvector of DR [s*] associated with the eigenvalue
0 # A\, then

DRexwls* (¥ + apZXW) = DR[s*J¢) — Au(Dst[s*](¥ + arp 25V ) EXW
= 0 — M\ (Dst[s*]tp — a)pEEW

Hence, ¢ + 22 t[s ]wz/)EKW is an eigenvector of DR pxw [s*] with the eigenvalue
d.

Finally, assume that A, ¢ spec(DR][s*]), but that there exists an eigenvector
© # YEEW of DR piw|[s*] with eigenvalue .. Then

* ol
Datls"le = g mrwy
and, by (71),
* el :
DRIs*] (w BRI ) = DRI

||SD||p ) EKW
A+ A (— o
KW,

H‘PHp EKW)
= A <g0 .
[WEE|,
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This contradiction finishes the proof. O

So far we were not able to make any claims about the multiplicity of the eigen-
value A, in the spectrum of DR gxw[s*]. However, we will demonstrate in Section
3 that it is indeed equal to 1.

Definition 2.9. Set, formally,

(72) R[F] = Ap'oP[F]oAp,
P[F] = SypoFoFoS,

where Sy gy is as in (62), Ap(x,u) = (A\[Flx, p[Flu),
1

HFl=——
S W

|E(\)(Rexw[F] = Fo)|p,

where
_ 1 2 1 2
o=010— 2019~ 000+ 0,
and, furthermore,

/\[F} = ﬁrP[F](OaO)v

B —\[F]
HEL = BT 0,0)

The above is a formal definition. As usual, one would have to verify the properties
of being well-defined, analytic and compact, in a setting of a specific functional
space.

3. SPECTRAL PROPERTIES OF R. PROOF OF MAIN THEOREM 1

We will now describe our computer-assisted proof of Main Theorem 1.

To implement the operator DR[s*] on the computer, we would have to implement
the Riesz projection as well. Unfortunately, this is not easy, therefore, we will do
it only approximately. Specifically, the component (0, 3) of the composition s o G
will be consistently normalized to be

co=(so0 G[So])(o,g) )
where sg is our polynomial approximation for the fixed point.
Definition 3.1. Set, formally,
Pelsl(x,y) = (1 +2tey)s(G (&, (2,9))), and  Rels] = u~ ' Pefs] o A,

where
G(z,y) (Z(‘T? )?y)v
0 = S(]},Z(JZ,Z}))—FS(?},Z(Z‘,ZJ)),
W = 2o 0%es g

4 (s0G)pa
0 = P[s](A[s],0),
uls] = AdPIs](A,0).



RIGIDITY FOR INFINITELY RENORMALIZABLE AREA-PRESERVING MAPS 41

The operator R, differs from R (cf.2.5) only in the “amount” by which the
eigendirection 15" is “eliminated”. In particular, as the next proposition demon-
strates, R, is still analytic and compact in the same neighborhood of sg.

Proposition 3.2. There exists a polynomial sy C Br(s®) C As(1.75), where R
and s° are as in Theorem 2, such that the operators R., ¢ € [co — J,¢co + 0],

co = (s0°G[s0]) g3 and & =1.068115234375 x 1074,

are well-defined and analytic as maps from By, (s0), 0o = 5.79833984375 x 1074, to
A (1.75).

Furthermore, the operators R. are compact in Br(s®) C A(p), with R.[s] €
A(p'), p' = 1.0699996948242188p.

Proof. The proof is almost identical to that of Proposition 2.7, with a different (but
still sufficiently small) bound on |t.[s]]. O

Definition 3.3. Set, formally,

(73) R[Fl=Az' oP[FloAp, PJ[F]=S;'"oFoFoS,
where St is as in (62), Ap(x,u) = (A[Flz, u[Flu), and

_ 1 C — (ﬂ-u(Fo F))(0,3)

—\[F]
te[F]= 7 (mu(FoF)) g

7 P:[F]2(0,0)

c € R, \[F|=n,P.[F](0,0), u[F]=

Lemma 3.4. Suppose that the neighborhood By, (So), with oo as in Propositions
2.7 and 3.2, contains a fized point s* of R, and of Rex for

¢ =(s"0G[s"]) (g3
Set
0 = 0.00124359130859375,
then

spec (DR[s*)\ {z € C: |z| < §} Cspec(DR.+[s*]) \{z € C:|z| <4§}.

