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Abstract. Area-preserving maps have been observed to undergo a universal

period-doubling cascade, analogous to the famous Feigenbaum-Coullet-Tresser
period doubling cascade in one-dimensional dynamics. A renormalization ap-

proach has been used by Eckmann, Koch and Wittwer in a computer-assisted

proof of existence of a conservative renormalization fixed point. Furthermore,
it has been shown that infinitely renormalizable maps in a neighborhood of

this fixed point admit invariant Cantor sets on which the dynamics is “stable”

- the Lyapunov exponents vanish on these sets.
Infinite renormalizability exists in several settings in dynamics, for example,

in unimodal maps, dissipative Hénon-like maps, and conservative Hénon-like

maps. All of these types of maps have associated invariant Cantor sets. The
unimodal Cantor sets are rigid: the restrictions of the dynamics to the Cantor

sets for any two maps are C1+α-conjugate. Although, strongly dissipative
Hénon maps can be seen as perturbations of unimodal maps, surprisingly the

rigidity breaks down. The Cantor attractors of Hénon maps with different

average Jacobians are not smoothly conjugated. It is conjectured that the
average Jacobian determines the rigidity class. This conjecture holds when

the Jacobian is identically zero, and in this paper we prove that the conjecture

also holds for conservative maps close to the conservative renormalization fixed
point.

Rigidity is a consequence of an interplay between the decay of geometry and

the convergence rate of renormalization towards the fixed point. Therefore, to
demonstrate rigidity, we prove that the upper bound on the spectral radius of

the action of the renormalization derivative on infinitely renormalizable maps

is sufficiently small.
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Introduction

Following the pioneering discovery of the Feigenbaum-Coullet-Tresser period
doubling universality in unimodal maps (Feigenbaum 1978), (Feigenbaum 1979),
(Tresser and Coullet 1978), universality — independence of the quantifiers of the
geometry of orbits and bifurcation cascades in families of maps of the choice of a
particular family — has been demonstrated to be a rather generic phenomenon in
dynamics.

Universality problems are typically approached via renormalization. In a renor-
malization setting one introduces a renormalization operator on a functional space,
and demonstrates that this operator has a hyperbolic fixed point. This approach
has been very successful in one-dimensional dynamics, and has led to explana-
tion of universality in unimodal maps (Epstein 1986, Epstein 1989, Lyubich 1999,
Martens 1999), critical circle maps (de Faria 1992, de Faria 1999, Yampolsky
2002, Yampolsky 2003) and holomorphic maps with a Siegel disk (McMullen 1998,
Yampolsky 2007, Gaidashev and Yampolsky 2007). There is, however, at present
no complete understanding of universality in conservative systems, other than in
the case of the universality for systems “near integrability” (Abad et al 2000, Abad
et al 1998, Koch 2002, Koch 2004, Koch 2008, Gaidashev 2005, Kocić 2005, Khanin
et al 2007).

Period-doubling renormalization for two-dimensional maps has been extensively
studied in (Collet et al 1980, de Carvalho et al 2005, Lyubich and Martens 2011).
Specifically, the authors of (de Carvalho et al 2005) have considered strongly dissi-
pative Hénon-like maps of the form

(1) F (x, y) = (f(x)− ε(x, y), x),

where f(x) is a unimodal map (subject to some regularity conditions), and ε is
small. Whenever the one-dimensional map f is renormalizable, one can define a
renormalization of F , following (de Carvalho et al 2005), as

RdCLM [F ] = H−1 ◦ F ◦ F |U ◦H,

where U is an appropriate neighborhood of the critical value v = (f(0), 0), and H is
an explicit non-linear change of coordinates. (de Carvalho et al 2005) demonstrates
that the degenerate map F∗(x, y) = (f∗(x), x), where f∗ is the Feigenbaum-Collet-
Tresser fixed point of one-dimensional renormalization, is a hyperbolic fixed point
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of RdCLM . Furthermore, according to (de Carvalho et al 2005), for any infinitely-
renormalizable map of the form (1), there exists a hierarchical family of “pieces”
{Bnσ}, organized by inclusion in a dyadic tree, such that the set

CF =
⋂
n

⋃
σ

Bnσ

is an attracting Cantor set on which F acts as an adding machine. Compared to
the Feigenbaum-Collet-Tresser one-dimensional renormalization, the new striking
feature of the two dimensional renormalization for highly dissipative maps (1),
is that the restriction of the dynamics to this Cantor set is not rigid. Indeed,
if the average Jacobians of F and G are different, for example, bF < bG, then
the conjugacy F |CF

≈
h G|CG is not smooth, rather it is at best a Hölder continuous

function with a definite upper bound on the Hölder exponent: α ≤ 1
2

(
1 + log bG

log bF

)
<

1.
The theory has been also generelized to other combinatorial types in (Hazard

2011), and also to three dimensional dissipative Hénon-like maps in (Nam 2011).
Finally, the authors of (de Carvalho et al 2005) show that the geometry of these

Cantor sets is rather particular: the Cantor sets have universal bounded geometry
in “most” places, however there are places in the Cantor set were the geometry is
unbounded. Rigidity and universality as we know from one-dimensional dynamics
has a probabilistic nature for strongly dissipative Hénon like maps. See (Lyubich
and Martens 2011) for a discussion of probabilistic universality and probabilistic
rigidity.

It turns out that the period-doubling renormalization for area-preserving maps
is very different from the dissipative case.

A universal period-doubling cascade in families of area-preserving maps was
observed by several authors in the early 80’s (Derrida and Pomeau 1980, Helleman
1980, Benettin et al 1980, Bountis 1981, Collet et al 1981, Eckmann et al 1982).
The existence of a hyperbolic fixed point for the period-doubling renormalization
operator

REKW [F ] = Λ−1F ◦ F ◦ F ◦ ΛF ,

where ΛF (x, u) = (λFx, µFu) is an F -dependent linear change of coordinates, has
been proved with computer-assistance in (Eckmann et al 1984).

We have proved in (Gaidashev and Johnson 2009b) that infinitely renormalizable
maps in a neighborhood of the fixed point of (Eckmann et al 1984) admit a “stable”
Cantor set, that is the set on which the maximal Lyapunov exponent is zero. We
have also shown in the same publication that the conjugacy of stable dynamics is
at least bi-Lipschitz on a submanifold of locally infinitely renormalizable maps of a
finite codimension.

In this paper we improve the conclusions of (Gaidashev and Johnson 2009b),
and prove the following result.

Theorem A. The stable dynamics of infinitely renormalizable area-preserving maps
on the Cantor set CF is rigid.

Specifically, for any two maps F and G in the local stable manifold of the renor-
malization operator the conjugacy

F |CF
≈
h
G|CG
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is C1+α, i.e. h extends to a neighborhood of CF as a differentiable map whose
derivative is Hölder continuous of exponent α, with

α ≥ 0.0129241943359375.

At the same time, the numerically measured value of the Hölder constant is
larger.

α > 0.02770.

It has been conjectured that the average Jacobian determines the rigidity class
of Hénon-like maps. This conjecture holds for C3 unimodal maps with a non-
degenerate critical point, for which the Jacobian is identically zero. In this paper we
prove that the conjecture also holds for conservative maps close to the conservative
renormalization fixed point. At the same time, the result of (de Carvalho et al 2005)
states that rigidity does not hold for strongly dissipative Hénon-like maps with
different average Jacobians.

An important ingredient of the proof is a new bound on the spectral radius of the
renormalization operator. We demonstrate that the spectral radius of the action of
DREKW , evaluated at the Eckmann-Koch-Wittwer fixed point FEKW , restricted
to the stable manifold W of the infinitely renormalizable maps, is equal exactly to
the absolute value of the “ horizontal” scaling parameter

Rspec (DREKW [FEKW ]|W) = |λFEKW | = 0.2488 . . . .

Furthermore, we demonstrate that the single eigenvalue λFEKW in the spectrum
of DREKW [FEKW ] corresponds to an eigenvector, generated by a very specific
coordinate change.

We compute the spectral radius of the restriction of the spectrum of DREKW [F ∗]
to the stable subspace minus the eigenvalues λFEKW , and obtain the following
spectral bound, which is of crucial importance to our proof of rigidity.

Theorem B.

Rspec (DREKW [F ∗]|W) \ {λFEKW } ≤ 0.1258544921875.

The Cantor set of a renormalization fixed point can be seen as the limit set of
the iterated function system generated by two rescalings (see also “presentation
function” (Ledrappier and Misiurewicz 1985)). In this context, the pieces of the
Cantor set are images of branches of this iterated function system. These branches
are compositions of rescalings. The Cantor set of an infinitely renormalizable map
is obtained in a similar way. The pieces are also obtained as images of compositions
of rescalings. The convergence of renormalization imply that the rescalings in these
branches converge exponentially fast to the corresponding rescalings of the renor-
malization fixed point. In the one-dimensional context the exponential convergence
together with the comutativity of derivatives of rescaling is enough to show that
the small scale geometry of the Cantor sets is asymptotically the same, that is, to
show rigidity.
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In the area-preserving case, we still have the exponential convergence. However,
derivatives do not commute anymore. This noncommutativity introduces discrep-
ancies between the small scale geometry of the Cantor sets. These discrepancies will
disappear on asymptotic scale if there is fast enough convergence of the rescalings,
that is, fast enough convergence of renormalizations.

In the dissipative case, the pieces of the Cantor set are also obtained as im-
ages of long compositions of rescalings. These rescalings converge exponentially
fast to the correponding rescalings of the one-dimensional renormalization fixed
point. Although, the the two-dimensional nature of these rescalings decays super
exponentially fast, it is still strong enough to let the non commutativity destroy
rigidity.

For convenience and readability, the paper is divided in two large logical parts,
“Rigidity for Infinitely Renormalizable Maps”, and “Spectral Properties of Renor-
malization”. We prove the main result of the paper in the first part; the second
part contains a collection of results concerning the renormalization spectrum, out
of which the most important is the spectral bounds on the stable and strong stable
renormalization manifolds.
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Part 1. Rigidity for Infinitely Renormalizable Maps

1. Renormalization for area-preserving reversible twist maps

An “area-preserving map” will mean an exact symplectic diffeomorphism of a
subset of R2 onto its image.

Recall, that an area-preserving map that satisfies the twist condition

∂u (πxF (x, u)) 6= 0

everywhere in its domain of definition can be uniquely specified by a generating
function S:

(2)

(
x

−S1(x, y)

) F
7→
(

y

S2(x, y)

)
, Si ≡ ∂iS.

Furthermore, we will assume that F is reversible, that is

(3) T ◦ F ◦ T = F−1, where T (x, u) = (x,−u).

For such maps it follows from (2) that

S1(y, x) = S2(x, y) ≡ s(x, y),

and

(4)

(
x

−s(y, x)

) F
7→
(

y

s(x, y)

)
.



6 DENIS GAIDASHEV, TOMAS JOHNSON, AND MARCO MARTENS

It is this “little” s that will be referred to below as “the generating function”.
If the equation −s(y, x) = u has a unique differentiable solution y = y(x, u), then
the derivative of such a map F is given by the following formula:

(5) DF (x, u) =

[
− s2(y(x,u),x)s1(y(x,u),x)

− 1
s1(y(x,u),x)

s1(x, y(x, u))− s2(x, y(x, u)) s2(y(x,u),x)s1(y(x,u),x)
− s2(x,y(x,u))s1(y(x,u),x)

]
.

The period-doubling phenomenon can be illustrated with the area-preserving
Hénon family (cf. (Bountis 1981)) :

Ha(x, u) = (−u+ 1− ax2, x).

Maps Ha have a fixed point ((−1 +
√

1 + a)/a, (−1 +
√

1 + a)/a) which is stable
(elliptic) for −1 < a < 3. When a1 = 3 this fixed point becomes hyperbolic: the
eigenvalues of the linearization of the map at the fixed point bifurcate through
−1 and become real. At the same time a stable orbit of period two is “born”
with Ha(x±, x∓) = (x∓, x±), x± = (1 ±

√
a− 3)/a. This orbit, in turn, becomes

hyperbolic at a2 = 4, giving birth to a period 4 stable orbit. Generally, there exists
a sequence of parameter values ak, at which the orbit of period 2k−1 turns unstable,
while at the same time a stable orbit of period 2k is born. The parameter values
ak accumulate on some a∞. The crucial observation is that the accumulation rate

(6) lim
k→∞

ak − ak−1
ak+1 − ak

= 8.721...

is universal for a large class of families, not necessarily Hénon.
Furthermore, the 2k periodic orbits scale asymptotically with two scaling pa-

rameters

(7) λ = −0.249 . . . , µ = 0.061 . . .

To explain how orbits scale with λ and µ we will follow (Bountis 1981). Consider
an interval (ak, ak+1) of parameter values in a “typical” family Fa. For any value
α ∈ (ak, ak+1) the map Fα possesses a stable periodic orbit of period 2k. We
fix some αk within the interval (ak, ak+1) in some consistent way; for instance,

by requiring that DF 2k

αk
at a point in the stable 2k-periodic orbit is conjugate,

via a diffeomorphism Hk, to a rotation with some fixed rotation number r. Let
p′k be some unstable periodic point in the 2k−1-periodic orbit, and let pk be the
further of the two stable 2k-periodic points that bifurcated from p′k. Denote with
dk = |p′k − pk|, the distance between pk and p′k. The new elliptic point pk is
surrounded by (infinitesimal) invariant ellipses; let ck be the distance between pk
and p′k in t he direction of the minor semi-axis of an invariant ellipse surrounding
pk, see Figure 1. Then,

1

λ
= − lim

k→∞

dk
dk+1

,
λ

µ
= − lim

k→∞

ρk
ρk+1

,
1

λ2
= lim
k→∞

ck
ck+1

,

where ρk is the ratio of the smaller and larger eigenvalues of DHk(pk).
This universality can be explained rigorously if one shows that the renormaliza-

tion operator

(8) REKW [F ] = Λ−1F ◦ F ◦ F ◦ ΛF ,

where ΛF is some F -dependent coordinate transformation, has a fixed point, and
the derivative of this operator is hyperbolic at this fixed point.
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p_k

c_k

p’_k

d_k

Figure 1. The geometry of the period doubling. pk is the further
elliptic point that has bifurcated from the hyperbolic point p′k.

It has been argued in (Collet et al 1981) that ΛF is a diagonal linear transforma-
tion. Furthermore, such ΛF has been used in (Eckmann et al 1982) and (Eckmann
et al 1984) in a computer assisted proof of existence of a reversible renormalization
fixed point FEKW and hyperbolicity of the operator REKW .

We will now derive an equation for the generating function of the renormalized
map Λ−1F ◦ F ◦ F ◦ ΛF .

Applying a reversible F twice we get(
x′

−s(Z, x′)

) F
7→
(

Z

s(x′, Z)

)
=

(
Z

−s(y′, Z)

) F
7→
(

y′

s(Z, y′)

)
.

According to (Collet et al 1981) ΛF can be chosen to be a linear diagonal trans-
formation:

ΛF (x, u) = (λx, µu).

We, therefore, set (x′, y′) = (λx, λy), Z(λx, λy) = z(x, y) to obtain:

(9)

(
x

− 1
µs(z, λx)

)
ΛF
7→
(

λx

−s(z, λx)

) F ◦ F
7→

(
λy

s(z, λy)

) Λ−1
F
7→

(
y

1
µs(z, λy)

)
,

where z(x, y) solves

(10) s(λx, z(x, y)) + s(λy, z(x, y)) = 0.

If the solution of (10) is unique, then z(x, y) = z(y, x), and it follows from (9)
that the generating function of the renormalized F is given by

(11) s̃(x, y) = µ−1s(z(x, y), λy).

One can fix a set of normalization conditions for s̃ and z which serve to determine
scalings λ and µ as functions of s. For example, the normalization s(1, 0) = 0 is
reproduced for s̃ as long as z(1, 0) = z(0, 1) = 1. In particular, this implies that

s(Z(λ, 0), 0) = 0,

which serves as an equation for λ. Furthermore, the condition ∂1s(1, 0) = 1 is
reproduced as long as µ = ∂1z(1, 0).
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We will now summarize the above discussion in the following definition of the
renormalization operator acting on generating functions originally due to the au-
thors of (Eckmann et al 1982) and (Eckmann et al 1984):

Definition 1.1. Define the prerenormalization of s as

PEKW [s] = s ◦G[s],(12)

where

0 = s(x, Z(x, y)) + s(y, Z(x, y)),(13)

G[s](x, y) = (Z(x, y), y).(14)

The renormalization of s will be defined as

REKW [s] =
1

µ
PEKW [s] ◦ λ,(15)

where

λ(x, y) = (λx, λy), PEKW [s](λ, 0) = 0 and µ = λ ∂1PEKW [s](λ, 0).

Definition 1.2. The Banach space of functions s(x, y) =
∑∞
i,j=0 cij(x−β)i(y−β)j,

analytic on a bi-disk

Dρ(β) = {(x, y) ∈ C2 : |x− β| < ρ, |y − β| < ρ},
for which the norm

‖s‖ρ =

∞∑
i,j=0

|cij |ρi+j

is finite, will be referred to as Aβ(ρ).
Aβs (ρ) will denote its symmetric subspace {s ∈ Aβ(ρ) : s1(x, y) = s1(y, x)}.
We will use the simplified notation A(ρ) and As(ρ) for A0(ρ) and A0

s(ρ), respec-
tively.

