In a CAT scan the information we want is a 2-dimensional picture: what the X-ray penetrability is at each point of a planar cross-section through the object. The information we get is a collection of 1-dimensional records, each one giving the X-ray penetrability of the object along a family of parallel lines. The mathematical operation that allows the reconstruction of a function of two variables from the knowledge of its totals along lines is called the Radon Transform. In more mathematical terms, the principle of the Radon Transform is that function of two variables can be reconstructed if its integral is known along any line in its domain. In terms of approximations, it can be reconstructed to a given degree of accuracy if these integrals are known for an appropriately dense family of lines. Here is a crude but illustrative example.
A two-dimensional ``object'' is constructed on a grid by blacking out a certain number of squares. We can think of this as assigning density 1 to the blackened squares and density 0 to the others. A shape like the letter ``C,'' for instance, can be given by the following pattern of 0s and 1s. This density function can be represented by a 3-dimensional graph, as shown on the right.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
![]() |
These eight families of lines are illustrated in this table: each family is labelled by its slope, and each line is labelled by the number of ones it intercepted in the object. In each family one of those lines is picked put in red.
horizontal X stands for 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0_0_0_0 0 0 0_0_0_0 0 0 0 8 8 8|8 8 8 8|8 8|8 8 8 8|8 8 8 8 8 8|8 8_8_8|8 8|8_8_8 8|8 8 8 4 4 4|4 4|4 4 4 4 4 4|4 4|4 4 4 4 4 4|4 4|4 4 4 4 4 4|4 4|4 4 4 4 4 4|4 4|4_4_4_4_4_4|4 4|4 4 4 X X X|X X X X X X X X X X|X X X X X X|X_X_X_X_X_X_X_X_X_X|X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
slope = 1/2 0 0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 3 0 0 0 0_0_1_1 2 2 2_2_2_2 3 3 2 0 0 0|1 1 2 2|2 2|2 2 3 3|2 2 3 0 1 1|2 2_2_2|2 2|3_3_2 2|3 3 3 1 2 2|2 2|2 2 3 3 2 2|3 3|3 3 3 2 2 2|2 2|3 3 2 2 3 3|3 3|3 3 2 2 2 2|3 3|2_2_3_3_3_3|3 3|2 2 1 2 3 3|2 2 3 3 3 3 3 3|2 2|1 1 0 3 2 2|3_3_3_3_3_3_2_2_1_1|0 0 0 2 3 3 3 3 3 3 2 2 1 1 0 0 0 0 0 3 3 3 3 3 2 2 1 1 0 0 0 0 0 0 0 3 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 |
