*On Real and Complex Cubic Curves*

An expository description of smooth cubic curves in the real or complex projective plane.

*Hedgehogs for neutral dissipative germs of holomorphic diffeomorphisms of $(\mathbb{C}^{2},0)$*

We prove the existence of hedgehogs for germs of complex analytic diffeomorphisms of $(\mathbb{C}^{2},0)$ with a semi-neutral fixed point at the origin, using topological techniques. This approach also provides an alternative proof of a theorem of Pérez-Marco on the existence of hedgehogs for germs of univalent holomorphic maps of $(\mathbb{C},0)$ with a neutral fixed point.

*Quasisymmetries of the basilica and the Thompson group*

*Semi-parabolic tools for hyperbolic Henon maps and continuity of Julia sets in $\mathbb{C}^2$*

We prove some new continuity results for the Julia sets $J$ and $J^{+}$ of the complex Hénon map $H_{c,a}(x,y)=(x^{2}+c+ay, ax)$, where $a$ and $c$ are complex parameters. We look at the parameter space of dissipative Hénon maps which have a fixed point with one eigenvalue $(1+t)\lambda$, where $\lambda$ is a root of unity and $t$ is real and small in absolute value. These maps have a semi-parabolic fixed point when $t$ is $0$, and we use the techniques that we have developed in [RT] for the semi-parabolic case to describe nearby perturbations. We show that for small nonzero $|t|$, the Hénon map is hyperbolic and has connected Julia set. We prove that the Julia sets $J$ and $J^{+}$ depend continuously on the parameters as $t\rightarrow 0$, which is a two-dimensional analogue of radial convergence from one-dimensional dynamics. Moreover, we prove that this family of Hénon maps is stable on $J$ and $J^{+}$ when $t$ is nonnegative.