As we have already mentioned, the following has been proved with the help of a
computer in (Eckmann et al 1982) and (Eckmann et al 1984):

Theorem 1. There exist a polynomial s0.5 ∈ A0.5
s (ρ) and a ball B%(s0.5) ⊂ A0.5

s (ρ),
% = 6.0× 10−7, ρ = 1.6, such that the operator REKW is well-defined and analytic
on B%(s0.5).

Furthermore, its derivative DREKW |B%(s0.5) is a compact linear operator, and
has exactly two eigenvalues

δ1 = 8.721..., and

δ2 =
1

λ
of modulus larger than 1, while

spec(DREKW |B%(s0.5)) \ {δ1, δ2} ⊂ {z ∈ C : |z| ≤ ν},
where

(16) ν < 0.85.
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Finally, there is an sEKW ∈ B%(s0.5) such that

REKW [sEKW ] = sEKW .

The scalings λ∗ and µ∗ corresponding to the fixed point sEKW satisfy

λ∗ ∈ [−0.24887681,−0.24887376],(17)

µ∗ ∈ [0.061107811, 0.061112465].(18)

Remark 1.3. The bound (16) is not sharp. In fact, a bound on the largest eigen-
value of DREKW (sEKW ), restricted to the tangent space of the stable manifold, is
expected to be quite smaller.

The size of the neighborhood in Aβs (ρ) where the operator REKW is well-defined,
analytic and compact has been improved in (Gaidashev 2010). Here, we will cite a
somewhat different version of the result of (Gaidashev 2010) which suits the present
discussion (in particular, in the Theorem below some parameter, like ρ in Aβs (ρ),
are different from those used in (Gaidashev 2010)). We would like to emphasize
that all parameters and bounds used and reported in the Theorem below, and,
indeed, throughout the paper, are numbers representable on the computer.

Theorem 2.
There exists a polynomial s0 ∈ A(ρ), ρ = 1.75, such that the following holds.
i) The operator REKW is well-defined and analytic in BR(s0) ⊂ A(ρ) with

R = 0.00426483154296875.

ii) For all s ∈ BR(s0) with real Taylor coefficients, the scalings λ = λ[s] and
µ = µ[s] satisfy

0.0000253506004810333 ≤ µ ≤ 0.121036529541016,

−0.27569580078125 ≤ λ ≤ −0.222587585449219.

iii) The operator REKW is compact in BR(s0) ⊂ A(ρ), with REKW [s] ∈ A(ρ′),
ρ′ = 1.0699996948242188ρ.

Definition 1.4. The set of reversible twist maps F of the form (4) with s ∈ B%(s̃) ⊂
Aβs (ρ) will be referred to as Fβ,ρ% (s̃):

(19) Fβ,ρ% (s̃) =
{
F : (x,−s(y, x)) 7→ (y, s(x, y))| s ∈ B%(s̃) ⊂ Aβs (ρ)

}
.

We will also use the notation

Fρ% (s̃) ≡ F0,ρ
% (s̃).

We will finish our introduction into period-doubling for area-preserving maps
with a summary of properties of the fixed point map. In (Gaidashev and Johnson
2009a) we have described the domain of analyticity of maps in some neighborhood of
the fixed point. Additional properties of the domain are studied in (Johnson 2011).
Before we state the results of (Gaidashev and Johnson 2009a), we will fix a notation
for spaces of functions analytic on a subset of C2.
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Definition 1.5. Denote O2(D) the Banach space of maps F : D 7→ C2, analytic
on an open simply connected set D ⊂ C2, continuous on ∂D, equipped with a finite
max supremum norm ‖ · ‖D:

‖F‖D = max

{
sup

(x,u)∈D
|F1(x, u)|, sup

(x,u)∈D
|F2(x, u)|

}
.

The Banach space of functions y : A 7→ C, analytic on an open simply connected
set A ⊂ C2, continuous on ∂A, equipped with a finite supremum norm ‖ · ‖A will
be denoted O1(A):

‖y‖D = sup
(x,u)∈D

|y(x, u)|.

If D is a bidisk Dρ ⊂ C2 for some ρ, then we use the notation

‖ · ‖ρ ≡ ‖ · ‖Dρ .

The next Theorem describes the analyticity domains for maps in a neighbor-
hood of the Eckmann-Koch-Wittwer fixed point map, and those for functions in a
neighborhood of the Eckmann-Koch-Wittwer fixed point generating function. The
Theorem has been proved in two different versions: one for the space A0.5

s (1.6)
(the functional space in the original paper (Eckmann et al 1984)), the other for the
space As(1.75) — the space in which we will obtain a bound on the renormaliza-
tion spectral radius in the stable manifold in this paper. To state the Theorem in
a compact form, we introduce the following notation:

ρ0.5 = 1.6, ρ0 = 1.75,

%0.5 = 6.0× 10−7, %0 = 5.79833984375× 10−4,

while s0.5 (as in Theorem 1) and s0 will denoted the approximate renormalization
fixed points in spaces A0.5

s (1.6) and As(1.75), respectively.

Theorem 3. There exists a polynomial sβ such that the following holds for all
F ∈ Fβ,ρ% (sβ), β = 0.5 or β = 0.

i) There exists a simply connected open set D = D(β, %β , ρβ) ⊂ C2 such that the
map F is in O2(D).

ii) There exist simply connected open sets D̄ = D̄(β, %β , ρβ) ⊂ D, such that D̄ ∩R2

is a non-empty simply connected open set, and such that for every (x, u) ∈ D̄ and
s ∈ B%β (sβ) ⊂ Aβs (ρβ), the equation

(20) 0 = u+ s(y, x)

has a unique solution y[s](x, u) ∈ O1(D̄). The map

S : s 7→ y[s]

is analytic as a map from B%β (sβ) to O1(D̄).

Furthermore, for every x ∈ πxD̄, there is a function U ∈ O1(Dρβ (β)), that
satisfies

y[s](x, U(x, v)) = v.

The map

Y : y[s] 7→ U

is analytic as a map from O1(Dρβ (β)) to B%β (sβ).
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Remark 1.6. It is not too hard to see that the subsets Fβ,ρ% (sβ), β = 0 or 0.5, are

Banach submanifolds of the spaces O2(D̄(β, %β , ρβ). Indeed, the map

I : s 7→ (y[s], s ◦ h[s]) ,(21)

where y[s](x, u) is the solution of the equation (20), and h[s](x, u) = (x, y[s](x, u)),
is analytic as a map from B%β (sβ) to O2(D̄(β, %β , ρβ) according to Theorem 3, and
has an analytic inverse

I−1 : F 7→ πuF ◦ g[F ],(22)

where g[F ](x, y) = (x, U(x, y)), and U is as in Theorem 3.

We are now ready to give a definition of the Eckmann-Koch-Wittwer renormal-
ization operator for maps of the subset of a plane. Notice, that the condition
PEKW [s](λ, 0) = 0 from Definition 1.1 is equivalent to

F (F (λ,−s(z(λ, 0), λ))) = (0, 0),

or, using the reversibility
λ = πxF (F (0, 0)).

On the other hand,

−s(z(y(x, u), x), x) = −PEKW [s](y(x, u), x) = u,

and

∂uPEKW [s](y(x, u), x) = PEKW [s]1(y(x, u), x)y2(x, u)

= PEKW [s]1(y(x, u), x) πx(F ◦ F )2(x, u) = −1,

then
PEKW [s]1(λ, 0) πx(F ◦ F )2(0, 0) = −1,

and

µ =
−λ

πx(F ◦ F )2(0, 0)
.

Definition 1.7. We will refer to the composition F ◦ F as the prerenormalization
of F , whenever this composition is defined:

(23) PEKW [F ] = F ◦ F.
Set

REKW [F ] = Λ−1 ◦ PEKW [F ] ◦ Λ,

where

Λ(x, u) = (λx, µu), λ = πxPEKW [F ](0, 0), µ =
−λ

πxPEKW [F ]2(0, 0)
,

whenever these operations are defined. REKW [F ] will be called the (EKW-)renormalization
of F .

Remark 1.8. Suppose that for some choice of β, % and ρ, the operator REKW
and the map I, described in Remark 1.6, are well-defined on some B%(sβ) ⊂ Aβs (ρ).
Also, suppose that the inverse of I exists on I(B%(sβ)). Then,

REKW = I ◦ REKW ◦ I−1

on Fβ,ρ% (sβ).
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2. Statement of main results

Consider the dyadic group,

(24) {0, 1}∞ = lim←−{0, 1}
n,

where lim←− stands for the inverse limit. An element w of the dyadic group can be

represented as a formal power series w →
∑∞
k=0 wk+12k. The odometer, or the

adding machine, p : {0, 1}∞ → {0, 1}∞ is the operation of adding 1 in this group.
We are now ready to state our main theorems.

Main Theorem 1. (Existence and Spectral properties) There exists a polynomial
s0 : C2 7→ C, such that

i) The operator REKW is well-defined, analytic and compact in B%0(s0) ⊂
As(ρ), with

ρ = 1.75, %0 = 5.79833984375× 10−4.

ii) There exists a function s∗ ∈ Br(s0) ⊂ As(ρ) with

r = 1.1× 10−10,

such that

REKW [s∗] = s∗.

iii) The linear operator DREKW [s∗] has two eigenvalues outside of the unit
circle:

8.72021484375 ≤ δ1 ≤ 8.72216796875, δ2 =
1

λ∗
,

where

−0.248875313689 ≤ λ∗ ≤ −0.248886108398438.

iv) The complement of these two eigenvalues in the spectrum is compactly con-
tained in the unit disk. The largest eigenvalue in the unit disk is equal to
λ∗, while

spec(DREKW [s∗]) \ {δ1, δ2, λ∗} ⊂ {z ∈ C : |z| ≤ 0.1258544921875 ≡ ν}.

The Main Theorem 1 and Theorem 1 imply that there exist codimension 2 local
stable manifolds WREKW (s∗) ⊂ As(1.75) and W0.5

REKW (sEKW ) ⊂ A0.5
s (1.6) of the

operator REKW .
Compactness of the operator REKW in neighborhood of s∗ implies that there

exists a strong “submanifold”

Ws
REKW (s∗) ⊂ WREKW (s∗),

of codimension 1 in WREKW (s∗), such that the contraction rate in Ws
REKW (s∗) is

bounded from above by ν:

‖RnEKW [s]−RnEKW [s̃]‖ρ = O(νn)

for any two s and s̃ in Ws
REKW (s∗).
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Definition 2.1. The set of reversible twist maps of the form (4) such that s ∈
WREKW (s∗) ⊂ As(1.75) will be denoted WEKW , and referred to as infinitely
renormalizable maps.

The set of reversible twist maps of the form (4) such that s ∈ Ws
REKW (s∗) ⊂

As(1.75) will be denoted W s
EKW .

The set of reversible twist maps of the form (4) such that s ∈ W0.5
REKW (sEKW ) ⊂

A0.5
s (1.6) will be denoted W 0.5

EKW .

Recall the Definition 1.4.

Definition 2.2. Set,

W%(s̃) ≡ WEKW ∩ F1.75
% (s̃),

W s
% (s̃) ≡ W s

EKW ∩ F1.75
% (s̃),

W 0.5
% (s̃) ≡ W 0.5

EKW ∩ F0.5,1.6
% (s̃).

Naturally, these sets are invariant under renormalization if % is sufficiently small.

Notice, that, among other things, this Theorem restates the result about exis-
tence of the Eckmann-Koch-Wittwer fixed point and renormalization hyperbolicity
of Theorem 1 in a setting of a different functional space. We do not prove that
the fixed point s∗ coincides with sEKW from Theorem 1, although the computer
bounds on these two fixed points differ by a tiny amount on any bi-disk contained
in the intersection of their domains.

Main Theorem 1 will be proved in Part 2.

Main Theorem 2. (Stable Set)
There exists % > 0 such that any F ∈ W%(s0), admits a “stable” Cantor set

CF ⊂ D with the following properties.

i) For all x ∈ CF the maximal Lyapunov exponent χ(x;F ) exists, is F -
invariant, is equal to zero:

χ(x;F ) = 0,

and

lim
i→±∞

1

|i|
log

{
‖DF i(x)v‖
‖v‖

}
= 0,

uniformly for all v ∈ R2 \ {0} and x ∈ CF .
ii) The Hausdorff dimension of CF satisfies

dimH(CF ) ≤ 0.794921875.

iii) The restriction of the dynamics F |CF is topologically conjugate to the adding
machine.

Main Theorem 3. (Rigidity) Let s∗ and CF be as in Main Theorems 1 and 2.

There exists % > 0, such that for all F and F̃ in W%(s
∗),

F |CF
≈
h
F̃ |CF̃ ,

where h extends to a neighborhood of CF as a differentiable transformation, whose
derivative Dh is Hölder continuous with the Hölder exponent

α ≥ 0.0129241943359375.
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3. Existence of the invariant stable Cantor sets

Parts i)—iii) of Main Theorem 2 for F ∈W 0.5
% (sEKW ) have already been proved

in (Gaidashev and Johnson 2009b) with the help of the so called presentation func-
tions. We will, however, redo this proof in the setting of the space As(1.75).

Set ψF0 = ΛF and ψF1 = F ◦ ΛF , these are the two presentation functions of F .
Clearly, for any two F ∈Wr(s0), where r and s0 are as in Main Theorem 1,

Dψ
Rn[F ]
0 (x, u)−Dψ∗0(x, u) =

[
C1|λ∗|n 0
0|λ∗|n C2|λ∗|n

]
= O(|λ∗|n),

and, similarly,

Dψ
Rn[F ]
1 (x, u)−Dψ∗1(x, u) = O(|λ∗|n),

Furthermore, set

ΨF
0 ≡ ψF0 and ΨF

1 ≡ ψF1 ,(25)

ΨF
ω ≡ ψFω1

◦ . . . ◦ ψR
n−1[F ]

ωn , ω = (ω1, . . . , ωn) ∈ {0, 1}n.(26)

Lemma 3.1. For every F ∈ Wr(s0), r = 1.1 × 10−10, there exists a simply con-
nected closed set BF b D̄ ∩ R2, where D̄ is as in Theorem 3, such that the following
holds.

1) B1
0(F ) ≡ ψF0 (BF ) ⊂ BF and B1

1(F ) ≡ ψF1 (BF ) ⊂ BF are disjoint, F (B1
1(F ))∩

B1
0 6= ∅, and

(27) max{‖DψF0 ‖BF , ‖DψF1 ‖BF } ≤ θ, θ = 0.41796875.

2) There exists ε > 0 such that

dist
{
BF , ∂D̄

}
> ε.

Proof. Part 1) First, we verify the following on the computer:

ψF0 (B̃) ⊂ B̃, ψF1 (B̃) ⊂ B̃ and F (ψF1 (B̃)) ∩ ψF0 (B̃) 6= ∅
for all F ∈Wr(s0), where

B̃ = {(x, u) ∈ R2 :
(x− 0.469970703125)2

0.81994628906252
+

(u+ 0.0399169921875)2

0.3013610839843752
≤ 1} b D̄ ∩ R2.

The fact that B̃ b D̄ is proved in Part 2 of this proof. We also check that the sets
ψF0 (B̃) ⊂ B̃ and ψF1 (B̃) ⊂ B̃ are disjoint.

One can now add another set B̂ ⊂ B̃, so that the set

BF ≡ ψF0 (B̃) ∩ ψF1 (B̃) ∩ B̂

would be simply connected. For example, the ellipse B̂ ⊂ B̃,

B̂ = {(x, u) ∈ R2 :
(x− 0.0.469970703125)2

0.5299987792968752
+

u2

0.002370119094848632
≤ 1} b B̃,

intersects each of ψF0 (B̃), ψF1 (B̃) along a single arc, and hence, BF is indeed simply
connected (see Figure 3), and satisfies the claim.

Notice, that all numbers used in this Lemma are representable on a computer.

Part 2) A computer bound on D̄ ∩ R2 (see Theorem 3) has been obtained with
the help of the interval Newton operator. We will now recall the definition of this
operator (cf. (Neumaier 1990)).
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Figure 2. Sets ψF0 (B̃) (magenta), ψF1 (B̃) (cyan) and B̂ (blue).

Let h : A ⊆ Rn → Rn, and let Dh be an interval matrix valued function such
that [Dh(x)]ij ∈ [D(h)(x)]ij , for all x ∈ A. Let X ⊂ A be a Cartesian product
of finite intervals, x̂ ∈ X, and assume that if A ∈ Dh(X), then A is non-singular.
The interval Newton operator is defined as:

N(h,X, x̂) = x̂− (Dh)−1(X)h(x̂).

The main properties of N is that if N(h,X, x̂) ⊂ intX, then there exists a unique
solution to h(x) = 0 in X, which is contained in N(h,X, x̂), and if N(h,X, x̂)∩X =
∅, then there is no solution to h(x) = 0 in X.

To obtain the bound on D̄ ∩ R2, we have verified the containment property for
N(h(x,u),Y, ŷ), where

Y = {y ∈ R : |y| < 1.75}, and h(x,u)(y) = u+ s(y, x),

specifically, we have shown that there exists a non-empty set D̃ ⊂ R2, such that for
all (x, u) ∈ D̃

(28) 0 /∈ Dhx,u(Y),

and

N(h(x,u),Y, ŷ) ⊂ Y.