slope = 1 0 0 0 0 0 0 1 2 3 4 3 2 3 4 4 4 0 0 0 0 0 1 2 3 4 3 2 3 4 4 4 4 0 0 0 0_1_2_3 4 3 2_3_4_4 4 4 4 0 0 0|1 2 3 4|3 2|3 4 4 4|4 4 4 0 0 1|2 3_4_3|2 3|4_4_4 4|4 4 3 0 1 2|3 4|3 2 3 4 4 4|4 4|4 3 2 1 2 3|4 3|2 3 4 4 4 4|4 4|3 2 1 2 3 4|3 2|3_4_4_4_4_4|4 3|2 1 0 3 4 3|2 3 4 4 4 4 4 4 3 2|1 0 0 4 3 2|3_4_4_4_4_4_4_3_2_1|0 0 0 3 2 3 4 4 4 4 4 4 3 2 1 0 0 0 0 2 3 4 4 4 4 4 4 3 2 1 0 0 0 0 0 3 4 4 4 4 4 4 3 2 1 0 0 0 0 0 0 |
slope = 2 0 0 0 0 0 1 2 3 2 1 1 2 2 2 3 2 0 0 0 0 1 2 3 3 1 1 2 2 2 3 3 2 0 0 0 0_1_2_3 2 1 1_2_2_2 3 2 1 0 0 0|1 2 3 3|1 1|2 2 2 3|3 2 1 0 0 0|1 2_3_2|1 1|2_2_2 3|2 1 0 0 0 1|2 3|3 1 1 2 2 2|3 2|1 0 0 0 0 1|2 3|2 1 1 2 2 2|3 2|1 0 0 0 1 2|3 3|1_1_2_2_2_3|3 2|1 0 0 0 1 2|3 2 1 1 2 2 2 3 2 1|0 0 0 1 2 3|3_1_1_2_2_2_3_3_2_1|0 0 0 1 2 3 2 1 1 2 2 2 3 2 1 0 0 0 0 2 3 3 1 1 2 2 2 3 3 2 1 0 0 0 0 2 3 2 1 1 2 2 2 3 2 1 0 0 0 0 0 |
vertical 0 0 0 7 7 4 4 2 2 4 4 7 7 0 0 0 0 0 0 7 7 4 4 2 2 4 4 7 7 0 0 0 0 0 0 7_7_4_4 2 2 4_4_7_7 0 0 0 0 0 0|7 7 4 4|2 2|4 4 7 7|0 0 0 0 0 0|7 7_4_4|2 2|4_4_7 7|0 0 0 0 0 0|7 7|4 4 2 2 4 4|7 7|0 0 0 0 0 0|7 7|4 4 2 2 4 4|7 7|0 0 0 0 0 0|7 7|4_4_2_2_4_4|7 7|0 0 0 0 0 0|7 7 4 4 2 2 4 4 7 7|0 0 0 0 0 0|7_7_4_4_2_2_4_4_7_7|0 0 0 0 0 0 7 7 4 4 2 2 4 4 7 7 0 0 0 0 0 0 7 7 4 4 2 2 4 4 7 7 0 0 0 0 0 0 7 7 4 4 2 2 4 4 7 7 0 0 0 |
slope = -2 2 3 2 2 2 1 1 2 3 2 1 0 0 0 0 0 2 3 3 2 2 2 1 1 3 3 2 1 0 0 0 0 1 2 3 2_2_2_1 1 2 3_2_1_0 0 0 0 1 2 3|3 2 2 2|1 1|3 3 2 1|0 0 0 0 1 2|3 2_2_2|1 1|2_3_2 1|0 0 0 0 1 2|3 3|2 2 2 1 1 3|3 2|1 0 0 0 0 1|2 3|2 2 2 1 1 2|3 2|1 0 0 0 0 1|2 3|3_2_2_2_1_1|3 3|2 1 0 0 0 0|1 2 3 2 2 2 1 1 2 3|2 1 0 0 0 0|1_2_3_3_2_2_2_1_1_3|3 2 1 0 0 0 0 1 2 3 2 2 2 1 1 2 3 2 1 0 0 0 0 1 2 3 3 2 2 2 1 1 3 3 2 0 0 0 0 0 1 2 3 2 2 2 1 1 2 3 2 |
slope = -1 4 4 4 3 2 3 4 3 2 1 0 0 0 0 0 0 4 4 4 4 3 2 3 4 3 2 1 0 0 0 0 0 4 4 4 4_4_3_2 3 4 3_2_1_0 0 0 0 4 4 4|4 4 4 3|2 3|4 3 2 1|0 0 0 3 4 4|4 4_4_4|3 2|3_4_3 2|1 0 0 2 3 4|4 4|4 4 4 3 2 3|4 3|2 1 0 1 2 3|4 4|4 4 4 4 3 2|3 4|3 2 1 0 1 2|3 4|4_4_4_4_4_3|2 3|4 3 2 0 0 1|2 3 4 4 4 4 4 4 3 2|3 4 3 0 0 0|1_2_3_4_4_4_4_4_4_3|2 3 4 0 0 0 0 1 2 3 4 4 4 4 4 4 3 2 3 0 0 0 0 0 1 2 3 4 4 4 4 4 4 3 2 0 0 0 0 0 0 1 2 3 4 4 4 4 4 4 3 |
slope = -1/2 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0 0 3 2 2 2 2 2 2 1 1 0 0 0 0 0 0 0 2 3 3 2_2_2_2 2 2 1_1_0_0 0 0 0 3 2 2|3 3 2 2|2 2|2 2 1 1|0 0 0 3 3 3|2 2_3_3|2 2|2_2_2 2|1 1 0 3 3 3|3 3|2 2 3 3 2 2|2 2|2 2 1 2 3 3|3 3|3 3 2 2 3 3|2 2|2 2 2 1 2 2|3 3|3_3_3_3_2_2|3 3|2 2 2 0 1 1|2 2 3 3 3 3 3 3 2 2|3 3 2 0 0 0|1_1_2_2_3_3_3_3_3_3|2 2 3 0 0 0 0 0 1 1 2 2 3 3 3 3 3 3 2 0 0 0 0 0 0 0 1 1 2 2 3 3 3 3 3 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 3 |
2. A numerical simulation: the analysis
Comments: webmaster@ams.org
© copyright 1999, American Mathematical Society.