Proof. According to Propositions 2.7 and 3.2, under the hypothesis of the Lemma,
R and R are analytic and compact as operators from Bs(sg) to A(1.75).
Recall, that ¢ ZXW is an eigenvector of DR pxw [s*] corresponding to the eigen-
value \,.
We consider the action of DR« [s*] on a vector ¢. Similarly to (71),

DR [s"]p = DRprxw(s™|Y + A (Dste[s™]1) s + A (Dste[s™]1) &
= DRIS + A ((Dtels™] — Datls]) ) pEXV.

Now, let 1 be an eigenvector of DR[s*] of eigenvalue x # 0 (that is, 1 # EEW).
Consider the action of DR+ [s*] on ¢ + appZEW.

DRe-[s"](¥ + av Z8) = st + A (Dstels™] = Dit[s*]) (¢ + a2 )yl

s* s*
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Notice,
Dstc[s*]ngW = Dstc[S*]('(/)s* + wu - %)
_1 (DPerw[s](Vs + by — ¥2))o 3
4 Prrw(s*]o,2
1 (DPerw[s™]|(¥s + tu — ¥2))go (¢ — PEKW[$"]0,3)
4 (PEKW[S*]0,2)2
1 (VPurwis] + Pexwls*] — DPgkwls*] - (ﬂ_zvﬂ-y))o’?)
o 4 Perw(s*]o,2
1 (Vppwws) + Pexwls*] — DPgxw|s*] - (Wmﬂy))o,z (c—Perw(s*]0,3)
4 (PEKW[S*]O,Q)Q
— _} (8279EKW[5*])0,1 +2 (PEKW[S*])OQ
B 4 Prrxw(s*]o,2
1 Perwls))os = (02Perw(s o,
4 Pexw(s*]o,2
1 ((527’EKW[3*])0,0 +2(Pexw [8*])0,1) (¢ = Perwls*o,3)
4 (Pexw [8*]0,2)2
1 ((PEKW[S*])0,2 - (82PEKW[5*])0,1) (¢ — Perwl[s*]o,3)
4 (77E11<W[8*]0,2)2
S S S (37’EKW[S*}071 - 1) c¢
2Pexwls*loe 4\ Perxwls*]oz Pexw(s*]o,2
- 140
Dl ERW = 1
Denote dy = Dstc[s*]1) and dy = Dst[s*]1), then
DR [s*)(¢ + a ™) = &+ Ai(di — d2 + a(=1+ C) + a)p 25

K <1/) + %(d1 —dy + aC) ﬁKW) :
and we see that the equation
a= %(dl —dy +aC)
has a unique solution a if
(74) K # M\C.

For such k, the vector
Ai(dy — da)
oy 2]
K—AC
is an eigenvector of DR+ [s*] associated with the eigenvalue &.
The eigenvalues « as in (74) satisfy

K| > 0.00124359130859375
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We will now describe a rigorous computer upper bound on the spectrum of
the operator DR.[s*]. Since the bound itself is an intermediate results, here, we
will not give a thorough introduction into rigorous computations in Banach space,
and, in fact, will skip many technicalities of the proof. For a thorough treatise of
computations in Banach spaces, an interested reader is referred to (Koch et al 1996).

Proof of part ii) of Main Theorem 1.

Step 1). Recall the Definition 1.2 of the Banach subspace A4(p) of A(p). We will
now choose a new bases {¢; ;} in As(p). Given s € As(p) we write its Taylor
expansion in the form

S(.’E,y): Z Si,jd}i,j(xvy)a

(4,5)€l
where ¢; ; € As(p):
u;i,j(may) = miJrlyja = 717 J 2 O’
i, \L, Y x Yy ]+1x Yy, v JZh
Vij = W”H , i>-1, j>max{0,i},
i.5llp

and the index set I of these basis vectors is defined as
I={(,j)ez*: i>-1, j>max{0,i}}.
Denote A, (p) the set of all sequences

S = Sij 1 Siy € C, Z |Sz"j| < o0
(i,9)el
Equipped with the /;-norm
(75) shh=">_ lsijl.
(i,5)el
A, (p) is a Banach space, which is isomorphic to Ag(p). Clearly, the isomorphism
J: As(p) — Ag(p) is an isometry:
- llp =111
We divide the set I in three disjoint parts:

