**Descartes' Lost Theorem**

For example the sphere of radius *R* has constant Gaussian
curvature 1/*R*^{2} and area 4 *R*^{2};
the integral of the Gaussian curvature is 4 which is 2 times
the Euler characteristic 2.

This theorem has a polyhedral version: *For any polyhedral
surface, the sum of the polyhedral curvatures is equal to
2 times the Euler characteristic.*

For a convex polyhedron, with Euler characteristic 2, this is just another statement of Descartes' Lost Theorem. But it can be applied more generally, for example to a toroidal surface:

_____________________ / / /| / _____/_____ / | / / / / / / / |________/ / / / / / / / / / / / / / / / /__________/ / / / / / / /__________/_________/ / | | / |____________________|/ This polyhedral torus has 8 vertices where the curvature is /2, 8 vertices where the curvature is 0, and 8 vertices where the curvature is -/2. Total = 0. |
At each of the vertices around the outside there are three planar right angles, giving a polyhedral curvature of /2. At each of the vertices in the center of the top or bottom, the sum of the face angles is 2 , giving a polyhedral curvature of 0. At each of the eight vertices surrounding the hole the sum of the face angles is 5 /2, giving polyhedral curvature -/2. The total curvature is 0. |

It is not clear what appeal such a calculation would have
had for Descartes. Even though tesselated tori were well
known as *mazzochi* in Italian art of the XV century,
the classical subjects of interest to geometers remained
convex polygons and convex polyhedra. Moreover negative
curvature would not have seemed a natural concept:
at the beginning of Descartes' career (he was 24 in 1620)
he was reluctant to consider
negative numbers at all. Finally, for Descartes the
distinction between a vertex and the measure of the (planar
or solid) angle at that vertex was not explicit; the lack
of this distinction, probably, kept him from the combinatorial
version of his theorem that Euler derived. Nevertheless his
Lost Theorem, now recovered, remains as indelible evidence
of the geometrical power of this intellectual giant.

- 1. The sum of the plane angles of a polyhedron
- 2. The strange history of Descartes' Treatise
- 3. Euler's Theorems
- 4. The Euler characteristic
- 5. Descartes'
*curvatura* - 6. Curvature and polyhedral curvature
- 7. The polyhedral Gauss-Bonnet Theorem

© copyright 1999, American Mathematical Society.