Title: Introduction to Linear Algebra
Description: Introduction to the theory of linear algebra with some applications; vectors, vector spaces, bases and dimension, applications to geometry, linear transformations and rank, eigenvalues and eigenvectors, determinants and inner products. May not be taken for credit in addition to AMS 210.
Prerequisite: C or higher in AMS 151 or MAT 131 or 141 or coregistration in MAT 126 or level 7 on the mathematics placement examination
SBC: STEM+
Credits: 3
Textbook:
- Linear Algebra with Applications (5th edition) by Otto Bretscher
or Linear Algebra: A Modern Introduction (4th Edition) by David Poole
Major Topics Covered:
- Systems of Linear Equations
- Gauss Elimination and Row Echelon Form
- Vectors and Matrices
- Linear Transformations
- Matrix Multiplication, Inverse Matrices
- Image and Kernel of a Linear Transformation
- Subspaces of $R^n$
- Linear Independence, Basis, and Dimension
- Coordinates
- Inner Product Spaces
- Projections
- Orthonormal Bases and Gram-Schmidt Orthogonalization
- Orthogonal Transformations Nad Matrices
- Determinants
- Eigenvalues and Eigenvectors
- Diagonalization
Undergraduate Bulletin Course Information
Course Webpages:
- Spring 2024 - Lecture 01
- Fall 2023 - Lecture 03
- Fall 2023 - Lecture 02
- Summer I 2023
- Spring 2023 - Lecture 04
- Spring 2023 - Lecture 03
- Spring 2023 - Lecture 02
- Spring 2022 - Lecture 04
- Spring 2022 - Lecture 03
- Spring 2022 - Lecture 02
- Spring 2022 - Lecture 01
- Fall 2021 - Lecture 03
- Fall 2021 - Lecture 02
- Fall 2021 - Lecture 01
- Summer I 2021
- Fall 2020 - Lecture 04
- Fall 2020 - Lecture 03
- Fall 2020 - Lecture 02
- Summer I 2020
- Spring 2020 - Lecture 04
- Spring 2020 - Lecture 03
- Spring 2020 - Lecture 02
- Fall 2019 - Lecture 03
- Fall 2019 - Lecture 02
- Spring 2019 - Lecture 04
- Fall 2018 - Lecture 03
- Fall 2018 - Lecture 02
- Fall 2018 - Lecture 01
- Spring 2018 - Lecture 04
- Spring 2018 - Lecture 03
- Spring 2018 - Lecture 02
- Spring 2018 - Lecture 01
- Fall 2017 - Lecture 02
- Fall 2017 - Lecture 01
- Spring 2017 - Lecture 03
- Spring 2017 - Lecture 02
- Spring 2017 - Lecture 01
- Fall 2016 - Lecture 03
- Fall 2016 - Lecture 02
- Fall 2016 - Lecture 01
- Summer I 2016
- Spring 2016 - Lecture 02
- Spring 2016 - Lecture 01
- Spring 2015 - Lecture 04
- Spring 2015 - Lecture 02
- Fall 2014
- Spring 2014
- Fall 2013
- Fall 2012
- Fall 2009
- Spring 2009
- Spring 2008 - Lecture 03
- Fall 2007
- Fall 2006
- Spring 2006
- Spring 2005
- Spring 2004
- Fall 2003
- Spring 2003
- Fall 1999 - Lecture 02
For Instructors: