next up previous
Next: Wick's Theorem Up: Finite-dimensional Feynman Diagrams Previous: Facts from calculus and

$ m$-point Functions

For any choice of $ m$ (not necessarily different) indices $ i_1, \dots, i_m$ between 1 and $ d$, define the $ m$-point function $ \< v^{i_1}, \dots , v^{i_m}\> $ as follows:

$\displaystyle \< v^{i_1} ,\dots , v^{i_m}\> = \frac{1}{Z_0}\int_{{\bf R}^d} d{\...
...} ~~\exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v})v^{i_1},\dots , v^{i_m}.$

The $ m$-point functions are a step towards the ultimate aim of our calculation. They enter at this moment because they can be calculated by repeated differentiation of $ Z_{\bf b}$.

For example, note that

$\displaystyle \frac{\partial Z_{\bf b}}{\partial b^i} = \frac{\partial}{\partia...
...f v} ~~\exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v}) =$

$\displaystyle \int_{{\bf R}^d} d{\bf v} ~~ \frac{\partial}{\partial b^i}\exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v}) = $

$\displaystyle \int_{{\bf R}^d} d{\bf v} ~~ \exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v}) v^i.$

So the 1-point function $ \< v^i\> $ is given by

$\displaystyle \< v^i\> = \frac{1}{Z_0} \frac{\partial Z_{\bf b}}{\partial b^i}\vert _{{\bf b} =0}.$

Similarly the $ m$-point function $ \< v^{i_1}, \dots , v^{i_m}\> $ is given by

$\displaystyle \< v^{i_1} ,\dots , v^{i_m}\> =\frac{1}{Z_0} (\frac{\partial}{\pa...
...\frac{\partial}{\partial b^{i_m}}Z_{\bf b})_{\textstyle \vert _{{\bf b} =0}} = $

$\displaystyle \frac{\partial}{\partial b^{i_1}}\cdots \frac{\partial}{\partial ...
...criptstyle\frac{1}{2}}{\bf b}^tA^{-1}{\bf b})_{\textstyle \vert _{{\bf b} =0}}.$



Tony Phillips 2001-11-06