
MAT 513 Solutions to Midterm 2
1. (a)5 pts Suppose f : A→ R. Define what it means for f to be continuous on A.

(There are several possible correct answers. Choose one.)

Solution: The simplest is just the following:
For every c ∈ A, the limit limx→c f(x) exists and is equal to f(c).
However, you can replace the statement of limit above with any of the various equivalent
definitions, for example:
For every c ∈ A and for every ε > 0, there exists a δ > 0 so that for every x ∈ A with
|x− c| < δ, we have |f(x)− f(c)| < ε.
Or
A function f is continuous if for every open set U ⊆ R, the set f−1(U) is also open.

(b)5 pts Suppose f : A→ R. Define what it means for f to be uniformly continuous on A.

Solution: For every ε > 0, there exists a δ > 0 so that for every c ∈ A and every x ∈ A with
|x− c| < δ, we have |f(x)− f(c)| < ε.

2.10 pts Compute the following limits using any correct method.

(a) lim
x→0+

x ln(x)

Solution: Observe that limx→0+ ln(x) = −∞ and limx→0+ x = 0.
Rewriting and then using L’Hôpital’s rule, we have

lim
x→0+

x ln(x) = lim
x→0+

ln(x)

1/x
= lim

x→0+

1/x

−1/x2
= lim

x→0+
x = 0

(b) lim
x→1

x2 − x−1

x− 1

Solution: Here we can use algebra or L’Hôpital’s rule. By algebra, we have

x2 − x−1

x− 1
=

1

x
· x

3 − 1

x− 1
=
x2 + x+ 1

x
provided x 6= 1,

so

lim
x→1

x2 − x−1

x− 1
= lim

x→1

x2 + x+ 1

x
= 3.

Alternatively, since the limit of the numerator and denominator are both 0, we can apply
L’Hôpital’s rule to get

lim
x→1

x2 − x−1

x− 1
= lim

x→1

2x+ x−2

1
= 2 + 1 = 3.
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3.10 pts Let f(x) =

{
x2 sin(1/x2) + x/2 for x 6= 0,

0 for x = 0.

(a) Compute f ′(0).

Solution: Using the definition of the derivative, we have

f ′(0) = lim
x→0

f(x)− f(0)
x− 0

= lim
x→0

x2 sin(1/x2) + x/2

x
= lim

x→0
x sin(1/x2) + 1/2 = 1/2,

using the fact that −1 ≤ sin(1/x2) ≤ 1 to see that x sin(1/x2)→ 0.

(b) Is there an interval (−a, a) about zero on which f(x) is increasing? Explain.

Solution: No.
Although f ′(0) > 0, observe that for x 6= 0 we have

f ′(x) = 2x sin(1/x2)− 2x−1 cos(1/x2) + 1/2.

In any interval about 0, f’(x) will take on all values in R (since as x → 0, cos(1/x) changes
sign infinitely often, and x−1 is unbounded). So f(x) oscillates wildly as x→ 0, and cannot
be said to be increasing on any interval containing 0.

4.10 pts Let fn(x) = (x− 1
n
)2 for x ∈ [0, 1]. Does

{
fn
}

converge uniformly on [0, 1]?
Fully justify your answer.

Solution: Clearly lim fn(x) = x2 pointwise.

To see that the convergence is uniform, we need to show that for any ε > 0, there is an N so
that for all n > N , we have |fn(x)− x2| < ε for all x ∈ [0, 1].

Let ε > 0, and take n > 2/ε. Then we have∣∣∣∣∣
(
x− 1

n

)2

− x2
∣∣∣∣∣ =

∣∣∣∣x2 − 2x

n
+

1

n2
− x2

∣∣∣∣ = 2x

n
− 1

n2
<

2x

n
<

2x

2/ε
= xε ≤ ε,

since 0 ≤ x ≤ 1.

So the convergence is uniform on [0, 1].

The uniform convergence should be apparent in the graph below.
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5.10 pts A function g : A → R is an open mapping if for every open set U ⊆ A, its image g(U) is
open. Not all open mappings are continuous1.

Show that if g : R→ R is an open mapping and and g is increasing, then it is continuous
at every x ∈ R.