In particular, (28) implies via the Implicit Function Theorem that there exists

an open neighborhood D̄ of D̃ in C2, such that hx,u(y) = 0 has a solution y(x, u)

for all (x, u) ∈ D̄ with y being an analytic function on D̄. We verify that B̃ b
[−0.4, 1.4]× [−0.6, 0.6] ⊂ D̃. Clearly, the boundary of D̄ is a definite distance away
from any set compactly contained in D̄ ∩ R2.

�

Set BF0 = ψF0 (BF ), BF1 = ψF1 (BF ), and define “pieces”

BFω = ΨF
ω (BF ), ω ∈ {0, 1}n.
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One can view {0, 1}n as an additive group of residues mod 2n via an identification

w →
n−1∑
k=0

wk+12k.

Let p : {0, 1}n → {0, 1}n, be the operation of adding 1 in this group. The following
Lemma has been proved in (de Carvalho et al 2005), and it’s proof holds in our
case of area-preserving maps word by word:

Lemma 3.2.

1) The above families of pieces are nested:

BFwv ⊂ BFω , w ∈ {0, 1}n−1, v ∈ {0, 1}.
2) The pieces BFω , ω ∈ {0, 1}n are pairwise disjoint.
3) F permutes the pieces as follows: F (BFω ) = BFp(w) unless p(w) = 0n. If

p(w) = 0n, then F (BFω ) ∩BF0n 6= ∅.
4) diam(BFω ) ≤ const θn.
5) dimH(CF ) ≤ −log(2)/ log(θ) < 0.794921875, where

(29) CF ≡
∞⋂
n=1

⋃
ω∈{0,1}n

Bnω .

We will denote
C∗ ≡ CF∗ .

Since the set B̃ from Lemma 3.1 contains (0, 0), so does each piece BF0n . It follows
from part 3) of Lemma 3.2 that the set

⋃
w∈{0,1}n B

F
ω contains iterates F i((0, 0))

up to order 2n. Therefore, the Cantor set CF is the closure of the orbit of zero.
Recall the definition of the odometer p from Section 2. Lemma 3.2 implies the

following:

Corollary 3.3. The restriction F |CF is homeomorphic to the odometer p : {0, 1}∞ →
{0, 1}∞ via h : {0, 1}∞ → CF defined as

h(w) =

∞⋂
n=1

BFw1w2...wn .

4. Lyapunov exponents

Recall, the definition of the upper Lyapunov exponent of (p, v) ∈ (D ∩R2)×R2

with respect to F :

χ(p, v;F ) ≡ limi→∞
1

i
log
[
‖DF i(p)v‖

]
,

where ‖‖ is some norm in R2. The maximal Lyapunov exponent of p ∈ (D ∩ R2)
with respect to F is defined as

χ(p;F ) ≡ sup
||v||=1

χ(p, v;F ).

The following Lemma about the existence of hyperbolic fixed points for maps in
a small neighborhood of the renormalization fixed point map F ∗ is a restatement
of a result from (Gaidashev and Johnson 2009a) in the setting of the functional
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space As(1.75). The proof of the Lemma is computer-assisted (see (Gaidashev and
Johnson 2009a)).

Lemma 4.1. Every map F ⊂ Fρr (s0), with r = 1.1×10−10 and ρ = 1.75, possesses
a hyperbolic fixed point pF ∈ D, such that

1) πxp
F ∈ (0.577606201171875, 0.577629923820496), and πup

F = 0, where
πx,u are projections on the x and u coordinates;

2) DF (pF ) has two negative eigenvalues.

eF+ ∈ (−2.0576171875,−2.057373046875),

eF− ∈ (−0.486053466796875,−0.48602294921875),

corresponding to the following two eigenvectors:

sF = [1.0,−(0.77978515625, 0.779815673828125)], and uF = T (sF ).

This Lemma implies existence of hyperbolic 2n-th periodic orbits for maps in
Wr(s0). Let On(F ) denote such 2n-th periodic orbit of F ∈Wr(s0), specifically:

On(F ) =

2n−1⋃
i=0

F i(ΨF
0n(pFn)),

where pFn is the fixed point of Fn ≡ Rn[F ] ∈Wr(s0). We will also denote

pF0n = ΨF
0n(pFn), pFω = F

∑n
i=1 ωi2

i−1

(pF0n).

Consider the stable and unstable invariant direction fields on the 2n-th periodic
orbit On(F ). At every point pFω , ω ∈ {0, 1}n of On(F ), these directions are given
by

uFω = DΨF
ω (pFn)uFn ,(30)

sFω = DΨF
ω (pFn)sFn .(31)

The angles between these vectors and the positive real line will be denoted by
αFω and βFω .

Lemma 4.2. The set ∪∞n=0On(F )∪CF is in the set of regular points for F , specif-
ically,

1) The decomposition

R2 = E−(pFω )
⊕

E+(pFω ) ≡ span{sFω }
⊕

span{uFω }

is invariant under

DF : D × R2 7→ R2.

The Lyapunov exponents

χ−(n;F ) ≡ −χ+(n;F ) =
log |eFn− |

2n
, x ∈ On(F ),

where eF− is as in Lemma 4.1, exist, are F -invariant, and

lim
i→∞

1

i
log

{
‖DF i(x)v‖
‖v‖

}
= χ±(n;F ),

uniformly for all v ∈ E±(pFω ) \ {0};
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2) The Lyapunov exponent

χ∞ = 0, x ∈ CF ,
exists, is F -invariant, and

lim
i→±∞

1

|i|
log

{
‖DF i(x)v‖
‖v‖

}
= 0,

uniformly for all v ∈ R2 \ {0}.

Proof. 1) Let i = q2n + k, k = 2j1 + 2j2 + . . .+ 2jm < 2n, then

DF i(pF0n)sF0n = DF k+q2
n

(pF0n)sF0n = DF k(F q2
n

(pF0n)) ·DF q2
n

(pF0n)sF0n

= DF k(pF0n) ·D
(

ΨF
0n ◦ F qn ◦

(
ΨF

0n
)−1)

(pF0n)sF0n

= DF k(pF0n) ·DΨF
0n

(
F qn ◦

(
ΨF

0n
)−1

(pF0n)
)

·DF qn
((

ΨF
0n
)−1

(pF0n)
)
·D
(
ΨF

0n
)−1

(pF0n)sF0n

= DF k(pF0n) ·DΨF
0n(pFn) ·DF qn(pFn) ·D

(
ΨF

0n
)−1

(pF0n)sF0n

= DF k(pF0n) ·DΨF
0n(pFn) ·DF qn(pFn)sFn

= DF k(pF0n) ·DΨF
0n(pFn) · (eFn− )qsFn

= (eFn− )qDF k(pF0n) · sF0n .
Denote Cn and cn - upper and lower bounds on the derivative norm of F on

On(F ). Then

(32) ckn|e
Fn
− |q‖sF0n‖ ≤ ‖DF i(pF0n)sF0n‖ ≤ Ckn|e

Fn
− |q‖sF0n‖,

and,

limi→∞
1

i
log

[
‖DF i(pF0n)sF0n‖

‖sF0n‖

]
≤ lim

i→∞

k

i
logCn +

q

i
log{|eFn− |} =

log{|eFn− |}
2n

,

limi→∞
1

i
log

[
‖DF i(pF0n)sF0n‖

‖sF0n‖

]
≥ lim

i→∞

k

i
log cn +

q

i
log{|eFn− |} =

log{|eFn− |}
2n

,

therefore, the limit

lim
i→∞

1

i
log

[
‖DF i(pF0n)sF0n‖

‖sF0n‖

]
exists, and is equal to

χ−(n;F ) ≡
log{|eFn− |}

2n
.

A similar computation demonstrates that

lim
i→∞

1

i
log

[
‖DF i(pF0n)uF0n‖

‖uF0n‖

]
=

log{|eFn+ |}
2n

= −χ−(n;F ).

2) Clearly, the above implies stability of the accumulation locus of the periodic
orbits On(F ), that is for any F ∈Wr(s0), and any x ∈ CF , v ∈ R2 \ {0},

χ∞ = lim
i→∞

1

i
log
[
‖DF i(x)v‖

]
= 0.

�
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5. Existence of the conjugacy on the stable dynamics for infinitely
renormalizable maps

In this Section we will demonstrate the existence of the conjugacy on the Cantor
sets for maps on the renormalization stable manifold.

For any ωn = {ω1, . . . , ωn} ∈ {0, 1}n, and F ∈Wr(s0), where r and s0 are as in
Main Theorem 1, define hFωn , formally as:

hFωn = ΨF
ωn ◦ (Ψ∗ωn)

−1
,

and (
hFωn

)−1
= Ψ∗ωn ◦

(
ΨF
ωn
)−1

,

Let ω ∈ {0, 1}∞. We will demonstrate that the map

(33) hFω ≡ lim
n→∞

hFωn ,

and its inverse

(34)
(
hFω
)−1 ≡ lim

n→∞

(
hFωn

)−1
,

are well-defined at each point y∗ω ∈ C∗ coded by ω.
Notice that if r′ ≤ r is sufficiently small, then for any F ∈Wr′(s0),

B̃∗ = B̃F ≡ BF ∩B∗

is again, a zeroth generation piece for the Cantor sets CF and C∗. Clearly, the map
hFωn is real-analytic on B̃∗ωn , and

hFωn
(
B̃∗ωn

)
= B̃Fωn .

Next, given x ∈ B̃∗ωn , denote x′ = hFωn(x), and

(35) xωn = (Ψ∗ωn)
−1

(x), x′ωk = ΨFk
ωk+1
◦ . . .◦ΨFn−1

ωn (xωn), k < n, x′ωn = xωn ,

and consider

hFωn(x)− hFωnωn+1
(x) = ΨF

ωn ◦ (Ψ∗ωn)
−1

(x)−ΨF
ωnωn+1

◦
(

Ψ∗ωnωn+1

)−1
(x).

Since

ΨFn
ωn+1

(xωnωn+1
) = Ψ∗ωn+1

(xωnωn+1
) +

[
ΨFn
ωn+1

(xωnωn+1
)−Ψ∗ωn+1

(xωnωn+1
)
]

= xωn +O(|λ∗|n),

we get

hFωn(x) − hFωnωn+1
(x) = ΨF

ωn(xωn)−ΨF
ωn(xωn +O(|λ∗|n)).

Notice, that

ΨFk−1
ωk

(x′ωk + c) = ΨFk−1
ωk

(x′ωk) +
[
ΨFk−1
ωk

(x′ωk + c)−ΨFk−1
ωk

(x′ωk)
]

= x′ωk−1 +DΨFk−1
ωk

(x̃′ωk) · c
= x′ωk−1 +O(θc),

where x̃′ωk is a point in the interval
[
x′ωk + c, x′ωk

]
. Therefore,
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ΨF
ωn(xωn +O(|λ∗|n)) = ΨF

ω1
◦ΨF1

ω2
◦ . . . ◦ΨFn−2

ωn−1
◦ΨFn−1

ωn (xωn +O(|λ∗|n))

= ΨF
ω1
◦ΨF1

ω2
◦ . . . ◦ΨFn−1

ωn (x′ωn−1 +O(θ|λ∗|n))

= ΨF
ω1

(x′ω1 +O(θn−1|λ∗|n)

= x′ +O(θn|λ∗|n),

which implies that the limit

hFω (y∗ω) = lim
n→∞

hFωn(y∗ω)

exists, and since hFωn(y∗ω) ∈ B̃Fωn for all n ≥ 1, the point hFω (y∗ω) is the point yFω ∈ CF
coded by ω.

A computation similar to the above shows that the map (34) is also well-defined,
and

hFω (yFω ) = y∗ω.

Finally, we show that the map hF : C∗ 7→ CF ,

hF (yω) ≡ hFω (yω),

is a conjugacy of the dynamics of F∗ with that of F on their Cantor sets. First,
notice that for any ωn = {ω1, ω2, . . . , ωn} ∈ {0, 1}n

Ψn
ω = F

∑n
i=1 ωi2

i−1

◦ ΛF0
◦ . . . ◦ ΛFn−2

◦ ΛFn−1
.

Denote
Λn,F ≡ ΛF0

◦ . . . ◦ ΛFn−2
◦ ΛFn−1

,

then we have for all ωn ∈ {0, 1}n, different from 1n,(
hFp(ωn)

)−1
◦ F ◦ hFωn = (F ∗)

∑n
i=1 p(ω)i2

i−1

◦ Λn,∗ ◦ Λ−1n,F ◦ F
−

∑n
i=1 p(ω)i2

i−1

◦ F ◦

F
∑n
i=1 ωi2

i−1

◦ Λn,F ◦ Λ−1n,∗ ◦ (F ∗)
−

∑n
i=1 ωi2

i−1

= (F ∗)
∑n
i=1 p(ω)i2

i−1

◦ Λn,∗ ◦ Λ−1n,F ◦ F
−

∑n
i=1 p(ω)i2

i−1

◦

F 1+
∑n
i=1 ωi2

i−1

◦ Λn,F ◦ Λ−1n,∗ ◦ (F ∗)
−

∑n
i=1 ωi2

i−1

= (F ∗)
∑n
i=1 p(ω)i2

i−1

◦ Λn,∗ ◦ Λ−1n,F ◦ Λn,F ◦ Λ−1n,∗ ◦ (F ∗)
−

∑n
i=1 ωi2

i−1

= F ∗.

This equality holds on Bωn , ω 6= 1n. If ωn = 1n, then p(ωn) = 0n, and we have
on B1n ∩ (F ∗)−1 (B0n)(

hFp(ωn)

)−1
◦ F ◦ hFω = Λn,∗ ◦ Λ−1n,F ◦ F

2n ◦ Λn,F ◦ Λ−1n,∗ ◦ (F ∗)
−2n ◦ F ∗

= Λn,∗ ◦ Fn ◦ Λ−1n,∗ ◦ (F ∗)
−2n ◦ F ∗

= Λn,∗ ◦ Fn ◦ Λ−1n,∗ ◦ (F ∗)
−2n ◦ Λn,∗ ◦ Λ−1n,∗ ◦ F ∗

= Λn,∗ ◦ Fn ◦ (F ∗)
−1 ◦ Λ−1n,∗ ◦ F ∗

= Λn,∗ ◦ Fn ◦ (F ∗)
−1 ◦ Λ−1n,∗ ◦ F ∗.

Notice, that every BF0n contains point {(0, 0)}. This, together with the fact that
diam(BF0n) = O(θn), implies that

yF0∞ = ∩nBF0n = {(0, 0)}.
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We, therefore, have

Λn,∗ ◦ Fn ◦ (F ∗)
−1 ◦ Λ−1n,∗ ◦ F ∗(y∗1∞) = Λn,∗ ◦ Fn ◦ (F ∗)

−1 ◦ Λ−1n,∗(0, 0)

= Λn,∗ ◦ Fn ◦ (F ∗)
−1

(0, 0)

= O(|λ∗|nO(|λ∗|n).

In the limit n→∞:(
hFp(ωn)

)−1
◦ F ◦ hFω (y∗1∞)→ (0, 0) = y∗0∞ ,

and (
hFp(ω)

)−1
◦ F ◦ hFω (y∗ω) = F ∗(y∗ω).

6. Existence of the derivative of the conjugacy for maps on the
strong stable manifold

We will now demonstrate existence of derivatives of the conjugacy. To be more
precise, given F ∈W s

r′(s0) (with r′ ≤ r as in the previous Section), and ω ∈ {0, 1}∞,
we will show that the map

(36) DhFω ≡ lim
n→∞

DhFωn

exists at the point y∗ω ∈ C∗ with coding ω, and that

(37) hFω (y∗ω)− hFω̂ (y∗ω̂) = DhFω̂ (y∗ω̂)(y∗ω − y∗ω̂) + o(|y∗ω − y∗ω̂|)
(in particular, h is a homeomorphism on C∗).

Given v ∈ R2 and x ∈ Bωnωn+1 , consider

DhFωn(x)v − DhFωnωn+1
(x)v =

[
DΨF

ωn(xωn) ·D (Ψ∗ωn)
−1

(x)

− DΨF
ωnωn+1

(xωnωn+1
) ·D

(
Ψ∗ωnωn+1

)−1
(x)

]
v,

where we have used the notation (35).
Since

ΨFn
ωn+1

(xωnωn+1) = Ψ∗ωn+1
(xωnωn+1) +

[
ΨFn
ωn+1

(xωnωn+1)−Ψ∗ωn+1
(xωnωn+1)

]
= xωn +O(νn),

we get

DhFωn(x)v − DhFωnωn+1
(x)v = DΨF

ωn(xωn) ·D (Ψ∗ωn)
−1

(x)v

− DΨF
ωn(xωn +O(νn)) ·DΨFn

ωn+1
(xωnωn+1

) ·D
(

Ψ∗ωn+1

)−1
(xωn)

·D (Ψ∗ωn)
−1

(x)v.