L = {(i,j)el:i+j<N},
L = {(i,j)el:N<i+j<M},
I = {(i,j)el:i+j>M}

with
N =22, M = 60.
We will denote the cardinality of the first set as D(N), the cardinality of I; U I as
D(M).
We assign a single index to vectors ; ;, (¢,4) € Iy U I, as follows:

k(=1,0) =1, k(-1,1)=2, ..., k(=1,M)=M+1, k(0,0)=M +2,
E(0,1) =M +3, ..., k({MQI},M1[M21DD(M).
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This correspondence (i, j) — k is one-to-one, we will, therefore, also use the notation
(i(k), j (k).
For any s € A4(p), we define the following projections on the subspaces of the
linear subspace Ep(y) spanned by {1y kD:(le).
Hks = si(k),j(k)wk, HED(N)S = Z Hms.
m<D(N)
Fix
co = (80 © G[s0])o.3,
where sy is some good numerical approximation of the fixed point. Denote for
brevity £ = DR.[s]. We can now write a matrix representation of the finite-
dimensional linear operator
e Lo lLED )
as
Dy = W L20,.

Step 2). We compute the unit eigenvectors ey of the matrix D numerically, and
form a D(N) x D(N) matrix A whose columns are the approximate eigenvectors
ex. We would now like to find a rigorous bound B on the inverse B of A.

Let By be an approximate inverse of A. Consider the operator C' in the Banach
space of all D(N) x D(N) matrices (isomorphic to ]RD(N)Q) equipped with the
l1-norm, given by

CBl=(A+D0)B-1
Notice, that if B is a fixed point of C' then AB = 1. Consider a “Newton map” for
C:
N[Z] =z + C[BO — B()Z] — BO + B()Z.
If z is a fixed point of NV, then By — Byz is a fixed point of C'. Furthermore,
DN[z]=1- ABy
is constant. We therefore, estimate [, matrix norms

IN[0]| <=e€, |I— ABolly <= D,

and obtain via the Contraction Mapping Principle, that the inverse of A is contained
in the l; d-neighborhood of By, with

€

6 =|Bolly -

1-D

Step 3). Define the linear operator
A= Allp, .y, @ (]I - HED(N)) )

and its inverse
B = Bllppy, @ ([ =Tpp ) -

Consider the action of the operator L7 in the new basis
€k

llexll,

ey = 1<k <D(N), ex=vr, k>D(N),

where

(76) [617623"'76D(N)] = [w1a¢27"'awD(N)]Av
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in A,(p). To be specific, we consider a new Banach space A4(p): the space of all

functions
S = Z Cr€L,
k
analytic on a bi-disk D,, for which the norm

Islls = lel
k

is finite.
For any s € /ls(p)7 we define the following projections on the basis vectors.

k
Pis =cie;, Psps= (H — Z Pi> s.
i=1

Clearly, the Banach spaces A;(p) and Aj(p) are isomorphic, while the norms |-,

and | - ||1 are equivalent. We can use (76) to compute the equivalence constant «
in
all o=+l =1-h
(recall, norms || - ||, and | - |1, defined in (75) are equal). Notice, that
Ce Yeas ¥ oo X oaw)s ¥ oan
k 1<k<D(N) 1<i<D(N) k>D(N)

— Z Z CkAZ P + Z cii,

1<i<D(N) \1<k<D(N) i>D(N)

therefore, if A? is the i-th row of the matrix A, then

sh = > S adil+ D> el

1<i<D(N) |1<k<D(N) i>D(N)
< Y (Ml X el + Xl
1<i<D(N) 1<k<D(N) i>D(N)
= |2 e X el D el
1<i<D(N) 1<k<D(N) i>D(N)
< maxy 3 At p sl

1<i<D(N)
and
a=maxq Y A1
1<i<D(N)

The constant has been rigorously evaluated on the computer:

(77) o < 49.435546875.
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The operator £ is “almost” diagonal in this new basis for all s € B,(so) C

AS(P),
0=6.0x10"12

We proceed to quantify this claim.

