This thesis is a demonstration of the applicability of Gromov-Witten Theory in the case of smooth complete intersections within a certain multidegree range. Gromov-Witten Theory provides a method for counting curves on smooth projective varieties. The invariants that are computed by Gromov-Witten Theory are frequently not enumerative and they cannot always be interpreted as actual curve counts. If the Kontsevich moduli space of genus-0 stable maps to the variety is irreducible of the expected dimension and contains an open dense subset parameterizing smooth embedded genus-0 curves in the variety, the genus-0 Gromov-Witten Invariants do provide us with actual curve counts.
This leads to the question: what are some classes of smooth varieties for which the Kontsevich space of genus-0 stable maps is irreducible of the expected dimension? The work of Harris, Roth and Starr shows the irreducibility of the Kontsevich space for smooth low degree hypersurfaces in projective space. We extend their work to study smooth complete intersections in projective space in instances where the dimension of the projective space is large compared to the multidegree of the complete intersection. Moreover, we use our results and methods of Starr and Tian to show the irreducibility of the space of Quasi-maps to every complete intersection within the same multidegree range.