Let N ≥ 1 be fixed, and n = mN . Notice, that

ΨFk−1
ωk

(x′ωk + c) = ΨFk−1
ωk

(x′ωk) +
[
ΨFk−1
ωk

(x′ωk + c)−ΨFk−1
ωk

(x′ωk)
]

= x′ωk−1 +DΨFk−1
ωk

(x̃′ωk) · c
= x′ωk−1 +O(θc),
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where x̃′ωk is a point in the interval
[
x′ωk + c, x′ωk

]
. Therefore,

DΨF
ωn(xωn +O(νn)) =

= DΨF
ω1

(x′ω1
+O(νn)θn−1) ·DΨF1

ω2
(x′ω2 +O(νn)θn−2)

· . . . ·DΨFn−1
ωn (xωn +O(νn))

= DΨF
ω1

(x′ω1
) ·
(
I + O(νn)θn−1

)
·DΨF1

ω2
(x′ω2) ·

(
I + O(νn)θn−2

)
· . . . ·DΨFn−1

ωn (xωn) · (I + O(νn))

= DΨF
ω1

(x′ω1
) ·
(
I + O(νn)θn−1

)
·

. . . DΨFN−1
ωN (x′ωN ) ·

(
I + O(νn)θn−N

)
·

DΨFN
ωN+1

(x′ωN+1
)
(
I + O(νn)θn−N−1

)
·

. . . DΨF2N−1
ω2N

(x′ω2N ) ·
(
I + O(νn)θn−2N

)
·

. . .

DΨ
F(m−1)N
ω(m−1)N+1

(x′ω(m−1)N+1
) ·
(
I + O(νn)θn−(m−1)N−1

)
·

. . . DΨFmN−1
ωmN (x′ωmN ) ·

(
I + O(νn)θn−mN

)
= DΨF

ω1
(x′ω1

) · . . . ·DΨFN−1
ωN (x′ωN ) ·

(
I + O(νn)θn−N

)
·

DΨFN
ωN+1

(x′ωN+1) · . . . ·DΨF2N−1
ω2N

(x′ω2N ) ·
(
I + O(νn)θn−2N

)
. . .

DΨ
F(m−1)N
ω(m−1)N+1

(x′ω(m−1)N+1) · . . . ·DΨFmN−1
ωmN (x′ωmN ) ·

(
I + O(νn)θn−mN

)
=

m∏
i=1

DΨ
FNi−N
ωNi−N+1(x′ωNi−N+1) · . . . ·DΨ

FNi−1

ωNi
(x′ωNi) ·

(
I + O(νn)θn−iN

)
.(38)

We estimate the norm of the above expression using the following Lemma

Lemma 6.1. For any ω4 ∈ {0, 1}∞, and all F ∈Wr(s0), where r and s0 are as in
the Main Theorem 1,

‖DΨF
ω4‖B0 ≤ a0 = 0.00383651256561279,(39)

‖DΨF
ω4‖B1

≤ a1 = 0.00383651256561279,(40)

min
x∈B0, ‖v‖=1

‖DΨF
ω4(x)v‖ ≥ b0 = 0.000013950102593,(41)

min
x∈B1, ‖v‖=1

‖DΨF
ω4(x)v‖ ≥ b1 = 0.000013958149969.(42)

Proof. The proof is done by brute force computer aided estimates of the above
norms. �

We will denote

κ4 = max

{
a0
b0
,
a1
b1

}
.

More, generally, similar maxima for a general N , not necessarily equal to 4, will
be denoted κN .

Notice, that according to Lemma 6.1,

κ
1
4
4 ≤ 4.072601318359375.
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We will now fix N = 4 in (38), and permute the factors

(43)
(
I + O(νn)θn−iN

)
in (38) to the end of the expression. Notice, that every time (43) exchanges places

with the matrix DΨ
FNi−N
ωNi−N+1(x′ωNi−N+1) · . . . ·DΨ

FNi−1

ωNi
(x′ωNi), which is of the form

DΨF
ω4 as in the Lemma above, the term proportional to O(νn) in (43) at most

acquires a multiplicative factor of κ4:

DΨF
ωn(xωn +O(νn)) =

m∏
i=1

DΨ
FNi−N
ωNi−N+1(x′ωNi−N+1) · . . . ·DΨ

FNi−1

ωNi
(x′ωNi) ·

m∏
i=1

(
I + κm−iN θn−iNO(νn)

)
.

The difference of

Nn ≡
m∏
i=1

(
I + κm−iN θn−iNO(νn)

)
,

from identity satisfies

‖Nn − I‖ ≤ exp

[
m∑
i=1

log
(

1 + C
(
κNθ

N
)m−i

νn
)]
− 1

≤ exp

[
C ′

m∑
i=1

(
κNθ

N
)m−i

νn

]
− 1

≤ exp

[
C ′νnθnκmN

m∑
i=1

(
κNθ

N
)−i]− 1

≤ exp

[
C ′νnθnκmN

κNθ
N

κNθN − 1

]
− 1

≤ C ′′
(
νNθNκN

)m
,

where we have used that κNθ
N > 1 and κNθ

NνN < 1. Therefore,

‖DhFωnωn+1
(x) − DhFωn(x)‖ = ‖DΨF

ωn(x′ωn) ·

·
[
Nn ·DΨFn+1

ωn+1
(xωn+1) ·D

(
Ψ∗ωn+1

)−1
(xωn)− I

]
· D (Ψ∗ωn)

−1
(x)‖

= ‖DΨF
ωn(x′ωn) · [Nn · (I + O(νn))− I] ·D (Ψ∗ωn)

−1
(x)‖

= ‖DΨF
ωn(x′ωn) · [Nn − I +Nn ·O(νn)] ·D (Ψ∗ωn)

−1
(x)‖

= ‖DΨF
ωn(x′ωn) · [O(νnθnκmN ) + O(νn)] ·D (Ψ∗ωn)

−1
(x)‖

≤ Cκ2mN νnθn

= C
(
κ

2
N

N ν θ
)n

.(44)

and since

(45) γ ≡ κ
2
4
4 ν θ < 0.86541748046875,

clearly, the limit (36) exists.
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We will now demonstrate (37). We have for any two y∗ω and y∗ω̂ in C∗, such that
ω and ω̂ coincide in the first n positions, that is ωn = ω̂n:

hFω (y∗ω)− hFω̂ (y∗ω̂) = hFωn(y∗ω)− hFωn(y∗ω̂) +
(
hFω (y∗ω)− hFωn(y∗ω)

)
+
(
hFωn(y∗ω̂)− hFω̂ (y∗ω̂)

)
= DhFωn(y∗ω̂) (y∗ω − y∗ω̂) + o(y∗ω − y∗ω̂) +O(θnνn)

=
(
DhFω̂ (y∗ω̂) +O(γn)

)
(y∗ω − y∗ω̂) + o(y∗ω − y∗ω̂) +O(θnνn).

Therefore,

hFω (y∗ω)− hFω̂ (y∗ω̂)−DhFω̂ (y∗ω̂) (y∗ω − y∗ω̂) = O(γn) (y∗ω − y∗ω̂) + o(y∗ω − y∗ω̂) +O(θnνn)

≡ I.

As |y∗ω − y∗ω̂| → 0 (necessarily, n→∞), the right hand side I of (46) satisfies

|I|
|y∗ω − y∗ω̂|

≤
∣∣∣∣O(γn) +O(y∗ω − y∗ω̂) +O

(
θnνn

b
n
4

)∣∣∣∣ .
where

(46) b ≡ min{b0, b1},

with bi as in Lemma 6.1.
Since γ, θν and θnνnb−

n
4 < 0.88 are all less than 1, we have that

|I|
|y∗ω − y∗ω̂|

→ 0

as y∗ω → y∗ω̂, and (37) is verified.

7. Hölder property of the derivative on W s
EKW

Proposition 7.1. Let ω, ω′ ∈ {0, 1}∞, ω 6= ω′, and let x∗ω and x∗ω′ be two points
in the Cantor set C∗ whose codings are ω and ω′. Then,

(47) ‖DhFω (x∗ω)−DhFω′(x∗ω′)‖ ≤ C|x∗ω − x∗ω′ |α,

where C is some constant independent of ω and ω′,

(48) α = min

{
N log γ

L log b
,
N log θ

log b
− 1

L

}
≥ 0.0129241943359375,

γ is as in (45), θ is as in (27), N = 4,

(49) L =

[
1

N

log b

log θ

]
+ 1 > 1,

and b is as in (46).

Proof. Suppose that ω and ω′ coincide in the first n positions, and differ in n+1-st,
for some n > 2L (if n ≤ 2L then |x∗ω − x∗ω′ | is bounded from below by a constant
depending on L only, and (47) can be satisfied by a choice of C). Set

k =
[n
L

]
− 1 ≥ 1.

We have that such x∗ω and x∗ω′ both lie in the piece Bωn ⊂ Bωk , and therefore, on
one hand,

(50) c1b
n
N ≤ |x∗ω − x∗ω′ | ≤ c2θn,
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and, on the other hand,

‖DhFω (x∗ω)−DhFω′(x∗ω′)‖ ≤ ‖DhFω (x∗ω)−DhFωk(x∗ω)‖+ ‖DhFω (x∗ω′)−DhFωk(x∗ω′)‖
+ ‖DhFωk(x∗ω)−DhFωk(x∗ω′)‖

≤ Cγk + ‖DhFωk(x∗ω)−DhFωk(x∗ω′)‖.

To estimate ‖DhFωk(x∗ω)−DhFωk(x∗ω′)‖, we first recall that, according to Lemma

3.1, the zero generation piece B is compactly contained in the domain D̄ of definition
of F ∗, while B0 and B1 are compactly contained in B. Therefore, the piece B can
be made smaller: there exist δ > 0, a compact set B′ b B and a complex δ-
neighborhood Bδ of B, B b Bδ b D̄ ⊂ C2, such that

dist
{
B′, ∂Bδ

}
> δ,

and such that B′ is a zero-generation piece for the hierarchy of covers of the Cantor
set CF , and B′ωk b Bωk .

Recall, that hFωk is real-analytic on the piece Bωk , and therefore, on B′ωk . We
have

‖DhFωk(x∗ω)−DhFωk(x∗ω′)‖ ≤ Dk|x∗ω − x∗ω′ |,
where Dk is a bound on the second derivative of hFωk on the piece B′ωk :

D2hFωk : B′ωk × R2 × R2 7→ R2.

Now, notice that b
k
N is a lower bound on the contraction rate of distances by

DΨF
ωk on B. We denote b

k
N

δ ,

b
k
N

δ

−→
δ → 0

b
k
N ,

the contraction rate of distances by DΨF
ωk on Bδ. Then

dist
(
∂Bδωk , B

′
ωk

)
≥ δb

k
N

δ .

According to the previous Section, ‖DhFωk‖Bδ
ωk

is bounded. We can now use

Cauchy estimates to obtain that the operator norm of the second derivative satisfies

‖D2hFωk‖B′
ωk
≤ C

δb
k
N

δ

.

We get

‖DhFω (x∗ω)−DhFω′(x∗ω′)‖ ≤ C1γ
k +

C2

δb
k
N

δ

|x∗ω − x∗ω′ |.

Notice, that by our choice of n and k, if δ is sufficiently small, then

1

L
≥ k log bδ

n log b
,

and

α ≤ N log θ

log b
− 1

L
≤ N log θ

log b
− k log bδ

n log b
,

which implies that

(51) bα
n
N ≥ θn

b
k
N

δ

.
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We can now use (51), (50) and the definition (48) of α to finish the demonstration
of the claim of the Proposition:

‖DhFω (x∗ω)−DhFω′(x∗ω′)‖ ≤ C1γ
k +

C2

δb
k
N

δ

|x∗ω − x∗ω′ |

≤ C1b
α n
N +

C2

δb
k
N

δ

θn

≤ C1b
α n
N +

C2

δ
bα

n
N

≤ C|x∗ω − x∗ω′ |α.

�

8. Rigidity of infinitely renormalizable maps

Existence of the well-defined maps h and Dh on the Cantor set C∗, together
with the condition (37), implies via the Whitney Extension Theorem, that for all
F ∈Wr′(s0) the map h extends to a C1 map on a neighborhood O of C∗. Such h is
analytic on O\C∗, and according to the previous Section, Dh is Hölder of exponent
α on all of O.

Part 2. Spectral Properties of Renormalization

1. Coordinate changes and renormalization eigenvalues

Let D and D̄ be as in the Theorem 3. Consider the action of the operator

(52) R0[F ] = Λ−1∗ ◦ F ◦ F ◦ Λ∗

on O2(D), where

Λ∗(x, u) = (λ∗x, µ∗u),

with λ∗ and µ∗ being the fixed scaling parameters corresponding to the Collet-
Eckmann-Koch as in Theorem 1.

According to Theorem 1 this operator is analytic and compact on the subset
F0.5,1.6
% (s0.5), % = 6.0 × 10−7, of O2(D), and has a fixed point FEKW . In this

paper, we will prove the existence of a fixed point s∗ of the operator REKW in a
Banach space different from that in Theorem 1. Therefore, we will state most of
our results concerning the spectra of renormalization operators for general spaces
Aβs (ρ) and sets Fβ,ρ% (s∗), under the hypotheses of existence of a fixed point s∗, and
analyticity and compactness of the operators in some neighborhood of the fixed
point. Later, a specific choice of parameters β, ρ and % will be made, and the
hypotheses - verified.

Let S = id + σ be a coordinate transformation of the domain D of maps F ,
satisfying

DS ◦ F = DS.

In particular, these transformations preserve the subset of area-preserving maps.
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Notice, that

(id+ εσ)−1 ◦ F ◦ (id+ εσ) = F + ε (−σ ◦ F +DF · σ) +O(ε2)

≡ F + εhF,σ +O(ε2).

Suppose that the operator R0 has a fixed point F ∗ in some neighborhood B ⊂
O2(D), on which R0 is analytic and compact. Consider the action DR0[F ]hF,σ of
the derivative of this operator.

DR0[F ]hF,σ = ∂ε
(
Λ−1∗ ◦ (F + εhσ) ◦ (F + εhσ) ◦ Λ∗

)
|ε=0

= ∂ε
(
Λ−1∗ ◦ (id+ εσ)−1 ◦ F ◦ F ◦ (id+ εσ ◦ Λ∗

)
|ε=0

= Λ−1∗ · [−σ ◦ F ◦ F +D(F ◦ F ) · σ] ◦ Λ∗

= Λ−1∗ · hF◦F,σ ◦ Λ∗.(53)

Specifically, if F = F ∗, one gets

DR0[F ∗]hF∗,σ = hF∗,τ , τ = Λ−1∗ · σ ◦ Λ∗,

and clearly, hF∗,σ is an eigenvector, if τ = κσ, of eigenvalue κ. In particular,

κ = λi∗µ
j
∗, i ≥ 0, j ≥ 0

is an eigenvalue of multiplicity (at least) 2 with eigenvectors hF∗,σ generated by

(54) σ1
i,j(x, u) = (xi+1uj , 0), σ2

i,j(x, u) = (0, xiuj+1),

while

κ = µj∗λ
−1
∗ , j ≥ 0, and κ = λi∗µ

−1
∗ , i ≥ 0,

are each eigenvalues of multiplicity (at least) 1, generated by

(55) σ1
−1,j(x, u) = (uj , 0), and σ2

i,−1(x, u) = (0, xi),

respectively.
Next, suppose Sσt , Sσ0 = Id, is a transformation of coordinates generated by a

function σ as in (54)-(55), associated with an eigenvalue κ of DR0[F ∗]. In addition
to the operator (52), consider

(56) Rσ[F ] = Λ−1∗ ◦
(
Sσtσ[F ]

)−1
◦ F ◦ F ◦ Sσtσ[F ] ◦ Λ∗.

where the parameter tσ[F ] is chosen as

(57) tσ[F ] = − 1

κ‖hF∗,σ‖D
‖E(κ)(R0[F ]− F ∗)‖D,

E(κ) being the Riesz spectral projection associated with κ:

E(κ) =
1

2πi

∫
γ

(z −DR0[F ∗])−1dz

(γ - a Jordan contour that enclose only κ in the spectrum of DR0[F ∗]).
We will now compare the spectra of the operators R0 and Rσ. The result below

should be interpreted as follows: if hF∗,σ is an eigenvector of DR0[F ∗] generated
by a coordinate change id + εσ, and associated with some eigenvalue κ, then this
eigenvalue is eliminated from the spectrum of DRσ[F ∗], if its multiplicity is 1.
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Lemma 1.1. Suppose, there exists a map F ∗ in some O2(D), and a neighborhood
B(F ∗) ⊂ O2(D), such that the operators R0 and Rσ are analytic and compact as
maps from B(F ∗) to O2(D), and R0[F ∗] = Rσ[F ∗] = F ∗.

Then,

spec(DR0[F ∗]) = spec(DRσ[F ∗]) ∪ {κ}.
Moreover, if the multiplicity of κ is 1, then

spec(DR0[F ∗]) \ spec(DRσ[F ∗]) = {κ}.

Proof. Since DRσ[F ∗] and DR0[F ∗] are both compact operators acting on an
infinite-dimensional space, their spectra contain {0}.

Suppose h is a eigenvector of DR0[F ∗] corresponding to some eigenvalue δ, then

DRσ[F ∗]h = DR0[F ∗]h

+ Λ−1∗ ·
(
DF

(
Sσtσ [F∗]

)−1
h

)
◦ F ∗ ◦ F ∗ ◦ Sσtσ [F∗] ◦ Λ∗

+ Λ−1∗ ·
[
D

((
Sσtσ[F∗]

)−1
◦ F ∗ ◦ F ∗

)
◦ Sσtσ [F∗]·

·
(
DFS

σ
tσ[F∗]

h
)]
◦ Λ∗

= δh+ Λ−1∗ ·
(
DF

(
Sσtσ[F∗]

)−1
h

)
◦ Λ∗ ◦ F ∗

+
[
DF ∗ · Λ−1∗ ·

(
DFS

σ
tσ[F∗]

h
)]
◦ Λ∗(58)

(we have used the fact that F ∗ satisfies the fixed point equation), where

tσ[F ∗] ≡ 0 and DFS
σ
tσ[F∗]

h ≡ ∂ε
[
Sσtσ [F∗+εh]

]
ε=0

= (DF tσ[F ∗]h)σ.

