Welcome to the preprint server of the Institute for Mathematical Sciences at Stony Brook University.
The IMS preprints are also available from the mathematics section of the arXiv e-print server, which offers them in several additional formats. To find the IMS preprints at the arXiv, search for Stony Brook IMS in the report name.
PREPRINTS IN THIS SERIES, IN PDF FORMAT.
* Starred papers have appeared in the journal cited.
For a post-critically finite hyperbolic rational map f, we show that the Julia set Jf has Ahlfors-regular conformal dimension one if and only if f is a crochet map, i.e., there is an f-invariant graph G containing the post-critical set such that f|G has topological entropy zero. We use finite subdivision rules to obtain graph virtual endomorphisms, which are 1-dimensional simplifications of post-critically finite rational maps, and approximate the asymptotic conformal energies of the graph virtual endomorphisms to estimate the Ahlfors-regular conformal dimensions. In particular, we develop an idea of reducing finite subdivision rules and prove the monotonicity of asymptotic conformal energies under the decomposition of rational maps.
Let p be a prime number, let g(x)=xp2+pr+2xp2+1 with r∈ℤ≥0, and let ϕ(x)=x+O(x2) be the Böttcher coordinate satisfying ϕ(g(x))=ϕ(x)p2. Salerno and Silverman conjectured that the radius of convergence of ϕ−1(x) in ℂp is p−p−r/(p−1). In this article, we confirm that this conjecture is true by showing that it is a special case of our more general result.
In this paper, we study the dynamics of a general class of antiholomorphic correspondences; i.e., multi-valued maps with antiholomorphic local branches, on the Riemann sphere. Such correspondences are closely related to a class of single-valued antiholomorphic maps in one complex variable; namely, Schwarz reflection maps of simply connected quadrature domains. Using this connection, we prove that matings of all parabolic antiholomorphic rational maps with connected Julia sets (of arbitrary degree) and antiholomorphic analogues of Hecke groups can be realized as such correspondences. We also draw the same conclusion when parabolic maps are replaced with critically non-recurrent antiholomorphic polynomials with connected Julia sets.
arXiv:2303.02459 |
Abstract: We completely characterise the bounded sets that arise as components of the Fatou and Julia sets of meromorphic functions. On the one hand, we prove that a bounded domain is a Fatou component of some meromorphic function if and only if it is regular. On the other hand, we prove that a planar continuum is a Julia component of some meromorphic function if and only if it has empty interior. We do so by constructing meromorphic functions with wandering continua using approximation theory.
In this paper, we use iterations of skinning maps on Teichmüller spaces to study circle packings. This allows us to develop a renormalization theory for circle packings whose nerves satisfy certain subdivision rules. We characterize when the skinning map has bounded image. Under the corresponding condition, we prove that the renormalization operator is uniformly contracting. This allows us to give complete answers for the existence and moduli problems for such circle packings. The exponential contraction has many consequences. In particular, we prove that homeomorphisms between any two such circle packings are asymptotically conformal.
We prove {\em a priori} bounds for Feigenbaum quadratic polynomials, i.e., infinitely renormalizable polynomials fc:z↦z2+c of bounded type. It implies local connectivity of the corresponding Julia sets J(fc) and MLC (local connectivity of the Mandelbrot set $\Mandel$) at the corresponding parameters c. It also yields the scaling Universality, dynamical and parameter, for the corresponding combinatorics. The MLC Conjecture was open for the most classical period-doubling Feigenbaum parameter as well as for the complex tripling renormalizations. Universality for the latter was conjectured by Goldberg-Khanin-Sinai in the early 1980s.
The goal of this survey is to present intimate interactions between four branches of conformal dynamics: iterations of anti-rational maps, actions of Kleinian reflection groups, dynamics generated by Schwarz reflections in quadrature domains, and algebraic correspondences. We start with several examples of Schwarz reflections as well as algebraic correspondences obtained by matings between anti-rational maps and reflection groups, and examples of Julia set realizations for limit sets of reflection groups (including classical Apollonian-like gaskets). We follow up these examples with dynamical relations between explicit Schwarz reflection parameter spaces and parameter spaces of anti-rational maps and of reflection groups. These are complemented by a number of general results and illustrations of important technical tools, such as David surgery and straightening techniques. We also collect several analytic applications of the above theory
For a hyperbolic polynomial automorphism of C^2 with a disconnected Julia set, and under a mild dissipativity condition, we give a topological description of the components of the Julia set. Namely, there are finitely many "quasi-solenoids" that govern the asymptotic behavior of the orbits of all non-trivial components. This can be viewed as a refined Spectral Decomposition for a hyperbolic map, as well as a two-dimensional version of the (generalized) Branner-Hubbard theory in one-dimensional polynomial dynamics. An important geometric ingredient of the theory is a John-like property of the Julia set in the unstable leaves.
A twisted rational map over a non-archimedean field K is the composition of a rational function over K and a continuous automorphism of K. We explore the dynamics of some twisted rational maps on the Berkovich projective line.
On a Riemann surface, periods of a meromorphic differential along closed loops define a period character from the absolute homology group into the additive group of complex numbers. Fixing the period character in strata of meromorphic differentials defines the isoperiodic foliation where the remaining degrees of freedom are the relative periods between the zeroes of the differential. In strata of meromorphic differentials with exactly two zeroes, leaves have a natural structure of translation surface. In this paper, we give a complete description of the isoperiodic leaves in marked stratum H(1,1,−2) of meromorphic 1-forms with two simple zeroes and a pole of order two on an elliptic curve. For each character, the corresponding leaf is a connected Loch Ness Monster. The translation structures of generic leaves feature a ramified cover of infinite degree over the flat torus defined by the lattice of absolute periods. By comparison, isoperiodic leaves of the unmarked stratum are complex disks endowed with a half-translation structure having infinitely many singular points. Finally, we give a description of the large-scale conformal geometry of the wall-and-chamber decomposition of the leaves.
Submitted 24 January, 2024; v1 submitted 11 May, 2023; originally announced May 2023.