preprint-author: 
Y. Jiang
preprint-title: 
Dynamics of certain non-conformal semigroups
preprint-abstract: 

A semigroup generated by two dimensional $C^{1+\alpha}$ contracting maps is considered. We call a such semigroup regular if the maximum $K$ of the conformal dilatations of generators, the maximum $l$ of the norms of the derivatives of generators and the smoothness $\alpha$ of the generators satisfy a compatibility condition $K< 1/l^{\alpha}$. We prove that the shape of the image of the core of a ball under any element of a regular semigroup is good (bounded geometric distortion like the Koebe $1/4$-lemma [1]). And we use it to show a lower and a upper bounds of the Hausdorff dimension of the limit set of a regular semigroup. We also consider a semigroup generated by higher dimensional maps.

preprint-year: 
1992