More specifically,

tσ[F ∗ + εh] = −κ−1‖hF∗,σ‖−1D ‖E(κ) (R0(F ∗ + εh)− F ∗) ‖D
= −εκ−1‖hF∗,σ‖−1D ‖E(κ) (DR0[F ∗]h) ‖D +O(ε2)

= −ε‖hF∗,σ‖−1D κ−1δ‖ (E(κ)h) ‖D +O(ε2),

= −ε‖hF∗,σ‖−1D κ−1δ‖ (E(κ) (E(δ)h)) ‖D +O(ε2),

and

(59) DF tσ[F ∗]h = ∂ε [tσ[F ∗ + εh]]ε=0 = −‖hF∗,σ‖−1D κ−1δ‖ (E(κ) (E(δ)h)) ‖D.
If δ = κ and h = hF∗,σ then

DF tσ[F ∗]h = −1

(recall, that E(δ)2 = E(δ)) and

Λ−1∗ ·
(
DF

(
Sσtσ [F∗]

)−1
h

)
◦ Λ∗ ◦ F ∗ +DF ∗ · Λ−1∗ ·

(
DFS

σ
tσ [F∗]

h
)
◦ Λ∗

= −
[
−Λ−1∗ · σ ◦ Λ∗ ◦ F ∗ +DF ∗ · Λ−1∗ · σ ◦ Λ∗

]
= −κ [−σ ◦ F ∗ +DF ∗ · σ]

= −κhF∗,σ,
therefore

DRσ[F ∗]hF∗,σ = 0.
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Now, suppose h is an eigenvector of DR0[F ∗] corresponding to the eigenvalue δ 6=
κ, hence, h 6= hF∗,σ, then, since E(κ)E(δ) = 0, so is DF tσ[F ∗]h, and DFS

σ
tσ[F∗]

h.

It follows from (58) that
DRσ[F ∗]h = δh.

Vice verse, suppose h is an eigenvector of DRσ[F ∗] corresponding to an eigen-
value δ 6= κ, then,

DF tσ[F ∗]h = −κ−1‖hF∗,σ‖−1D ‖E(κ)DR0[F ∗]h‖D,
and by (58) and a similar computation as above, for a ∈ R,

DR0[F ∗](h+ ahF∗,σ) = aκhF∗,σ +DR0[F ∗]h

= aκhF∗,σ + δh−
(

Λ−1∗ ·
(
DF

(
Sσt[F∗]

)−1
h

)
◦ Λ∗ ◦ F ∗

+
[
DF ∗ · Λ−1∗ ·

(
DFS

σ
t[F∗]h

)]
◦ Λ∗

)
= aκhF∗,σ + δh+ ‖hF∗,σ‖−1D ‖E(κ)DR0[F ∗]h‖DhF∗,σ.

Let,

a =
‖E(κ)DR0[F ∗]h‖D
‖hF∗,σ‖D(δ − κ)

,

then h+ ahF∗,σ is an eigenvector of DR0[F ∗] with eigenvalue δ.
�

Lemma 1.2. Suppose that there are β, % and ρ, and a function s∗ ∈ Aβs (ρ) such
that the operator REKW is analytic and compact as maps from Fβ,ρ% (s∗) to O2(D),
and

REKW [F ∗] = R0[F ∗] = F ∗,

where F ∗ is generated by s∗.
Then, there exists a neighborhood B(F ∗) ⊂ Fβ,ρ% (s∗), in which R0 is analytic and

compact, and

spec(DR0[F ∗]|TF∗B(F∗)) = spec(DREKW [F ∗]|TF∗Fβ,ρ% (s∗)) ∪ {1}.

Proof. Let σ1
0,0 and σ2

0,0 be as in (54), then

S
σ1
0,0
ε (x, u) = ((1 + ε)x, u), hF,σ1

0,0
= πxF +DF · (πx, 0),

S
σ2
0,0
ε (x, u) = (x, (1 + ε)u), hF,σ2

0,0
= πuF +DF · (0, πu).

Now, notice, that the operator REKW [F ] can be written as

REKW [F ] = Λ−1∗ ◦
(
S
σ1
0,0

tEKW [F ]

)−1
◦
(
S
σ2
0,0

rEKW [F ]

)−1
◦F ◦F ◦Sσ

2
0,0

rEKW [F ]◦S
σ1
0,0

tEKW [F ]◦Λ∗,

where

tEKW [F ] =
πxF (F (0, 0))

λ∗
−1, rEKW [F ] =

πxF (F (0, 0))

µ∗πx(F ◦ F )2(0, 0)
−1 =

λ∗(1 + tEKW [F ])

µ∗πx(F ◦ F )2(0, 0)
−1,

Notice, that that tEKW [F ], rEKW [F ], and therefore the transformations S
σ1
0,0

tEKW [F ]

and S
σ2
0,0

rEKW [F ], depend only on PEKW [F ]. Therefore, the maps F 7→ S
σ1
0,0

tEKW [F ] and

F 7→ S
σ2
0,0

rEKW [F ] are analytic (differentiable). In particular, by the continuity of
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F 7→ S
σ1
0,0

tEKW [F ] and F 7→ S
σ2
0,0

rEKW [F ], there exists a neighborhood B(F ∗) ⊂ Fβ,ρ% (s∗),

such that R0 is compact in B(F ∗). In particular, both DR0[F ∗] and DREKW [F ∗]
exist, and are compact linear operators.

For any F ∈ B(F ∗) and h ∈ TF∗Fβ,ρ% (s∗),

DREKW [F ]h = DR0[F ]h

+ Λ−1∗

(
DF

(
S
σ1
0,0

tEKW [F ]

)−1
h

)
◦
(
S
σ2
0,0

rEKW [F ]

)−1
◦ F ◦ F ◦ Sσ

2
0,0

rEKW [F ] ◦ S
σ1
0,0

tEKW [F ] ◦ Λ∗

+ Λ−1∗

[
D

((
S
σ1
0,0

tEKW [F ]

)−1
◦
(
S
σ2
0,0

rEKW [F ]

)−1
◦ F ◦ F ◦ Sσ

2
0,0

rEKW [F ]

)
·
(
DFS

σ1
0,0

tEKW [F ]h

)]
◦ Λ∗

+ Λ−1∗ ·D
(
S
σ1
0,0

tEKW [F ]

)−1
·

(
DF

(
S
σ2
0,0

rEKW [F ]

)−1
h

)
◦ F ◦ F ◦ Sσ

2
0,0

rEKW [F ] ◦ S
σ1
0,0

tEKW [F ] ◦ Λ∗

+ Λ−1∗

[
D

((
S
σ1
0,0

tEKW [F ]

)−1
◦
(
S
σ2
0,0

rEKW [F ]

)−1
◦ F ◦ F

)
·
(
DFS

σ2
0,0

rEKW [F ]h

)]
◦ Sσ

1
0,0

tEKW [F ] ◦ Λ∗

= DR0[F ]h− (DF tEKW [F ]h) Λ−1∗ ◦ σ1
0,0 ◦

(
S
σ2
0,0

rEKW [F ]

)−1
◦ F ◦ F ◦ Sσ

2
0,0

rEKW [F ] ◦ S
σ1
0,0

tEKW [F ] ◦ Λ∗

+ (DF tEKW [F ]h) Λ−1∗

[
D

((
S
σ1
0,0

tEKW [F ]

)−1
◦
(
S
σ2
0,0

rEKW [F ]

)−1
◦ F ◦ F ◦ Sσ

2
0,0

rEKW [F ]

)
◦ σ1

0,0

]
◦ Λ∗

− (DF rEKW [F ]h) Λ−1∗ ·D
(
S
σ1
0,0

tEKW [F ]

)−1
◦ σ2

0,0 ◦ F ◦ F ◦ S
σ2
0,0

rEKW [F ] ◦ S
σ1
0,0

tEKW [F ] ◦ Λ∗

+ (DF rEKW [F ]h) Λ−1∗

[
D

((
S
σ1
0,0

tEKW [F ]

)−1
◦
(
S
σ2
0,0

rEKW [F ]

)−1
◦ F ◦ F

)
◦ σ2

0,0

]
◦ Sσ

1
0,0

tEKW [F ] ◦ Λ∗.

Specifically, if F = F ∗, then (cf. (53))

DREKW [F ∗]h = DR0[F ∗]h+ (DF tEKW [F ∗]h)hF∗,σ1
0,0

+ (DF rEKW [F ∗]h)hF∗,σ2
0,0
.(60)

Next,

DFS
σ1
0,0

tEKW [F ]h = (DF tEKW [F ]hπx, 0),

DFS
σ2
0,0

rEKW [F ]h = (0, DF rEKW [F ]hπu),

DF tEKW [F ]h =
πxDPEKW [F ]h(0, 0)

λ∗
,

DF rEKW [F ]h =
λ∗DF tEKW [F ]h

µ∗πx(F ◦ F )2(0, 0)
−
λ∗πx (DPEKW [F ]h)2 (0, 0)

µ∗ (πx(F ◦ F )2(0, 0))
2 .
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If h = hF∗,σ1
0,0

, then

DPEKW [F ]h(x, u) = (−πxPEKW [F ](x, u) + πxPEKW [F ]1(x, u)x,

πuPEKW [F ]1(x, u)x) ,

πxDPEKW [F ]h(0, 0) = −πxPEKW [F ](0, 0) = −λ∗,
DF tEKW [F ]h = −1,

DF rEKW [F ]h = − λ∗
µ∗πx(F ◦ F )2(0, 0)

−λ∗ (−πxPEKW [F ]2(0, 0) + πxPEKW [F ]1,2(0, 0)0)

µ∗ (πx(F ◦ F )2(0, 0))
2 = 0,

DFS
σ1
0,0

tEKW [F ]h = (−πx, 0),

DF

(
S
σ1
0,0

tEKW [F ]

)−1
h = (πx, 0).

Similarly, if h = hF∗,σ2
0,0

, then

DPEKW [F ]h(x, u) = (πxPEKW [F ]2(x, u)u,

−πuPEKW [F ](x, u) + πuPEKW [F ]2(x, u)u) ,

πxDPEKW [F ]h(0, 0) = 0,

DF tEKW [F ]h = 0,

DF rEKW [F ]h = −1,

DFS
σ2
0,0

rEKW [F ]h = (0,−πu),

DF

(
S
σ2
0,0

rEKW [F ]

)−1
h = (0, πu).

Therefore, if h = hF∗,σ1
0,0

, we get

DREKW [F ∗]h = Λ−1∗ DPEKW [F ∗]h ◦ Λ∗ + Λ−1∗ πxF ◦ F ◦ Λ∗

+ Λ−1∗ [D (F ◦ F ) · (−πx, 0)] ◦ Λ∗

+ (DF rEKW [F ∗]h)hF∗,σ2
0,0
.

= Λ−1∗ [DPEKW [F ∗]h+ πxPEKW [F ∗]

− (πxPEKW [F ]1πx, πuPEKW [F ]1πx)] ◦ Λ∗

+ 0

= 0.

If h = hF∗,σ2
0,0

, then

DREKW [F ∗]h = Λ−1∗ DPEKW [F ∗]h ◦ Λ∗ + Λ−1∗ πuF ◦ F ◦ Λ∗

+ Λ−1∗ [D (F ◦ F ) · (0,−πu)] ◦ Λ∗

+ (DF tEKW [F ∗]h)hF∗,σ1
0,0

= Λ−1∗ [DPEKW [F ∗]h+ πuPEKW [F ∗]

− (πxPEKW [F ]2πu, πuPEKW [F ]2πu)] ◦ Λ∗

+ 0

= 0.
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If h is an eigenvector of DR0[F ∗] associated with a non-zero eigenvalue κ, h 6=
hF∗,σ1

0,0
, and h 6= hF∗,σ2

0,0
, then for any constant a and b

DREKW [F ∗](h+ ahF∗,σ1
0,0

+ bhF∗,σ2
0,0

) =

= DR0[F ∗]h+ ahF∗,σ1
0,0

+ bhF∗,σ2
0,0

+

+
(
DF tEKW [F ∗]

(
h+ ahF∗,σ1

0,0
+ bhF∗,σ2

0,0

))
hF∗,σ1

0,0

+
(
DF rEKW [F ∗]

(
h+ ahF∗,σ1

0,0
+ bhF∗,σ2

0,0

))
hF∗,σ2

0,0

= κh+ ahF∗,σ1
0,0

+ bhF∗,σ2
0,0

+

+
(
DF tEKW [F ∗]

(
h+ bhF∗,σ2

0,0

))
hF∗,σ1

0,0
− ahF∗,σ1

0,0

+
(
DF rEKW [F ∗]

(
h+ ahF∗,σ1

0,0

))
hF∗,σ2

0,0
− bhF∗,σ2

0,0

= κh+ κ1hF∗,σ1
0,0

+ κ2hF∗,σ2
0,0
,

where

κ1[h] = DF tEKW [F ∗]h, κ2[h] = DF rEKW [F ∗]h,

and we see, that if a[h] = κ1/κ and b[h] = κ2/κ, then

h+ ahF∗,σ1
0,0

+ bhF∗,σ2
0,0

is an eigenvector for DREKW [F ∗] with the eigenvalues κ.
On the other hand, if h is en eigenvector of DREKW [F ∗] associated with the

eigenvalue κ 6= 1, then

h− ahF∗,σ1
0,0
− bhF∗,σ2

0,0

is an eigenvector of DR0[F ∗] associated with κ.
�

2. Strong contraction on the stable manifold

Lemma 2.1. Suppose that β, % and ρ are such that the operator

R0[s] =
1

µ∗
PEKW [s] ◦ λ∗

has a fixed point s∗ ∈ B% ⊂ Aβs (ρ), and R0 is analytic and compact as a map from
B% to Aβs (ρ).

Then, the number λ∗ is an eigenvalue of DR0[s∗], and the eigenspace of λ∗
contains the eigenvector

(61) ψs∗(x, y) = s∗1(x, y)x2 + s∗2(x, y)y2 + 2s∗(x, y)y.

Proof. Consider the coordinate transformation

Sε(x, u) =

(
x+ εx2,

u

1 + 2εx

)
= (x, u) + εσ1

1,0(x, u)− 2εσ2
1,0(x, u) +O(ε2),(62)

S−1ε (y, v) =

(√
1 + 4εy − 1

2ε
, v
√

1 + 4εy

)
,(63)

for real ε, |ε| < 4/(ρ+ |β|) (recall Definition 1.2).



RIGIDITY FOR INFINITELY RENORMALIZABLE AREA-PRESERVING MAPS 33

Let s ∈ Aβs (ρ) be the generating function for some F , then the following demon-
strates that S−1ε ◦ F ◦ Sε is reversible, area-preserving and generated by

ŝ(x, y) = s(x+ εx2, y + εy2)(1 + 2εy) :

(
x

−s(y + εy2, x+ εx2)(1 + 2εx)

)
Sε
7→

(
x+ εx2

−s(y + εy2, x+ εx2)

)
=

(
x′

−s(y′, x′)

)
F
7→

(
y′

s(x′, y′)

)
=

(
y + εy2

s(x+ εx2, y + εy2)

)
S−1
ε
7→

(
y

s(x+ εx2, y + εy2)(1 + 2εy)

)
.

Next,

ŝ(x, y) = s(x, y) + εs1(x, y)x2 + εs2(x, y)y2 + ε2s(x, y)y +O(ε2).

We will demonstrate that

ψs∗(x, y) = s∗1(x, y)x2 + s∗2(x, y)y2 + 2s∗(x, y)y.

is an eigenvector of DR0[s∗] of the eigenvalue λ∗. Notice, that

∂1ψs = ∂1ψs ◦ I, I(x, y) = (y, x),

and therefore, the function s+ εψs ∈ Aβs (ρ).
Consider the midpoint equation

0 = O(ε2) + s(x, Z(x, y) + εDZ[s]ψs(x, y)) + s(y, Z(x, y) + εDZ[s]ψs(x, y))

+ εψs(x, Z(x, y)) + εψs(y, Z(x, y))

for the generating function s+ εψs. We get that

DZ[s]ψs(x, y) = −ψs(x, Z(x, y)) + ψs(y, Z(x, y))

s2(x, Z(x, y)) + s2(y, Z(x, y))
,

and

DPEKWψs(x, y) = s1(Z(x, y), y)DZ[s]ψs(x, y) + ψs(Z(x, y), y)

= −2s1(Z(x, y), y)
s(x, Z(x, y))Z + s(y, Z(x, y))Z

s2(x, Z(x, y)) + s2(y, Z(x, y))

−s1(Z(x, y), y)
s2(x, Z(x, y))Z(x, y)2 + s2(y, Z(x, y))Z(x, y)2

s2(x, Z(x, y)) + s2(y, Z(x, y))

+s1(Z(x, y), y)Z(x, y)2

−s1(Z(x, y), y)
s1(y, Z(x, y))y2

s2(x, Z(x, y)) + s2(y, Z(x, y))
+ s2(Z(x, y), y)y2

−s1(Z(x, y), y)
s1(x, Z(x, y))x2

s2(x, Z(x, y)) + s2(y, Z(x, y))

+2s(Z(x, y), y)y

The terms on line 2 add up to zero (the numerator is equal to zero because of
the midpoint equation), and so do those on lines 3 and 4. We can also use the
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equalities

s2(x, Z(x, y)) + s2(y, Z(x, y)) = −s1(y, Z(x, y))

Z2(x, y)

∂2PEKW [s](x, y) = s2(Z(x, y), y) + s1(Z(x, y), y)Z2(x, y)

(the first one being the midpoint equation differentiated with respect to y) to reduce
the 5-th line to

∂2PEKW [s](x, y)y2.

