Course Syllabus - Updated (Typos & Style Cleaned)
MAT 341 Lec02 Course
Schedule
Legend: Red colored homework problems
will not be graded, but make sure that you are able to do these
problems, which give you an extra practice. The PDF version of the
schedule is available for print here
.
Dates
|
Sections covered - assigned reading before and after the class
|
Homework
|
Aug 25 & Aug 27
|
Orthogonal functions & Fourier series. Definitions &
examples. Ch.0, §§0.3.1-0.3.3 and Ch.1, §§1.1.1-1.1.4 and
§1.1.6.
|
HW 1; due: Sep 3 p. 33: 1,3,7,8; pp. 44-46: 1,3,4,7,9,30;
pp. 33-34: 2,6,11-14; pp. 45-46:
10,13-15,18,19,33,34.
|
Sep 1 & Sep 3
|
Sep 1- Labor Day : No class. Pointwise and uniform
convergence of Fourier series Ch.1, §1.2.1 (proofs are optional)
and §§1.3.3-1.3.4
|
HW 2; due: Sep 10 pp. 54-57: 1,2,3,15-17 and the following
extra problems ; p. 55: 4-7.
|
Sep 8 & Sep 10
|
Differentiation and integration of Fourier series. Parseval's
Theorem. Complex form of Fourier series. Ch.1, §§1.3.5-1.3.6,
§§1.4.1-1.4.2 and §§1.5.1-1.5.3.
|
HW 3; due: Sep 17 p. 70: 9,11-13; p. 75: 4,5; pp.83: 1-3; p.
69: 4-6; p. 76: 9; p. 83: 4,5.
|
Sep 15 & Sep 17
|
Sturm-Liouville eigenvalue problems. Ch.1, §1.6.1-1.6.6.
|
HW 4; due: Sep 24 pp. 96-97: 1-6,7,8,13; pp.
96-97: 10,11,14,15.
|
Sep 22 & Sep 24
|
The heat equation. Steady-state and time-periodic solutions.
Homogeneous boundary conditions. Ch.2, §§2.1.3-2.1.5 and §2.2.1.
|
HW 5; due: Oct 1 pp. 108-109: 1,3,4,10,11; pp. 120-121:
4,10,18.
|
Sep 29 & Oct 1
|
Solution of the initial value problem in a slab, relaxation
time and uniqueness of solutions. Ch.2, §§2.2.2-2.2.4.
|
HW 6; due: Oct 6 pp. 120-121: 2,3,5,7,8,11-14.
|
Oct 6 & Oct 8
|
Midterm 1, Oct 8, 2:00pm- 3:20pm, in class. Covers
§§1.1.1-1.1.4, 1.1.6, 1,2.1, 1.3.3-1.3.6, 1.4.1-1.4.2,
1.5.1-1.5.3, 1.6.1-1.6.6, 2.1.3-2.1.5, 2.2.1-2.2.2.
|
No HW
|
Oct 13 & Oct 15
|
Oct 13 - Fall Break : No class. Basic properties of
Fourier transform and solution of the heat equation on the real
line. Ch.5, §§5.1.1-5.1.3 and §§5.2.1-5.2.6.
|
HW 7; due: Oct 22 p. 292: 1,2,4,13; p.310: 15 and extra
problems ; p. 292: 11,15,16; p.308: 6,7
|
Oct 20 & Oct 22
|
One-dimensional wave equation. The vibrating string and
d'Alembert solution. Ch.2, § 2.4.3 and §§2.4.5-2.4.7.
|
HW 8; due: Oct 29 p. 150-151:2,11,13 and extra problems ; pp.
150-151: 4,5, 9-11,14-16.
|
Oct 27 & Oct 29
|
Applications of multiple Fourier series to Laplace's, heat and
wave equations. Ch.2, §§2.5.1-2.5.5.
|
HW 9; due: Nov 5 pp. 168-169: 1,2,4-6,10-13; pp.
168-169: 3,7,8,14.
|
Nov 3 & Nov 5
|
Laplace's equation in cylindrical coordinates. Ch.3,
§§3.1.1-3.1.3 and §§3.1.6-3.1.9.
|
HW 10; due: Nov 12 pp. 181-182: 8,9,13-16,18,19,23.
|
Nov 10 & Nov 12
|
Bessel functions. Ch.3, §§3.2.1-3.2.3. Midterm 2 , Nov
12, 2:00pm - 3:20pm, in class.
|
HW 11, due: Nov 19 pp. 207-208: 1-5,14,16,18-20; p.
207: 6,7,10-13.
|
Nov 17 & Nov 19
|
Bessel functions, continued. Notes Ch.3, §§3.2.5-3.2.7.
|
HW 12; due: Nov 26 p. 208: 22-24,28-32; p.
208: 33,34.
|
Nov 24 & Nov 26
|
Wave equation in polar coordinates. Heat flow in the infinite
cylinder Ch.3, §§3.3.1-3.3.2 and §§3.4.1-3.4.2. Nov 26-
Thanksgiving Break : No classes in session.
|
HW 13 due: Dec 3 p. 216: 1,4-8 and p. 226: 1-3.
|
Dec 1 & Dec 3
|
Legendre functions and spherical Bessel functions.
Boundary-value problems in a sphere. Ch. 4, § §4.1.1,
4.2.1-4.2.2 and §4.3.1.
|
Extra HW p. 250: 8-10, p. 266: 3-7,11,12 and p. 275: 1-3.
|
Dec 08
|
Review
|
|
Dec 15
|
Final exam, Mon.Dec. 15 2:15-5:00 pm
|
|
|