[PoLserlli < 5.19007444381714 x 1074 | || PLLS eolli < 1.76560133695602 x 104,
| Paals er|li < 3.5819411277771 x 1073, ||PsoL? o] < 1.49521231651306 x 1073,
|PLLS, Psolly < 1.22539699077606 x 1074, |[PoLS, Psaol|1 < 8.23289155960083105,

for all h € B,(so) C As(p).

Step 4). We will now demonstrate existence of a fixed point s}, in B, € A,(p), of
the operator R.,, where

Cc = (SO e} G[So])o,g,.
We will use the Contraction Mapping Principle in the following form. Define the
following linear operator on Ag(p)
M=[-K",
where
Kh=6Ph+ 6Psh,
and 0; and &, are defined via
P1£i861 = 3161, PQL“ZE@Q = 8262.
Consider the operator

Nh] = h+ Rey[so + Mh] — (so + Mh)

on A,(p) and for all .
The operator A is analytic and compact on B‘IM”;la_lg(O), where c is the norm
1

e ,1} 1.
1—0611 [1—1469
Notice, that if A* is a fixed point of N, then s + Mh* is a fixed point of R.,.
The derivative norm of the operator N is “small”, indeed,
DNTh) = 1+ DRgy[so+ Mh]-M — M

= [M™'+ DR [so+ Mh] 1] - M

= [—-K+DRlso+Mh|—-1]-M

= [DRe,[s0 + Mh] — K] - M.

equivalence constant (77), and

)

1M1 = max{‘

We have evaluated the operator norm of this derivative for all h € B,-1,(0):
DN [R]|l1 = D < 0.1258544921875
At the same time
N0l = Re[S0] — S0ll1 = € < 4.9560546875 x 1071,

We can now see that the hypothesis of the Contraction Mapping Principle is
indeed verified:

€ < 4.9560546875 x 1071 < 1.058349609375 x 10713 < (1 — D)a" !y,
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and therefore, the neighborhood B,/1_p)(0) C By s54-1,(0) contains a fixed point
h* of N, i.e. the neighborhood B,/s(s0) C By(s0) C As(p) contains a fixed point
55, = 80+ Mh* of Re,.

We quote here for reference purposes the bounds on the values of the scalings
Alse] and plsg]:
(78) A[sk] = [—0.248875288734817765, —0.248875288702286711],
(

c

79) ulsy] = ]0.0611101382055370338,0.0611101382190655586].

(&

Step 5). Notice, that in general,
(SZO o G[S:o])O,g 7é c,

therefore
tCO [SZD] # O
However, t.,[s} ] is a small number which we have estimated to be
(80) Iteo[s5,]] < 7.89560771750566329 x 10~ 2.

Consider the map F}; generated by s; . Recall that by Theorem 3, there exists
a simply connected open set D such that F; € Oz(D). The fixed point equation
for the map F( is as follows:

—1 —1 * * _ *
Ay, o8 0 Foy © Fy © Steylsz,1 © Ar, = F,

teglst,] co’
Suppose that there exists an invertable transformation T, such that

(81) St o AF:[) o TCO = TCO ] AF:O

co[5%,]
(we will skip the issue of domains for a moment). Then
(82) A;} OF*OF*OAF:OZF*7

€0
on the domain on T, where
Tk —1 *
F* =T, oF, oT,.

co

This F* is close to a fixed point of the operator Rz with

&= <’/TU(F* o F*))(O,S) ,

the only thing missing is that the rescaling A;;O in the doubling equation (82) is
not the one corresponding to F*. To amend this, we rescale
F*=JoF*oJ™!
by a near-identity diagonal transformation
ARG

= 0
_la O | NF]
(83) J(z,y) = [O b} - 0 BIESL
w[F~]
so that A[FZ]
AF* - a:Pc* F* 0707 FC* :_—CO,
[ cg] m [ ]( ) 'u[ 0] WIPC* [F*]2(070)
where
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Indeed, then
c* — (WU(JOF* oF*o Jfl))

N 1 0,3
= JoFroFo -1 -
(ratgeFrofro)
~kp—2 [ e -3
_ 1cb b(wu(F OF)>(073)b
4 i M —2
b(ﬂu(F oF ))(0’2)17
= biltg*[f?*]
A[FT]=AFL] plF™] = plF ]
and
(84) AE}OF*OF*OAF*:F*.