The 6-th line reduces to

∂1PEKW [s](x, y)x2

after we use the midpoint equation differentiated with respect to x:

s2(x, Z(x, y) + s2(y, Z(x, y) = −s1(x, Z(x, y))

Z1(x, y)
.

To summarize,

DPEKWψs(x, y) = ∂1PEKW [s](x, y)x2 + ∂2PEKW [s](x, y)y2 + 2PEKW [s](x, y)y

= ψPEKW [s](x, y).

Finally, we use the fact that

λ∗∂iPEKW [s](λ∗x, λ∗y) = ∂i (P[s](λ∗x, λ∗y))

to get

DR0[s∗]ψs∗ = λ∗ψs∗ .

�

The Lemma below, whose elementary proof we will omit, shows that λ∗ is also
in the spectrum of DR0[F∗]:

Lemma 2.2. Suppose that β, % and ρ are such that s∗ ∈ Aβs (ρ) is a fixed point of
R0, and the operator R0 is analytic and compact as a map from B%(s∗) to Aβs (ρ).
Also, suppose that the map I, described in Remark 1.6, is well-defined and analytic
on B%(s∗), and that it has an analytic inverse I−1 on I(B%(s∗)). Then,

spec
(

(DR0[F ∗]) |TF∗Fβ,ρ% (s∗)

)
= spec (DR0[s∗]) .

in particular,

λ∗ ∈ spec (DR0[F∗]) .

At the same time, it is straightforward to see that the spectra ofDREKW [FEKW ]|TFEKW Fβ,ρ% (s∗)

and DREKW [sEKW ] are identical.

Lemma 2.3. Suppose that β, % and ρ are such that s∗ ∈ Aβs (ρ), and the operator
REKW is analytic and compact as a map from B%(s∗) to Aβs (ρ). Also, suppose that
the map I, described in Remark 1.6, is well-defined and analytic on B%(s∗), and
that it has an analytic inverse I−1 on I(B%(s∗)). Then,

spec
(

(DREKW [F ∗]) |TF∗Fβ,ρ% (s∗)

)
= spec (DREKW [s∗]) ,

in particular,

λ∗ ∈ spec (DREKW [s∗]) .
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In Part 1 we saw that the convergence rate in the stable manifold of the renor-
malization operator plays a crucial role in demonstrating rigidity. It turns out that
the eigenvalue λ∗ is the largest eigenvalues in the stable subspace of DREKW [F∗],
or equivalently DREKW [s∗]. However, it’s value |λ∗| ≈ 0.2488 is not small enough
to ensure rigidity. At the same time, the eigenspace of the eigenvalue λ∗ is, in the
terminology of the renormalization theory, irrelevant to dynamics (the associated
eigenvector is generated by a coordinate transformation). We, therefore, would
like to eliminate this eigenvalue via an appropriate coordinate change, as described
above.

However, first we would like to identify the eigenvector corresponding to the
eigenvalue λ∗ for the operator REKW . This vector turns out to be different from
ψs∗ .

Lemma 2.4. Suppose that β, % and ρ are such that the operator REKW has a fixed
point s∗ ∈ Aβs (ρ), and REKW is analytic and compact as a map from B%(s∗) to
Aβs (ρ). Also, suppose that the map I, described in Remark 1.6, is well-defined and
analytic on B%(s∗), and that it has an analytic inverse I−1 on I(B%(s∗)).

Then, the number λ∗ is an eigenvalue of DREKW [s∗], and the eigenspace of λ∗
contains the eigenvector

(64) ψEKWs∗ (x, y) = ψs∗ + ψ̃,

where

ψ̃ = s∗ − (s∗1(x, y)x+ s∗2(x, y)y).

Proof. Notice, that ψ̃ is of the form

ψ̃(x, y) = ψu − ψx,

where

ψx(x, y) = s∗1(x, y)x+ s∗2(x, y)y

is the eigenvector of DR0[s∗] corresponding to the rescaling of the variables x and
y, while

ψu(x, y) = s∗(x, y)

is the eigenvector corresponding to the rescaling of s. ψx(x, y) and ψu(x, y) corre-
spond to the eigenvectors hF∗,σ1

0,0
and hF∗,σ2

0,0
, respectively, of DR0[F ∗].

Recall, that hF∗,σ1
0,0

and hF∗,σ2
0,0

are eigenvectors of DR0[F ∗], with eigenvalue

1, and eigenvectors of DREKW [F ∗] with eigenvalue 0.
By Lemma 2.1 ψs∗ is an eigenvector of DR0, the corresponding eigenvector of

DR0 is hF∗,σ1
1,0−2σ2

1,0
. Thus, ψs∗ + ψ̃ corresponds to the vector

(65) hEKWλ∗ := hF∗,σ1
1,0−2σ2

1,0
− hF∗,σ1

0,0
+ hF∗,σ2

0,0
.

To finish the proof, it suffices to prove that

DREKWh
EKW
λ∗ = λ∗h

EKW
λ∗ .
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By (60)

DREKW [F ∗]hEKWλ∗ = DREKW [F ∗]hF∗,σ1
1,0−2σ2

1,0

= DR0[F ∗]hF∗,σ1
1,0−2σ2

1,0

+
(
DF tEKW [F ∗]hF∗,σ1

1,0−2σ2
1,0

)
hF∗,σ1

0,0

+
(
DF rEKW [F ∗]hF∗,σ1

1,0−2σ2
1,0

)
hF∗,σ2

0,0

= λ∗hF∗,σ1
1,0−2σ2

1,0

+
(
DF tEKW [F ∗]hF∗,σ1

1,0−2σ2
1,0

)
hF∗,σ1

0,0

+
(
DF rEKW [F ∗]hF∗,σ1

1,0−2σ2
1,0

)
hF∗,σ2

0,0

The result follows if

DF tEKW [F ∗]hF∗,σ1
1,0−2σ2

1,0
= −λ∗

and

DF rEKW [F ∗]hF∗,σ1
1,0−2σ2

1,0
= λ∗.

Indeed, as in the proof of Lemma 1.2. If h = hF∗,σ1
1,0

, then

DPEKW [F ∗]h(x, u) =
(
−(πxPEKW [F ∗](x, u))2 + πxPEKW [F ∗]1(x, u)x2,

πuPEKW [F ∗]1(x, u)x2
)
,

πxDPEKW [F ∗]h(0, 0) = −(πxPEKW [F ∗](0, 0))2 = −λ2∗,
DF tEKW [F ∗]h = −λ∗

DF rEKW [F ∗]h =
λ2∗

µ∗πx(F ∗ ◦ F ∗)2(0, 0)

+ λ∗ (−2πxPEKW [F ∗](0, 0)πxPEKW [F ∗]2(0, 0)

+
πxPEKW [F ∗]1,2(0, 0)02

)
µ∗ (πx(F ∗ ◦ F ∗)2(0, 0))

2

= −λ∗ + 2πxPEKW [F ∗](0, 0) = λ∗

If h = hF∗,σ2
1,0

, then

DPEKW [F ∗]h(x, u) = (πxPEKW [F ∗]2(x, u)xu,

−πxPEKW [F ∗](x, u)πuPEKW [F ∗](x, u)

+πuPEKW [F ∗]2(x, u)xu) ,

πxDPEKW [F ∗]h(0, 0) = 0

DF tEKW [F ∗]h = 0

DF rEKW [F ∗]h = 0 +
λ∗ (πxPEKW [F ∗]2,2(0, 0)0 + πxPEKW [F ∗]2(0, 0)0)

µ∗ (πx(F ∗ ◦ F ∗)2(0, 0))
2 = 0.

�

Definition 2.5. Suppose s∗ is a fixed point of the operator R0 (or, equivalently,
REKW ). Set, formally,

P[s](x, y) = (1 + 2ty)s(G(ξt(x, y))), and R[s] = µ−1P[s] ◦ λ,
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where

0 = s(x, Z(x, y)) + s(y, Z(x, y)),

t = − 1

λ∗‖ψEKWs∗ ‖ρ
‖E(λ∗)(REKW [s]− s∗)‖,

0 = P[s](λ, 0),(66)

µ = λ∂1P[s](λ, 0),(67)

ξt(x, y) = (x+ tx2, y + ty2),(68)

ψEKWs∗ is as in (64), G as in (14), and E is the Riesz projection for the operator
DREKW [s∗].

We will quote a version of a lemma from (Gaidashev 2010) which we will require
to demonstrate analyticity and compactness of the operator R. The proof of the
Lemma is computer-assisted. Notice, the parameters that enter the Lemma are
different from those used in (Gaidashev 2010). As before, the reported numbers
are representable on a computer.

Lemma 2.6. For all s ∈ BR(s0), where

R = 5.47321968732772541× 10−3,

and s0 is as in Theorem 2, the prerenormalization PEKW [s] is well-defined and
analytic function on the set

Dr ≡ Dr(0) = {(x, y) ∈ C2 : |x| < r, |y| < r}, r = 0.51853174082497335,

with

‖Z‖r ≤ 1.63160151494042404.

We will now demonstrate analyticity and compactness of the modified renor-
malization operator in a functional space, different from that used in (Eckmann
et al 1984), specifically, in the space As(1.75). It is in this space that we will
eventually compute a bound on the spectral radius of the action of the modified
renormalization operator on infinitely renormalizable maps.

Proposition 2.7. There exists a polynomial s0 ⊂ BR(s0) ⊂ As(1.75), where R
and s0 are as in Lemma 2.6, such that the operator R is well-defined, analytic
and compact as a map from B%0(s0), %0 = 5.79833984375 × 10−4, to As(1.75), if
B%0(s0) ⊂ BR(s0) contains the fixed point s∗.

Proof. The polynomial s0 has been computed as a high order numerical approxi-
mation of a fixed point s∗ of R.

First, we get a bound on t for all s ∈ Bδ(s0):

|t| =
1

|λ∗|‖ψEKWs∗ ‖ρ
‖E(λ∗)(REKW [s]− s∗)‖ρ

≤ 1

|λ+|ψEKWs∗ ‖ρ
‖REKW [s]− s∗‖ρ.

We estimate the right hand side rigorously on the computer and obtain

(69) |t| ≤ 2.1095979213715× 10−6.

The condition of the hypothesis that s∗ ∈ Bδ(s0) is specifically required to be able
to compute this estimate.
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Notice that according to Definition 2.5 and Theorem 2, the maps s 7→ t and,
hence, s 7→ ξt are analytic on a larger neighborhood BR(s0) of analyticity ofREKW .
According to Theorem 2 and Lemma 2.6, the prerenormalization PEKW is also
analytic as a map from BR(s0) to As(r), r = 0.516235055482147608. We verify
that for all s ∈ Bδ(s0) and t as in (69) the following holds:

(70) {ξt(x, y) : (x, y) ∈ Dr′} b Dr, r′ = |λ−|ρ,
where λ− = −0.27569580078125 is the lower bound from Theorem 2. Furthermore,

1 > 2|t|ρ
with t as in (69). Therefore, the map s 7→ P[s] is analytic on Bδ(s0).

Since the inclusion of sets (70) is compact, R[s] has an analytic extension to
a neighborhood of D1.75, R[s] ∈ As(ρ′), ρ′ > 1.75. Compactness of the map
s 7→ R[s] now follows from the fact that the inclusions of spaces As(ρ′) ⊂ As(ρ) is
compact. �

Recall, that according to Lemma 2.2, λ∗ is an eigenvalue of DR0[F ∗] of multi-
plicity at least 1. According to Lemma 1.2, λ∗ is in the spectrum of DREKW [F∗],
and according to Lemma 2.3, λ∗ ∈ DREKW [s∗].

Proposition 2.8. Suppose that β, ρ, % and the neighborhood B%(s∗) ⊂ Aβs (ρ)
satisfy the hypothesis of Lemma 2.2. Furthermore, suppose that the operator R is
analytic and compact in B%(s∗).

Then
spec(DREKW [s∗]) \ {λ∗} ⊂ spec(DR[s∗]),

and ψEKWs∗ is an eigenvector of DR[s∗] associated with the eigenvalue 0.
In addition,

spec(DR[s∗]) ⊂ spec(DREKW [s∗]),

and if λ∗ /∈ spec(DR[s∗]), then λ∗ has multiplicity 1 in spec(DREKW [s∗]).

Proof. First, notice the difference between the definition of λ in (1.1)

s(G(λ, 0)) = 0,

and in Definition (2.5)
s(G(λ+ tλ2, 0)) = 0

(we will use the notation λEKW below to emphasize the difference). This implies
that if DsλEKW [s]ψ is an action of the derivative of λEKW [s] on a vector ψ, then

Dsλ[s∗]ψ = DsλEKW [s∗]ψ − λ2∗Dst[s
∗]ψ

is that of the derivative of λ[s].
Similarly,

DsµEKW [s∗]ψ =
[
∂1(s∗ ◦G)(λ∗, 0) + λ∗∂

2
1(s∗ ◦G)(λ∗, 0)

]
DsλEKW [s∗]ψ

+ λ∗∂1(DsPEKW [s∗]ψ)(λ∗, 0),

Dsµ[s∗]ψ =
[
∂1(s∗ ◦G)(λ∗, 0) + λ∗∂

2
1(s∗ ◦G)(λ∗, 0)

]
Dsλ[s∗]ψ

+ λ∗∂1(DsPEKW [s∗]ψ)(λ∗, 0)

+ λ3∗∂
2
1(s∗ ◦G)(λ∗, 0)Dst[s

∗]ψ

= DsµEKW [s∗]ψ − ∂1PEKW [s∗](λ∗, 0)λ2∗Dst[s
∗]ψ

= DsµEKW [s∗]ψ − λ∗µ∗Dst[s
∗]ψ.
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Therefore,

DR[s∗]ψ = DREKW [s∗]ψ + 2λ∗ (Dst[s
∗]ψ) s∗πy +

1

µ∗
(DPEKW [s∗] · (Dsξtψ)) ◦ λ∗

− Dst[s
∗]ψ

λ2∗
µ∗
DPEKW [s∗] ◦ λ∗ · (πx, πy)

+ λ∗Dst[s
∗]ψs∗

= DREKW [s∗]ψ − λ∗ (Dst[s
∗]ψ)Ds∗ · (πx, πy) + λ∗ (Dst[s

∗]ψ) s∗

+ λ∗ (Dst[s
∗]ψ)ψs∗

= DREKW [s∗]ψ + λ∗ (Dst[s
∗]ψ)ψEKWs∗(71)

where

Dst[s
∗]ψ = −λ−1∗ ‖ψEKWs∗ ‖−1ρ ‖E(λ∗) (DREKW [s∗]ψ) ‖ρ,

Dsξt[s
∗]ψ(x, y) = (Dstψ) (x2, y2)

= −λ−1∗ ‖ψEKWs∗ ‖−1ρ ‖E(λ∗) (DREKW [s∗]ψ) ‖ρ(x2, y2).

Similarly to Lemma (1.1), we get that if ψ is an eigenvector of DREKW [s∗]
associated with the eigenvalue δ 6= λ∗, then ψ 6= ψEKWs∗ , and

E(λ∗) (DREKW [s∗]ψ) = δE(λ∗)ψ = 0,

so is Dst[s
∗]ψ, and

DR[s∗]ψ = DREKW [s∗]ψ = δψ.

If δ = λ∗ and ψ = ψEKWs∗ , then

Dst[s
∗]ψ = −1, Dsξt[s

∗]ψ(x, y) = −(x2, y2),

and therefore,

DR[s∗]ψEKWs∗ = λ∗ψ
EKW
s∗ − λ∗ψEKWs∗ = 0,

and ψEKWs∗ is an eigenvector of DR[s∗] associated with the eigenvalue 0.
Vice verse, by (71), if ψ is an eigenvector ofDR[s∗] associated with the eigenvalue

δ 6= λ∗, then

DREKW [s∗](ψ + aψEKWs∗ ) = DR[s∗]ψ − λ∗(Dst[s
∗](ψ + aψEKWs∗ )ψEKWs∗

= δψ − λ∗(Dst[s
∗]ψ − a)ψEKWs∗

Hence, ψ + λ∗Dst[s
∗]ψ

λ∗−δ ψEKWs∗ is an eigenvector of DREKW [s∗] with the eigenvalue
δ.

