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MAT 513 Solutions to Midterm 2

1. (a) Suppose f: A — R. Detine what it means for f to be continuous on A.
(There are several possible correct answers. Choose one.)

Solution: The simplest is just the following;:
For every ¢ € A, the limit lim,_,. f(z) exists and is equal to f(c).

However, you can replace the statement of limit above with any of the various equivalent
definitions, for example:

For every ¢ € A and for every € > 0, there exists a § > 0 so that for every x € A with
|z —¢| < 6, wehave |f(z) — f(c)] <e.

Or

A function f is continuous if for every open set U C R, the set f~'(U) is also open.

(b) Suppose f: A — R. Define what it means for f to be uniformly continuous on A.

Solution: For every € > 0, there exists a > 0 so that for every c € A and every z € A with
|z —¢| < 6, wehave |f(z) — f(c)] <e.

2. Compute the following limits using any correct method.

li 1
@) lim ln(x)
Solution: Observe that lim, o+ In(z) = —oo and lim,_,¢+ x = 0.
Rewriting and then using L'Hopital’s rule, we have
In(z) , 1/z

o) = I T = I S = e =0

g2 gl
®) tiy

Solution: Here we can use algebra or L'Hopital’s rule. By algebra, we have

x? — g1 1 x3—1_x2—|—x+1

=—- = provided = # 1,

r—1 r x—1 T
S0 2 -1 2 1
i X = el o
z—=1 1 —1 x—1 x

Alternatively, since the limit of the numerator and denominator are both 0, we can apply
L’'Hopital’s rule to get
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r?sin(1/2?) +x/2 forz # 0,
3. Letf(:v):{o (/%) + 2/ for a0

(a) Compute f'(0).

Solution: Using the definition of the derivative, we have

£1(0) — tim LB =IO o sin1/a?) + /2

z—0 x—0 z—0 X

= lim xsin(1/2?) + 1/2 = 1/2,
z—0

using the fact that —1 < sin(1/2?) < 1 to see that zsin(1/2?) — 0.

(b) Is there an interval (—a, a) about zero on which f(x) is increasing? Explain.

Solution: No.
Although f'(0) > 0, observe that for x # 0 we have

f'(x) = 2xsin(1/2?) — 22~ ' cos(1/2?) + 1/2.

In any interval about 0, f’(x) will take on all values in R (since as x — 0, cos(1/x) changes
sign infinitely often, and z~! is unbounded). So f(z) oscillates wildly as z — 0, and cannot
be said to be increasing on any interval containing 0.

4. Let f,(z) = (z—1)? forz € [0,1]. Does { f,} converge uniformly on [0, 1]?
Fully justify your answer.

Solution: Clearly lim f,(z) = 2? pointwise.

To see that the convergence is uniform, we need to show that for any € > 0, there is an IV so
that for all n > N, we have |f,,(z) — 2%| < e for all z € [0, 1].

Let € > 0, and take n > 2/e. Then we have

since 0 < z < 1.
So the convergence is uniform on [0, 1].

The uniform convergence should be apparent in the graph below.
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5. A function g: A — R is an open mapping if for every open set U C A, its image ¢(U) is
open. Not all open mappings are continuous’.

Show that if g: R — R is an open mapping and and g is increasing, then it is continuous
atevery r € R.

Solution: One way to do this is as follows:

Since g is increasing and open, it must be strictly increasing (if there were an interval (a, b)
on which g were constant, then g would send the open set (a,b) to a point, which is not
open). We've see that if g is a strictly monotone map with g(R) = B, then it has an inverse
map g~ ': B — R (this inverse may not be continuous— but we will see that it is in this
case).

We also saw that a map is continuous if and only if the preimage of open sets are open. Let
U be any open set in R. Then since g is open, ¢g(U) is also open. But since g is the inverse
of g7!, this means that for ¢~', preimages of open sets are open. So ¢! is continuous, and
hence g is also continuous.

If you don’t like that, here’s another way:

Suppose g is discontinuous at some ¢ € R. Then g cannot have a removable discontinuity
at ¢; that is, if lim,_,. g(z) exists, it must equal g(c). This is because

lim g(z) < g(c) < lim g(z)

T—c™ z—ct

since g is increasing, yet the one-sided limits must be equal for the two-sided limit to exist.

Similarly, g(x) cannot have an essential discontinuity at ¢, since for this to happen, one of the
one-sided limits must not exist. To see this, let L = sup,_.{ g(z) }. Since L is a least upper
bound for this set, for any € > 0 there is an © < ¢ with |g(x) — L| < €. For every y > = we
have g(y) > g(z); this means that every point y in the interval (z, ¢) satisfies |g(y) — L| < e.
That is, lim, ,.- g(z) = L. A similar argument shows that lim, .+ g(z) must exist.

Suppose g has a jump discontinuity at c. Then either

lim g(z) < g(c) or g(c) < lim g(z).

T—c™ z—ct
Now let U = (¢ — 9, ¢+ 9) for some small § > 0, and observe that ¢(U) is not open, since g(c)
will not be interior to g(U).

Since g cannot have a removable, jump, or essential discontinuity at ¢, it must be continuous
at c. Since c was arbitrary, g must be continuous on all of R.

'For example, let C be the middle-thirds Cantor set, and define f(z) = 0 when 2 € CN (0, 1). Let f send each
of the open intervals I, ,, = (a/3", (a +1)/3™) in (0,1) \. C monotonically increasing onto the interval (—1,1).
Then f is an open mapping from (0, 1) to (—1,1) but f is not continuous.

Extra Credit [5 pts]: on the back of this page, prove that f as described above is indeed an open mapping.
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Extra Credit: The map f described in the footnote is clearly not con- .

tinuous. For example, limxﬁgf f(z) =1,but f(2/3) =0.

To see that f is an open mapping, let U be an open set.

IfUNC =0, then f(U) will be an open subset of (—1, 1). It might not .

be the whole interval, but since f is monotone on such pieces, f(U)

will be open. B I e

Suppose instead U contains an interval (a,b) intersecting C. Let x be a point in C N (a, b).
Since every point = € C is a limit point of C, there is a sequence of points {x, } with z,, € C
that converges to z, and in particular we have another point y € C N (a, b) with y # .

Since C is totally disconnected, between any two points in C there will be an interval of the
form 1, ,,, so f(U) = (—1,1).

Thus, f is an open mapping, but is not continuous.

6. Let g be a differentiable function defined on [0, 2] with ¢(0) =1, g(1) = 1 and ¢(2) = 2.
(a) Prove that at some point ¢ € (0,2), we have ¢'(c) = 1/2.

Solution: Since ¢(0) = 1 and ¢(2) = 2 and g is differentiable, we can apply the Mean Value
Theorem to get the existence of a point ¢ € (0, 2) for which

/ 9(2) —g(0) 1
10="5"0 -7

(b) Prove that at some point b € [0, 2], we have ¢'(b) = 1/3.

Solution: Using the previous part, we found a point ¢ with ¢'(c) = 1/2. Since g(0) = g(1),
we can also apply to Mean Value Theorem (or Rolle’s Theorem, in this case) to find a point
a € (0,1) with ¢'(a) = 0. Although ¢'(x) need not be continuous on [0, 2|, by Darboux’s
Theorem it cannot have a jump discontinuity. Thus, it takes on all values between 0 and 3.
In particular, there isa b € (a,c) C (0,2) for which ¢'(b) = 1/3 (or, indeed, any number
between 0 and 1).
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