SUNY at Stony Brook MAT 341:Applied Real Analysis
Fall 2025
Course Syllabus - Updated (Typos & Style Cleaned)

MAT 341 Lec02 Course Schedule

Legend: Red colored homework problems will not be graded, but make sure that you are able to do these problems, which give you an extra practice. The PDF version of the schedule is available for print here .

Dates

Sections covered - assigned reading before and after the class

Homework

Aug 25 & Aug 27

Orthogonal functions & Fourier series. Definitions & examples. Ch.0, §§0.3.1-0.3.3 and Ch.1, §§1.1.1-1.1.4 and §1.1.6.

HW 1; due: Sep 3 p. 33: 1,3,7,8; pp. 44-46: 1,3,4,7,9,30; pp. 33-34: 2,6,11-14; pp. 45-46: 10,13-15,18,19,33,34.

Sep 1 & Sep 3

Sep 1- Labor Day : No class. Pointwise and uniform convergence of Fourier series Ch.1, §1.2.1 (proofs are optional) and §§1.3.3-1.3.4

HW 2; due: Sep 10 pp. 54-57: 1,2,3,15-17 and the following extra problems ; p. 55: 4-7.

Sep 8 & Sep 10

Differentiation and integration of Fourier series. Parseval's Theorem. Complex form of Fourier series. Ch.1, §§1.3.5-1.3.6, §§1.4.1-1.4.2 and §§1.5.1-1.5.3.

HW 3; due: Sep 17 p. 70: 9,11-13; p. 75: 4,5; pp.83: 1-3; p. 69: 4-6; p. 76: 9; p. 83: 4,5.

Sep 15 & Sep 17

Sturm-Liouville eigenvalue problems. Ch.1, §1.6.1-1.6.6.

HW 4; due: Sep 24 pp. 96-97: 1-6,7,8,13; pp. 96-97: 10,11,14,15.

Sep 22 & Sep 24

The heat equation. Steady-state and time-periodic solutions. Homogeneous boundary conditions. Ch.2, §§2.1.3-2.1.5 and §2.2.1.

HW 5; due: Oct 1 pp. 108-109: 1,3,4,10,11; pp. 120-121: 4,10,18.

Sep 29 & Oct 1

Solution of the initial value problem in a slab, relaxation time and uniqueness of solutions. Ch.2, §§2.2.2-2.2.4.

HW 6; due: Oct 6 pp. 120-121: 2,3,5,7,8,11-14.

Oct 6 & Oct 8

Midterm 1, Oct 8, 2:00pm- 3:20pm, in class. Covers §§1.1.1-1.1.4, 1.1.6, 1,2.1, 1.3.3-1.3.6, 1.4.1-1.4.2, 1.5.1-1.5.3, 1.6.1-1.6.6, 2.1.3-2.1.5, 2.2.1-2.2.2.

No HW

Oct 13 & Oct 15

Oct 13 - Fall Break : No class. Basic properties of Fourier transform and solution of the heat equation on the real line. Ch.5, §§5.1.1-5.1.3 and §§5.2.1-5.2.6.

HW 7; due: Oct 22 p. 292: 1,2,4,13; p.310: 15 and extra problems ; p. 292: 11,15,16; p.308: 6,7

Oct 20 & Oct 22

One-dimensional wave equation. The vibrating string and d'Alembert solution. Ch.2, § 2.4.3 and §§2.4.5-2.4.7.

HW 8; due: Oct 29 p. 150-151:2,11,13 and extra problems ; pp. 150-151: 4,5, 9-11,14-16.

Oct 27 & Oct 29

Applications of multiple Fourier series to Laplace's, heat and wave equations. Ch.2, §§2.5.1-2.5.5.

HW 9; due: Nov 5 pp. 168-169: 1,2,4-6,10-13; pp. 168-169: 3,7,8,14.

Nov 3 & Nov 5

Laplace's equation in cylindrical coordinates. Ch.3, §§3.1.1-3.1.3 and §§3.1.6-3.1.9.

HW 10; due: Nov 12 pp. 181-182: 8,9,13-16,18,19,23.

Nov 10 & Nov 12

Bessel functions. Ch.3, §§3.2.1-3.2.3. Midterm 2 , Nov 12, 2:00pm - 3:20pm, in class.

HW 11, due: Nov 19 pp. 207-208: 1-5,14,16,18-20; p. 207: 6,7,10-13.

Nov 17 & Nov 19

Bessel functions, continued. Notes Ch.3, §§3.2.5-3.2.7.

HW 12; due: Nov 26 p. 208: 22-24,28-32; p. 208: 33,34.

Nov 24 & Nov 26

Wave equation in polar coordinates. Heat flow in the infinite cylinder Ch.3, §§3.3.1-3.3.2 and §§3.4.1-3.4.2. Nov 26- Thanksgiving Break : No classes in session.

HW 13 due: Dec 3 p. 216: 1,4-8 and p. 226: 1-3.

Dec 1 & Dec 3

Legendre functions and spherical Bessel functions. Boundary-value problems in a sphere. Ch. 4, § §4.1.1, 4.2.1-4.2.2 and §4.3.1.

Extra HW p. 250: 8-10, p. 266: 3-7,11,12 and p. 275: 1-3.

Dec 08

Review

Dec 15

Final exam, Mon.Dec. 15 2:15-5:00 pm