Finally, assume that λ∗ /∈ spec(DR[s∗]), but that there exists an eigenvector
ϕ 6= ψEKWs∗ of DREKW [s∗] with eigenvalue λ∗. Then

Dst[s
∗]ϕ = − ‖ϕ‖ρ

‖ψEKWs∗ ‖ρ
,

and, by (71),

DR[s∗]

(
ϕ− ‖ϕ‖ρ
‖ψEKWs∗ ‖ρ

ψEKWs∗

)
= DR[s∗]ϕ

= λ∗ϕ+ λ∗

(
− ‖ϕ‖ρ
‖ψEKWs∗ ‖ρ

)
ψEKWs∗

= λ∗

(
ϕ− ‖ϕ‖ρ
‖ψEKWs∗ ‖ρ

ψEKWs∗

)
.
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This contradiction finishes the proof. �

So far we were not able to make any claims about the multiplicity of the eigen-
value λ∗ in the spectrum of DREKW [s∗]. However, we will demonstrate in Section
3 that it is indeed equal to 1.

Definition 2.9. Set, formally,

R[F ] = Λ−1F ◦ P [F ] ◦ ΛF ,(72)

P [F ] = S−1t[F ] ◦ F ◦ F ◦ St[F ],

where St[F ] is as in (62), ΛF (x, u) = (λ[F ]x, µ[F ]u),

t[F ] = − 1

λ∗‖hF∗,σ‖D
‖E(λ∗)(REKW [F ]− F∗)‖D,

where

σ = σ1
1,0 − 2σ2

1,0 − σ1
0,0 + σ2

0,0,

and, furthermore,

λ[F ] = πxP [F ](0, 0),

µ[F ] =
−λ[F ]

πxP [F ]2(0, 0)
.

The above is a formal definition. As usual, one would have to verify the properties
of being well-defined, analytic and compact, in a setting of a specific functional
space.

3. Spectral properties of R. Proof of Main Theorem 1

We will now describe our computer-assisted proof of Main Theorem 1.
To implement the operatorDR[s∗] on the computer, we would have to implement

the Riesz projection as well. Unfortunately, this is not easy, therefore, we will do
it only approximately. Specifically, the component (0, 3) of the composition s ◦ G
will be consistently normalized to be

c0 = (s0 ◦G[s0])(0,3) ,

where s0 is our polynomial approximation for the fixed point.

Definition 3.1. Set, formally,

Pc[s](x, y) = (1 + 2tcy)s(G(ξtc(x, y))), and Rc[s] = µ−1Pc[s] ◦ λ,

where

G(x, y) = (Z(x, y), y),

0 = s(x, Z(x, y)) + s(y, Z(x, y)),

tc[s] =
1

4

c− (s ◦G)(0,3)

(s ◦G)(0,2)
, c ∈ R

0 = Pc[s](λ[s], 0),

µ[s] = λ∂1Pc[s](λ, 0).
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The operator Rc differs from R (cf.2.5) only in the “amount” by which the
eigendirection ψEKWs∗ is “eliminated”. In particular, as the next proposition demon-
strates, Rc is still analytic and compact in the same neighborhood of s0.

Proposition 3.2. There exists a polynomial s0 ⊂ BR(s0) ⊂ As(1.75), where R
and s0 are as in Theorem 2, such that the operators Rc, c ∈ [c0 − δ, c0 + δ],

c0 = (s0 ◦G[s0])(0,3) and δ = 1.068115234375× 10−4,

are well-defined and analytic as maps from B%0(s0), %0 = 5.79833984375× 10−4, to
As(1.75).

Furthermore, the operators Rc are compact in BR(s0) ⊂ A(ρ), with Rc[s] ∈
A(ρ′), ρ′ = 1.0699996948242188ρ.

Proof. The proof is almost identical to that of Proposition 2.7, with a different (but
still sufficiently small) bound on |tc[s]|. �

Definition 3.3. Set, formally,

(73) Rc[F ] = Λ−1F ◦ Pc[F ] ◦ ΛF , Pc[F ] = S−1tc ◦ F ◦ F ◦ Stc ,

where Stc is as in (62), ΛF (x, u) = (λ[F ]x, µ[F ]u), and

tc[F ]=
1

4

c− (πu(F ◦ F ))(0,3)

(πu(F ◦ F ))(0,2)
, c ∈ R, λ[F ]=πxPc[F ](0, 0), µ[F ]=

−λ[F ]

πxPc[F ]2(0, 0)
.

Lemma 3.4. Suppose that the neighborhood B%0(s0), with %0 as in Propositions
2.7 and 3.2, contains a fixed point s∗ of R, and of Rc∗ for

c∗ = (s∗ ◦G[s∗])(0,3) .

Set

δ = 0.00124359130859375,

then

spec (DR[s∗]) \ {z ∈ C : |z| ≤ δ} ⊂ spec (DRc∗ [s∗]) \ {z ∈ C : |z| ≤ δ} .

Proof. According to Propositions 2.7 and 3.2, under the hypothesis of the Lemma,
R and Rc∗ are analytic and compact as operators from Bδ(s0) to As(1.75).

Recall, that ψEKWs∗ is an eigenvector of DREKW [s∗] corresponding to the eigen-
value λ∗.

We consider the action of DRc∗ [s∗] on a vector ψ. Similarly to (71),

DRc∗ [s∗]ψ = DREKW [s∗]ψ + λ∗ (Dstc[s
∗]ψ)ψs∗ + λ∗ (Dstc[s

∗]ψ) ψ̃

= DR[s∗]ψ + λ∗ ((Dstc[s
∗]−Dst[s])ψ)ψEKWs∗ .

Now, let ψ be an eigenvector of DR[s∗] of eigenvalue κ 6= 0 (that is, ψ 6= ψEKWs∗ ).
Consider the action of DRc∗ [s∗] on ψ + aψEKWs∗ .

DRc∗ [s∗](ψ + aψEKWs∗ ) = κψ + λ∗ (Dstc[s
∗]−Dst[s

∗]) (ψ + aψEKWs∗ )ψEKWs∗ .
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Notice,

Dstc[s
∗]ψEKWs∗ = Dstc[s

∗](ψs∗ + ψu − ψx)

= −1

4

(DPEKW [s∗](ψs∗ + ψu − ψx))0,3
PEKW [s∗]0,2

−1

4

(DPEKW [s∗](ψs∗ + ψu − ψx))0,2 (c− PEKW [s∗]0,3)

(PEKW [s∗]0,2)
2

= −1

4

(
ψPEKW [s∗] + PEKW [s∗]−DPEKW [s∗] · (πx, πy)

)
0,3

PEKW [s∗]0,2

−1

4

(
ψPEKW [s∗] + PEKW [s∗]−DPEKW [s∗] · (πx, πy)

)
0,2

(c− PEKW [s∗]0,3)

(PEKW [s∗]0,2)
2

= −1

4

(∂2PEKW [s∗])0,1 + 2 (PEKW [s∗])0,2
PEKW [s∗]0,2

−1

4

(PEKW [s∗])0,3 − (∂2PEKW [s∗])0,2
PEKW [s∗]0,2

−1

4

(
(∂2PEKW [s∗])0,0 + 2 (PEKW [s∗])0,1

)
(c− PEKW [s∗]0,3)

(PEKW [s∗]0,2)
2

−1

4

(
(PEKW [s∗])0,2 − (∂2PEKW [s∗])0,1

)
(c− PEKW [s∗]0,3)

(PEKW [s∗]0,2)
2

= −1 +
1

2

c∗

PEKW [s∗]0,2
− 1

4

(
3PEKW [s∗]0,1
PEKW [s∗]0,2

− 1

)
c− c∗

PEKW [s∗]0,2
= −1 + C,

Dst[s
∗]ψEKWs∗ = −1

Denote d1 ≡ Dstc[s
∗]ψ and d2 ≡ Dst[s

∗]ψ, then

DRc∗ [s∗](ψ + aψEKWs∗ ) = κψ + λ∗(d1 − d2 + a(−1 + C) + a)ψEKWs∗

= κ

(
ψ +

λ∗
κ

(d1 − d2 + aC)ψEKWs∗

)
,

and we see that the equation

a =
λ∗
κ

(d1 − d2 + aC)

has a unique solution a if

(74) κ 6= λ∗C.

For such κ, the vector

ψ +
λ∗(d1 − d2)

κ− λ∗C
ψEKWs∗

is an eigenvector of DRc∗ [s∗] associated with the eigenvalue κ.
The eigenvalues κ as in (74) satisfy

|κ| > 0.00124359130859375

�
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We will now describe a rigorous computer upper bound on the spectrum of
the operator DRc[s

∗]. Since the bound itself is an intermediate results, here, we
will not give a thorough introduction into rigorous computations in Banach space,
and, in fact, will skip many technicalities of the proof. For a thorough treatise of
computations in Banach spaces, an interested reader is referred to (Koch et al 1996).

Proof of part ii) of Main Theorem 1.

Step 1). Recall the Definition 1.2 of the Banach subspace As(ρ) of A(ρ). We will
now choose a new bases {ψi,j} in As(ρ). Given s ∈ As(ρ) we write its Taylor
expansion in the form

s(x, y) =
∑

(i,j)∈I

si,jψi,j(x, y),

where ψi,j ∈ As(ρ):

ψ̃i,j(x, y) = xi+1yj , i = −1, j ≥ 0,

ψ̃i,j(x, y) = xi+1yj +
i+ 1

j + 1
xj+1yi, i > −1, j ≥ i,

ψi,j =
ψ̃i,j

‖ψ̃i,j‖ρ
, i ≥ −1, j ≥ max{0, i},

and the index set I of these basis vectors is defined as

I = {(i, j) ∈ Z2 : i ≥ −1, j ≥ max{0, i}}.
Denote Ãs(ρ) the set of all sequences

s̃ =

si,j : si,j ∈ C,
∑

(i,j)∈I

|si,j | <∞

 .

Equipped with the l1-norm

(75) |s|1 =
∑

(i,j)∈I

|si,j |,

Ãs(ρ) is a Banach space, which is isomorphic to As(ρ). Clearly, the isomorphism

J : As(ρ) 7→ Ãs(ρ) is an isometry:

‖ · ‖ρ = | · |1.
We divide the set I in three disjoint parts:

I1 = {(i, j) ∈ I : i+ j < N},
I2 = {(i, j) ∈ I : N ≤ i+ j < M},
I3 = {(i, j) ∈ I : i+ j ≥M},

with
N = 22, M = 60.

We will denote the cardinality of the first set as D(N), the cardinality of I1 ∪ I2 as
D(M).

We assign a single index to vectors ψi,j , (i, j) ∈ I1 ∪ I2, as follows:

k(−1, 0) = 1, k(−1, 1) = 2, . . . , k(−1,M) = M + 1, k(0, 0) = M + 2,

k(0, 1) = M + 3, . . . , k

([
M − 1

2

]
,M − 1−

[
M − 1

2

])
= D(M).
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This correspondence (i, j) 7→ k is one-to-one, we will, therefore, also use the notation
(i(k), j(k)).

For any s ∈ As(ρ), we define the following projections on the subspaces of the

linear subspace ED(N) spanned by {ψk}D(N)
k=1 .

Πks = si(k),j(k)ψk, ΠED(N)
s =

∑
m≤D(N)

Πms.

Fix

c0 = (s0 ◦G[s0])0,3,

where s0 is some good numerical approximation of the fixed point. Denote for
brevity Lsc ≡ DRc[s]. We can now write a matrix representation of the finite-
dimensional linear operator

ΠED(N)
Ls0c0ΠED(N)

as

Dn,m = ΠmLs0c0ψn.

Step 2). We compute the unit eigenvectors ek of the matrix D numerically, and
form a D(N) × D(N) matrix A whose columns are the approximate eigenvectors
ek. We would now like to find a rigorous bound B on the inverse B of A.

Let B0 be an approximate inverse of A. Consider the operator C in the Banach

space of all D(N) × D(N) matrices (isomorphic to RD(N)2) equipped with the
l1-norm, given by

C[B] = (A+ I)B − I.
Notice, that if B is a fixed point of C then AB = I. Consider a “Newton map” for
C:

N [z] = z + C[B0 −B0z]−B0 +B0z.

If z is a fixed point of N , then B0 −B0z is a fixed point of C. Furthermore,

DN [z] = I−AB0

is constant. We therefore, estimate l∞ matrix norms

‖N [0]‖1 ≤≡ ε, ‖I−AB0‖1 ≤≡ D,
and obtain via the Contraction Mapping Principle, that the inverse of A is contained
in the l1 δ-neighborhood of B0, with

δ = ‖B0‖1
ε

1−D
.

Step 3). Define the linear operator

A = AΠED(N)

⊕(
I−ΠED(N)

)
,

and its inverse

B = BΠED(N)

⊕(
I−ΠED(N)

)
.

Consider the action of the operator Lsc0 in the new basis

ek =
ẽk
‖ẽk‖ρ

, 1 ≤ k ≤ D(N), ek ≡ ψk, k > D(N),

where

(76) [e1, e2, . . . , eD(N)] ≡ [ψ1, ψ2, . . . , ψD(N)]A,
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in As(ρ). To be specific, we consider a new Banach space Âs(ρ): the space of all
functions

s =
∑
k

ckek,

analytic on a bi-disk Dρ, for which the norm

‖s‖1 =
∑
k

|ck|

is finite.
For any s ∈ Âs(ρ), we define the following projections on the basis vectors.

Pis = ciei, P>ks =

(
I−

k∑
i=1

Pi

)
s.

Clearly, the Banach spaces As(ρ) and Âs(ρ) are isomorphic, while the norms ‖·‖ρ
and ‖ · ‖1 are equivalent. We can use (76) to compute the equivalence constant α
in

α‖ · ‖1 ≥ ‖ · ‖ρ = | · |1
(recall, norms ‖ · ‖ρ and | · |1, defined in (75) are equal). Notice, that

s =
∑
k

ckek =
∑

1≤k≤D(N)

ck

 ∑
1≤i≤D(N)

Aikψi

+
∑

k>D(N)

ckψk

=
∑

1≤i≤D(N)

 ∑
1≤k≤D(N)

ckA
i
k

ψi +
∑

i>D(N)

ciψi,

therefore, if Ai is the i-th row of the matrix A, then

|s|1 =
∑

1≤i≤D(N)

∣∣∣∣∣∣
∑

1≤k≤D(N)

ckA
i
k

∣∣∣∣∣∣+
∑

i>D(N)

|ci|

≤
∑

1≤i≤D(N)

‖Ai‖∞ ∑
1≤k≤D(N)

|ck|

+
∑

i>D(N)

|ci|

=

 ∑
1≤i≤D(N)

‖Ai‖∞

 ∑
1≤k≤D(N)

|ck|+
∑

i>D(N)

|ci|

≤ max

 ∑
1≤i≤D(N)

‖Ai‖∞, 1

 ‖s‖1
and

α = max

 ∑
1≤i≤D(N)

‖Ai‖∞, 1

 .

The constant has been rigorously evaluated on the computer:

(77) α ≤ 49.435546875.
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The operator Lsc0 is “almost” diagonal in this new basis for all s ∈ B%(s0) ⊂
As(ρ),

% = 6.0× 10−12.

We proceed to quantify this claim.

‖P2Lsc0e1‖1 ≤ 5.19007444381714× 10−4 , ‖P1Lsc0e2‖1 ≤ 1.76560133695602× 10−4,
‖P>2Lsc0e1‖1 ≤ 3.5819411277771× 10−3, ‖P>2Lsc0e2‖1 ≤ 1.49521231651306× 10−3,
‖P1Lsc0P>2‖1≤ 1.22539699077606× 10−4, ‖P2Lsc0P>2‖1≤ 8.2328915596008310−5,

for all h ∈ B%(s0) ⊂ As(ρ).

Step 4). We will now demonstrate existence of a fixed point s∗c0 in B% ∈ As(ρ), of
the operator Rc0 , where

c = (s0 ◦G[s0])0,3.

We will use the Contraction Mapping Principle in the following form. Define the
following linear operator on As(ρ)

M ≡ [I−K]
−1
,

where

Kh ≡ δ̂1P1h+ δ̂2P2h,

and δ̂1 and δ̂2 are defined via

P1Ls0c0e1 = δ̂1e1, P2Ls0c0e2 = δ̂2e2.

Consider the operator

N [h] = h+Rc0 [s0 +Mh]− (s0 +Mh)

on Âs(ρ) and for all z.
The operator N is analytic and compact on B‖M‖−1

1 α−1%(0), where c is the norm

equivalence constant (77), and

‖M‖1 = max

{∣∣∣∣ 1

1− δ̂1

∣∣∣∣ , ∣∣∣∣ 1

1− δ̂2

∣∣∣∣ , 1} = 1.

Notice, that if h∗ is a fixed point of N , then s0 +Mh∗ is a fixed point of Rc0 .
The derivative norm of the operator N is “small”, indeed,

DN [h] = I +DRc0 [s0 +Mh] ·M −M
=

[
M−1 +DRc0 [s0 +Mh]− I

]
·M

= [I−K +DRc0 [s0 +Mh]− I] ·M
= [DRc0 [s0 +Mh]−K] ·M.

We have evaluated the operator norm of this derivative for all h ∈ Bα−1%(0):

‖DN [h]‖1 ≡ D ≤ 0.1258544921875

At the same time

‖N [0]‖1 = ‖Rc0 [s0]− s0‖1 ≡ ε ≤ 4.9560546875× 10−16.