Notice, that T, in (81) conjugates the transformation AFZO = Stco [s2,] © AFZO to
its linear part Ap: . Since the eigenvalues of Ap; , Alsi,] and pfsy ], as given in
(78)—(79), are not in resonance, the Sternberg Linearization Theorem guarantees
existence of such TC_O1 on a neighborhood of zero, normalized as

7%(0,0) = (0,0), DT, '(0,0) =1,

and given by

T-' = lim A" o A%,
co noo Fep Fay

while

T., = lim A7 o A, .
n—oo €0 <o

We will now look at the domains of convergence of the above transformations.
Consider
A—n n -1 —n AN
Te =Ap: oAg. . and TO, = ARl o Af. .
0 0 <o <o

Notice, that

Sto A= Ao Sy,
therefore,
Tow = S\Fg teglst,] © - -+ O SAES Jtey st
_ —1 —1
Tem = S\ jtaglsr,) O+ O ONEx Ity ls7, )"

Consider the map
F*=T71o Fi oT, .

n c,n

We use X for A[F%] and t for t.,[s} ] for brevity, and denote

Glx) = x4+ ta?,
) VIt diz -1
Ct (‘T) = 2t )
ft,n = &ngo...0&,
§n = & —0--08u

&o = &id
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Notice, ¢;(z) = 7,8 (x,u) and ¢ ' (x) = 7, 5; H(x, u).
The transformation &, ,, is analytic on D,/, where p’ is as in Proposition 3.2, and
gt,n(Dp’) ) Dﬁ’

for all n > 0 where
p=1r H(1—|/\|%) > 1.87249946593321017, = |\||t]p’ < 3.67950199077131340x 1012,

Therefore,
Dp - Dﬁ
Furthermore,
ft,n(DP’) C Dﬁv
for all n > 0 where

p=p [[(1+v'r) < 1.87249946595155563, v = |A|(1+k) < 0.248875288735733502.

i=0
Next,
[€ent1 = Eemlly = N€xntrzo .. 08ne —Exnr o0&y
AT e |Eane 0 - .0 Exell
< AR

where the norm || - || has been defined in the Definition 1.5. Therefore the uniform
limit & oo = limy, o0 &, exists, and is analytic on D,y .

We will now turn to the bounds on the parameter a in (83). Notice, that since
T} is of the form

c,n

T;,}(x, u) = (g€ n(2,0),...),

we have 3
AF*| = m, Tt o Fr o F (0,0) = mobs oo (A[F],0),
and
NFL] = AF¥] < (l€oo —idllpr <D €ntr — Eenllr < >IN E A
0 0
AL
<:
T |t]p” <=1
Therefore,
AE* ] — A[F*
|a_1|: [ CO] _ [ } < *L S: X.
ALF*] IALFZ] =

Next, we consider the domains of analyticity of the inverse transformations.
First, for all ¢ as in (80), and p’ as in Proposition 3.2,

(85) ¢ (Dp) T Dyt
therefore,

[ P2
where

b

o= TIO+ Pl A=+l
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At the same time
1€eallo < 0",

where

o0
" = p ]+ A]tlp) < 1.75000000000801182 < 4/,

i=1
therefore
5;71 (Dy) C Dy

We, therefore, have

1€t — Eim

o lEx oo & = &3 oo &l

< DGl pan e p ATt 0

c -1 n+1 2
S pl —p— )\n+1|t|p||£t’n |P'/\ |t|p
< C A,

pr—p—A"Htlp
and & T} converges uniformly on D, to a limit transformation &, olo, analytic on D,:
(86) €50(Dp) € Dy

Next, we obtain a bound on the rescaling parameter b in (83):