Solution: One way to do this is as follows:

Since g is increasing and open, it must be strictly increasing (if there were an interval (a, b)
on which g were constant, then g would send the open set (a, b) to a point, which is not
open). We’ve see that if g is a strictly monotone map with g(R) = B, then it has an inverse
map g−1 : B → R (this inverse may not be continuous— but we will see that it is in this
case).

We also saw that a map is continuous if and only if the preimage of open sets are open. Let
U be any open set in R. Then since g is open, g(U) is also open. But since g is the inverse
of g−1, this means that for g−1, preimages of open sets are open. So g−1 is continuous, and
hence g is also continuous.

If you don’t like that, here’s another way:

Suppose g is discontinuous at some c ∈ R. Then g cannot have a removable discontinuity
at c; that is, if limx→c g(x) exists, it must equal g(c). This is because

lim
x→c−

g(x) ≤ g(c) ≤ lim
x→c+

g(x)

since g is increasing, yet the one-sided limits must be equal for the two-sided limit to exist.

Similarly, g(x) cannot have an essential discontinuity at c, since for this to happen, one of the
one-sided limits must not exist. To see this, let L = supx<c { g(x) }. Since L is a least upper
bound for this set, for any ε > 0 there is an x < c with |g(x) − L| < ε. For every y > x we
have g(y) > g(x); this means that every point y in the interval (x, c) satisfies |g(y) − L| < ε.
That is, limx→c− g(x) = L. A similar argument shows that limx→c+ g(x) must exist.

Suppose g has a jump discontinuity at c. Then either

lim
x→c−

g(x) < g(c) or g(c) < lim
x→c+

g(x).

Now let U = (c− δ, c+ δ) for some small δ > 0, and observe that g(U) is not open, since g(c)
will not be interior to g(U).

Since g cannot have a removable, jump, or essential discontinuity at c, it must be continuous
at c. Since c was arbitrary, g must be continuous on all of R.

1For example, let C be the middle-thirds Cantor set, and define f(x) = 0 when x ∈ C ∩ (0, 1). Let f send each
of the open intervals Ia,n = (a/3n, (a + 1)/3n) in (0, 1) r C monotonically increasing onto the interval (−1, 1).
Then f is an open mapping from (0, 1) to (−1, 1) but f is not continuous.

Extra Credit [5 pts]: on the back of this page, prove that f as described above is indeed an open mapping.
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Extra Credit: The map f described in the footnote is clearly not con-
tinuous. For example, lim

x→ 2
3

− f(x) = 1, but f(2/3) = 0.
To see that f is an open mapping, let U be an open set.
If U ∩ C = ∅, then f(U) will be an open subset of (−1, 1). It might not
be the whole interval, but since f is monotone on such pieces, f(U)
will be open.

Suppose instead U contains an interval (a, b) intersecting C. Let x be a point in C ∩ (a, b).
Since every point x ∈ C is a limit point of C, there is a sequence of points

{
xn
}

with xn ∈ C
that converges to x, and in particular we have another point y ∈ C ∩ (a, b) with y 6= x.

Since C is totally disconnected, between any two points in C there will be an interval of the
form Ia,n, so f(U) = (−1, 1).

Thus, f is an open mapping, but is not continuous.

6.10 pts Let g be a differentiable function defined on [0, 2] with g(0) = 1, g(1) = 1 and g(2) = 2.

(a) Prove that at some point c ∈ (0, 2), we have g′(c) = 1/2.

Solution: Since g(0) = 1 and g(2) = 2 and g is differentiable, we can apply the Mean Value
Theorem to get the existence of a point c ∈ (0, 2) for which

g′(c) =
g(2)− g(0)

2− 0
=

1

2
.

(b) Prove that at some point b ∈ [0, 2], we have g′(b) = 1/3.

Solution: Using the previous part, we found a point c with g′(c) = 1/2. Since g(0) = g(1),
we can also apply to Mean Value Theorem (or Rolle’s Theorem, in this case) to find a point
a ∈ (0, 1) with g′(a) = 0. Although g′(x) need not be continuous on [0, 2], by Darboux’s
Theorem it cannot have a jump discontinuity. Thus, it takes on all values between 0 and 1

2
.

In particular, there is a b ∈ (a, c) ⊆ (0, 2) for which g′(b) = 1/3 (or, indeed, any number
between 0 and 1

2
).
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