We can now see that the hypothesis of the Contraction Mapping Principle is
indeed verified:

ε < 4.9560546875× 10−14 < 1.058349609375× 10−13 < (1−D)α−1%,
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and therefore, the neighborhood Bε/(1−D)(0) ⊂ B0.5α−1%(0) contains a fixed point
h∗ of N , i.e. the neighborhood B%/2(s0) ⊂ B%(s0) ⊂ As(ρ) contains a fixed point
s∗c0 = s0 +Mh∗ of Rc0 .

We quote here for reference purposes the bounds on the values of the scalings
λ[s∗c ] and µ[s∗c ]:

λ[s∗c ] = [−0.248875288734817765,−0.248875288702286711],(78)

µ[s∗c ] = [0.0611101382055370338, 0.0611101382190655586].(79)

Step 5). Notice, that in general,(
s∗c0 ◦G[s∗c0 ]

)
0,3
6= c,

therefore

tc0 [s∗c0 ] 6= 0.

However, tc0 [s∗c0 ] is a small number which we have estimated to be

(80) |tc0 [s∗c0 ]| < 7.89560771750566329× 10−12.

Consider the map F ∗c0 generated by s∗c0 . Recall that by Theorem 3, there exists
a simply connected open set D such that F ∗c0 ∈ O2(D). The fixed point equation
for the map F ∗c0 is as follows:

Λ−1F∗c0
◦ S−1tc0 [s∗c0 ]

◦ F ∗c0 ◦ F
∗
c0 ◦ Stc0 [s∗c0 ] ◦ ΛF∗c0 = F ∗c0 .

Suppose that there exists an invertable transformation Tc0 such that

(81) Stc0 [s∗c0 ]
◦ ΛF∗c0 ◦ Tc0 = Tc0 ◦ ΛF∗c0

(we will skip the issue of domains for a moment). Then

(82) Λ−1F∗c0
◦ F̃ ∗ ◦ F̃ ∗ ◦ ΛF∗c0 = F̃ ∗,

on the domain on Tc0 , where

F̃ ∗ = T−1c0 ◦ F
∗
c0 ◦ Tc0 .

This F̃ ∗ is close to a fixed point of the operator Rc̃∗ with

c̃∗ =
(
πu(F̃ ∗ ◦ F̃ ∗)

)
(0,3)

,

the only thing missing is that the rescaling Λ−1F∗c0
in the doubling equation (82) is

not the one corresponding to F̃ ∗. To amend this, we rescale

F ∗ ≡ J ◦ F̃ ∗ ◦ J−1

by a near-identity diagonal transformation

(83) J(x, y) =

[
a 0

0 b

]
=

 λ[F∗c0
]

λ[F̃∗]
0

0
µ[F∗c0

]

µ[F̃∗]

 ,
so that

λ[F ∗c0 ]=πxPc∗ [F
∗](0, 0), µ[F ∗c0 ]=

−λ[F ∗c0 ]

πxPc∗ [F ∗]2(0, 0)
,

where

c∗ = c̃∗b−2.
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Indeed, then

tc∗ [F
∗] =

1

4

c∗ −
(
πu(J ◦ F̃ ∗ ◦ F̃ ∗ ◦ J−1)

)
(0,3)(

πu(J ◦ F̃ ∗ ◦ F̃ ∗ ◦ J−1)
)
(0,2)

=
1

4

c̃∗b−2 − b
(
πu(F̃ ∗ ◦ F̃ ∗)

)
(0,3)

b−3

b
(
πu(F̃ ∗ ◦ F̃ ∗)

)
(0,2)

b−2

= b−1tc̃∗ [F̃
∗]

= 0,

λ[F ∗] = λ[F ∗c0 ], µ[F ∗] = µ[F ∗c0 ],

and

(84) Λ−1F∗ ◦ F
∗ ◦ F ∗ ◦ ΛF∗ = F ∗.

Notice, that Tc0 in (81) conjugates the transformation Λ̃F∗c0 ≡ Stc0 [s∗c0 ] ◦ΛF∗c0 to

its linear part ΛF∗c0 . Since the eigenvalues of ΛF∗c0 , λ[s∗c0 ] and µ[s∗c0 ], as given in

(78)—(79), are not in resonance, the Sternberg Linearization Theorem guarantees
existence of such T−1c0 on a neighborhood of zero, normalized as

T−1c0 (0, 0) = (0, 0), DT−1c0 (0, 0) = I,

and given by

T−1c0 = lim
n→∞

Λ−nF∗c0
◦ Λ̃nF∗c0

,

while

Tc0 = lim
n→∞

Λ̃−nF∗c0
◦ ΛnF∗c0

.

We will now look at the domains of convergence of the above transformations.
Consider

Tc,n = Λ̃−nF∗c0
◦ ΛnF∗c0

, and T−1c,n = Λ−nF∗c0
◦ Λ̃nF∗c0

.

Notice, that

St ◦ Λ = Λ ◦ Sλt,
therefore,

T−1c,n = Sλ[F∗c0 ]
ntc0 [s

∗
c0

] ◦ . . . ◦ Sλ[F∗c0 ]tc0 [s∗c0 ]
Tc,n = S−1λ[F∗c0 ]tc0 [s

∗
c0

] ◦ . . . ◦ S
−1
λ[F∗c0

]ntc0 [s
∗
c0

].

Consider the map

F̃ ∗n = T−1c,n ◦ F ∗c0 ◦ Tc,n.
We use λ for λ[F ∗c0 ] and t for tc0 [s∗c0 ] for brevity, and denote

ζt(x) = x+ tx2,

ζ−1t (x) =

√
1 + 4tx− 1

2t
,

ξt,n = ξλnt ◦ . . . ◦ ξλt,
ξ−1t,n = ξ−1λt − ◦ . . . ◦ ξ

−1
λnt,

ξt,0 ≡ ξ−1t,0 id.
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Notice, ζt(x) = πxSt(x, u) and ζ−1t (x) = πxS
−1
t (x, u).

The transformation ξt,n is analytic on Dρ′ , where ρ′ is as in Proposition 3.2, and

ξt,n(Dρ′) ⊃ Dρ̂,
for all n ≥ 0 where

ρ̂ = ρ′
∞∏
i=0

(1−|λ|iκ) > 1.87249946593321017, κ = |λ||t|ρ′ < 3.67950199077131340×10−12.

Therefore,

Dρ ⊂ Dρ̂.
Furthermore,

ξt,n(Dρ′) ⊂ Dρ̃,
for all n ≥ 0 where

ρ̃ = ρ′
∞∏
i=0

(1+νiκ) < 1.87249946595155563, ν = |λ|(1+κ) < 0.248875288735733502.

Next,

‖ξt,n+1 − ξt,n‖ρ′ = ‖ξλn+1t ◦ . . . ◦ ξλt − ξλnt ◦ . . . ◦ ξλt‖ρ′
= |λ|n+1|t|‖ξλnt ◦ . . . ◦ ξλt‖2ρ′
≤ |λ|n+1|t|ρ̃2,

where the norm ‖ ·‖ρ′ has been defined in the Definition 1.5. Therefore the uniform
limit ξt,∞ = limn→∞ ξt,n exists, and is analytic on Dρ′ .

We will now turn to the bounds on the parameter a in (83). Notice, that since
T−1c,n is of the form

T−1c,n (x, u) = (πxξt,n(x, 0), . . .),

we have

λ[F̃ ∗] = πxT
−1
c0 ◦ F

∗
c0 ◦ F

∗
c0(0, 0) = πxξt,∞(λ[F ∗c0 ], 0),

and

|λ[F ∗c0 ]− λ[F̃ ∗]| ≤ ‖ξt,∞ − id‖ρ′ ≤
∞∑
0

‖ξt,n+1 − ξt,n‖ρ′ ≤
∞∑
0

|λ|n+1|t|ρ̃2

=
|λ|

1− |λ|
|t|ρ̃2 ≤= ι.

Therefore,

|a− 1| =

∣∣∣∣∣λ[F ∗c0 ]− λ[F̃ ∗]

λ[F̃ ∗]

∣∣∣∣∣ ≤ ι

|λ[F ∗c0 ]| − ι
≤= χ.

Next, we consider the domains of analyticity of the inverse transformations.
First, for all t as in (80), and ρ′ as in Proposition 3.2,

(85) ζ−1t (Dρ′) ⊂ Dρ′+|t|ρ′2 ,
therefore,

‖ξ−1t,n‖ρ′ ≤ ρ̄,
where

ρ̄ = ρ′
∞∏
i=1

(1 + |λ̄|i|t|ρ′), λ̄ = (1 + |t|ρ))λ.
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At the same time

‖ξ−1t,n‖ρ < ρ′′,

where

ρ′′ = ρ

∞∏
i=1

(1 + |λ̄|i|t|ρ) < 1.75000000000801182 < ρ′,

therefore

ξ−1t,n(Dρ) ⊂ Dρ′ .

We, therefore, have

‖ξ−1t,n+1 − ξ
−1
t,n‖ρ = ‖ξ−1λt ◦ . . . ◦ ξ

−1
λn+1t − ξ

−1
λt ◦ . . . ◦ ξ

−1
λnt‖ρ

≤ ‖Dξ−1t,n‖ρ+λn+1|t|ρλ
n+1|t|ρ2

≤ C

ρ′ − ρ− λn+1|t|ρ
‖ξ−1t,n‖ρ′λn+1|t|ρ2

≤ C

ρ′ − ρ− λn+1|t|ρ
ρ′λn+1|t|ρ2,

and ξ−1t,n converges uniformly on Dρ to a limit transformation ξ−1t,∞, analytic on Dρ:

(86) ξ−1t,∞(Dρ) ⊂ Dρ′ .

Next, we obtain a bound on the rescaling parameter b in (83):

∣∣∣∣ 1

µ[F ∗c0 ]
− 1

µ[F̃ ∗]

∣∣∣∣ =

∣∣∣∣∣∣πx
(
F ∗c0 ◦ F

∗
c0

)
2

(0, 0)

λ[F ∗c0 ]
−
πx

(
F̃ ∗ ◦ F̃ ∗

)
2

(0, 0)

λ[F̃ ∗]

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

µ[F ∗c0 ]
−
πxDT

−1
c0 (λ[F ∗c0 ], 0) ·D

(
F ∗c0 ◦ F

∗
c0

)
(0, 0) ·

[
(∂2πxTc0)(0,0)
(∂2πuTc0)(0,0)

]
λ[F̃ ∗]

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ 1

µ[F ∗c0 ]
−
πx (ξt,∞)1 (λ[F ∗c0 ], 0)πx

(
F ∗c0 ◦ F

∗
c0

)
2

(0, 0)

λ[F̃ ∗]

∣∣∣∣∣
=

∣∣∣∣∣ 1

µ[F ∗c0 ]
−
aπx (ξt,∞)1 (λ[F ∗c0 ], 0)πx

(
F ∗c0 ◦ F

∗
c0

)
2

(0, 0)

λ[F ∗c0 ]

∣∣∣∣∣
=

∣∣∣∣ 1

µ[F ∗c0 ]

∣∣∣∣ ∣∣1− aπx (ξt,∞)1 (λ[F ∗c0 ], 0)
∣∣

≤
∣∣∣∣ 1

µ[F ∗c0 ]

∣∣∣∣ {∣∣1− πx (ξt,∞)1 (λ[F ∗c0 ], 0)
∣∣+ |1− a|

∣∣πx (ξt,∞)1 (λ[F ∗c0 ], 0)
∣∣} ,

where we have used DTc0(0, 0) = I. Now, write

πxξt,∞(x, 0) = x+

∞∑
n=2

cnx
n,
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then

|1− πx (ξt,∞)1 (λ[F ∗c0 ], 0)| =

∣∣∣∣∣
∞∑
n=2

ncnλ[F ∗c0 ]n−1

∣∣∣∣∣ ≤ 1

|λ[F ∗c0 ]|
max
n≥2

{
n
|λ[F ∗c0 ]|n

ρ′n

}
‖ξt,∞ − id‖ρ′

≤ 1

|λ[F ∗c0 ]|
N
|λ[F ∗c0 ]|N

ρ′N
‖ξt,∞ − id‖ρ′ ≤= υ,

where

N = max

 1

ln ρ′

|λ[F∗c0 ]|
, 2

 = 2.

Therefore

|1− b| ≤ υ + |1− a|(1 + υ) ≤ υ + χ(1 + υ) ≤= ω.

Finally, we revisit the inclusion (86). Denote a(x) = ax, then

‖ξ−1t,n ◦ a−1‖ρ = ‖ξ−1t,n ◦ ‖|a−1|ρ < ρ′′,

where

ρ′′ = ρ

∞∏
i=1

(1 + |λ̄|i|t||a−1|ρ) < 1.750001 < ρ′,

and, the transformation ξ−1t,∞ ◦ a−1, again, maps Dρ into Dρ′ :

ξ−1t,∞
(
a−1 (Dρ)

)
⊂ Dρ′ .

We will now write the composition T−1c,n ◦F ∗c0◦Tc,n above via generating functions:(
ζt,n(x′)
−s(y′,x′)∏n

i=1(1+2λitζλi−1t(x
′))

)
=

=

(
ζλnt ◦ . . . ◦ ζλt(x′)

−s(y′,x′)∏n
i=1(1+2λitζλi−1t(x

′))

)
S−1
λnt
7→ . . .

S−1

λ3t7→

(
ζλ2t(ζλt(x

′))
−s(y′,x′)

(1+2λtx′)(1+2λ2tζλt(x′))

)
S−1

λ2t7→

(
ζλt(x

′)
−s(y′,x′)
(1+2λtx′)

)
S−1
λt
7→
(

x′

−s(y′, x′)

)
F
7→

(
y′

s(x′, y′)

) Sλt
7→

(
ζλt(y

′)
s(x′,y′)

(1+2λty′)

)
Sλ2t
7→

(
ζλ2t(ζλt(y

′))
s(x′,y′)

(1+2λty′)(1+2λ2tζλt(y′))

)
Sλ3t
7→ . . .

Sλnt
7→

(
ζλnt ◦ . . . ◦ ζλt(y′)

s(x′,y′)∏n
i=1(1+2λitζλi−1t(y

′))

)
=

=

(
ζt,n(y′)
s(x′,y′)∏n

i=1(1+2λitζλi−1t(y
′))

)
Now, let x′ = ζ−1t,n(x), then x
−s(ξ−1

t,n(y,x))∏n
i=1(1+2λitζ−1

λi−1t
(x))

Tc,n
7→

(
ζ−1t,n(x)

−s(ξ−1t,n(y, x))

)
F
7→

(
ζ−1t,n(y)

s(ξ−1t,n(x, y))

)
T−1
c,n
7→

 y
s(ξ−1

t,n(x,y))∏n
i=1(1+2λitζ−1

λi−1t
(y))

 ,

and
s∗c0(ξ−1t,n(x, y))∏n

i=1(1 + 2λitζ−1λi−1t(y))

is the generating function of F̃ ∗n if if s∗c0 is that for F ∗c0 .



52 DENIS GAIDASHEV, TOMAS JOHNSON, AND MARCO MARTENS

By Proposition 3.2, s∗c0 is in A(ρ′). Since ξ−1t,∞(a−1 (D1.75)) ⊂ Dρ′ , the function

s∗c0 ◦ ξ
−1
t,∞ ◦ a−1 is analytic on D1.75.

Furthermore, since

2|λ||t|(|a−1|ρ+ |t||a−2|ρ2) < 1

for all t as in (80) (cf. (85)), the generating function of F ∗,

s∗ =
bs∗c0(ξ−1t,∞(a−1x, a−1y))∏∞
i=1(1 + 2λitζ−1λi−1t(a

−1y))
,

is in As(1.75).
In particular,

‖s∗c0 − s
∗‖ρ ≤ max

{∥∥∥∥s∗c0 − bs∗c0∏∞
i=1(1 + 2|λi||t||a−1|ρ′)

∥∥∥∥
ρ

,

∥∥∥∥s∗c0 − bs∗c0∏∞
i=1(1− 2|λi||t||a−1|ρ′)

∥∥∥∥
ρ

}

+
|b|
∥∥Ds∗c0∥∥ρ′∏∞

i=1(1−2|λi||t||a−1|ρ′)
max

{ ∞∏
i=1

(1+2|λi||t||a−1|ρ′)−1, 1−
∞∏
i=1

(1−2|λi||t||a−1|ρ′)

}
≤ 1.04748302248271977× 10−10 ≡ β′,

and
and since 0.5%+ β < r, where r is as in the Main Theorem 1,

s∗ ∈ Br(s0).

Step 6). At the last step we repeat the calculations of the bound on the operator
Lsc in Step 3) for all c ∈ I,where the interval I,

I =

[
c0 −

r

ρ3
, c0 +

r

ρ3

]
,

contains c∗.
An almost-diagonal linear operator P transforms the operator Lsc in a block-

diagonal form

P−1LscP =

 δ1 0 0
0 δ2 0
0 0 Ls>2

 ,
with

δ1 ∈ (8.72021484375, 8.72216796875),

‖Ls>2‖ ≤ 0.1258544921875,

for all s ∈ Br(s0) ⊂ As(ρ) and c ∈ I.
Now, it follows immediately that

(87) Rspec(DRc∗ [s∗]|Ts∗WRc∗ (s∗)) ≤ 0.1258544921875,

where WRc∗ (s∗) is the local stable manifold of Rc∗ at s∗.
This, together with Lemma 3.4 implies that the same is true for the spectral

radius of DR[s∗]

�
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