‘ 1 | (F:(JOFC*O)Q(OvO) 771'1 (ﬁ’*oﬁ‘*)Q(QO)
WFL] ulEl AL, ALF"]
1 . . s (027072 )(0,0)
o e DT (AIFG]0) - D (FE, o F,) (0,0) - _(327TuTco)(070):|
| ulFg] ALF¥]
1 M (Gs)y QIE) O (B 0 F), (0.0)
plFz] A[F~]
_ 1 . ATy (gt,oo)l ()‘[F:(]L O)Trfﬂ (Fc*o ° FC*U)Q (O’ 0)
n[FE] ALF]
1 %
- pFE ] |1 —amy (§,00); (A[F ] 0)|
< ﬁ {1 = 70 (€e.00); ALFE]0) + 11 = a] |70 (€r.00), (ALFE]L0)]}

where we have used DT, (0,0) = I. Now, write

'/Tmft,oo(l'v O) =+ Z Cnl'n’

n=2
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then

1= 72 (§r.00); (ALFG,]0)] =

[e9)
ne A[FX ] < *max{n
,; e AL ]| =2

1

_1 PEY
A[E] p'N
where
1
N = max > ,2
HW
Therefore

=2

1-b<v+|1-a|(l+v)<v+x(1+7v)<=w.

Finally, we revisit the inclusion (86). Denote a(z) = ax, then

lgrn 0™ o = Il 0 lja-11p < ",

where

o' =p A+ A'[tlla™"]p) < 1750001 < ¢,

i=1

and, the transformation §t_olo oa~', again, maps D, into D,
-1 ( -1
&too (a (Dp)) CDy.

We will now write the composition T, ;1o F, o 0T above via generating functions:

( Con(a) )
—s(y’,z")
[T, (T+2X% 8¢, -1, (27))

( Qg oo () > Sg‘

—s(y’,x’)

[[o (200t ¢, -1, (27))

AN E ()
T —sW )

( Ge(Cu(y)) )SH

s(z’,y")
(1+22%t¢x: (v))

(1+2Xty’)

Now, let 2’ = Ct_i (z), then

-1
217 T:;n Ct,n (CL’)
—s(rn(y2) s
T (12X (@)

and

)

(&n(y,2)

S

F

—

'

||£t700 - ’Lde/ <= v,

p

A"

@ } 6o — il

—1
Sgt < Oee(Cae(z)) >
75( ’,I’)
(1+2,\t;c')(112>\2t9t(x’))

<S(I’,y’

s(z’,y")
1+2Aty’)

S /
Yy A Oe(y')
)7

S');’:t C}\nt O...OC)\t(y/)
s(z’.y’)

) S>\2t
s

H:Lzl (1+2)‘itg>\i7 1g (y/)) )

Ct,n (yl)

s(z,y")

’

sty (6in (2,9))

Gty \ T
&n(@,y))

T (2N -1, (y'))

)

Y

s(&7 4 (2,y)) ’

T (14 201G 5, (1)
is the generating function of F* if if sy, is that for F7 .

T (2N, ()
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By Proposition 3.2, s}, is in A(p). Since ft_,olo(a’1 (D1.75)) C Dy, the function
1

*

Sy © 5[010 oa~ " is analytic on D 75.
Furthermore, since
2[A[[t](Ja™ o + [tlla2]p?) < 1
for all ¢ as in (80) (cf. (85)), the generating function of F™*,

L bsi (G k(e a )

TR (L 2X8G s (aTy))

is in A4 (1.75).
In particular,

. . bsz, . bsg,
e, =5l < max{ o T I AT ||, % T TS A= 2 laTTs) }
H;’jl(|1b|—H2D;c|ot|fc;1|p') max {ilj[l(1+2lkil|t|alp’)—1» 1—[[1(1—2|Ai|tlalp’)}
< 1.04748302248271977 x 10710 = 3/,
and
and since 0.50 + 8 < r, where r is as in the Main Theorem 1,

s* € By (s0).

Step 6). At the last step we repeat the calculations of the bound on the operator
L% in Step 3) for all ¢ € I,where the interval I,

O
= € — —=,Co0 B
p? p?

contains c*.
An almost-diagonal linear operator P transforms the operator £J in a block-
diagonal form

64 0 0
P_lﬁip = 0 52 0 ’
0 0 L5,

with
61 € (8.72021484375,8.72216796875),
L5, < 0.1258544921875,

for all s € B,(so) C As(p) and c € I.
Now, it follows immediately that

(87) Ripec(DRex 8" 1,0 0. (s)) < 0.1258544921875,

where Wg_. (s*) is the local stable manifold of R.- at s*.
This, together with Lemma 3.4 implies that the same is true for the spectral
radius of DR[s*]
|
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