5 pts

1. (a) Suppose $f: A \to \mathbb{R}$. Define what it means for f to be **continuous on** A. (There are several possible correct answers. Choose one.)

Solution: The simplest is just the following:

For every $c \in A$, the limit $\lim_{x\to c} f(x)$ exists and is equal to f(c).

However, you can replace the statement of limit above with any of the various equivalent definitions, for example:

For every $c \in A$ and for every $\epsilon > 0$, there exists a $\delta > 0$ so that for every $x \in A$ with $|x - c| < \delta$, we have $|f(x) - f(c)| < \epsilon$.

Or

A function f is continuous if for every open set $U \subseteq \mathbb{R}$, the set $f^{-1}(U)$ is also open.

5 pts

(b) Suppose $f: A \to \mathbb{R}$. Define what it means for f to be **uniformly continuous on** A.

Solution: For every $\epsilon > 0$, there exists a $\delta > 0$ so that for every $c \in A$ and every $x \in A$ with $|x - c| < \delta$, we have $|f(x) - f(c)| < \epsilon$.

10 pts

2. Compute the following limits using any correct method.

(a)
$$\lim_{x \to 0^+} x \ln(x)$$

Solution: Observe that $\lim_{x\to 0^+} \ln(x) = -\infty$ and $\lim_{x\to 0^+} x = 0$.

Rewriting and then using L'Hôpital's rule, we have

$$\lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} x = 0$$

(b)
$$\lim_{x \to 1} \frac{x^2 - x^{-1}}{x - 1}$$

Solution: Here we can use algebra or L'Hôpital's rule. By algebra, we have

$$\frac{x^2 - x^{-1}}{x - 1} = \frac{1}{x} \cdot \frac{x^3 - 1}{x - 1} = \frac{x^2 + x + 1}{x} \qquad \text{provided } x \neq 1,$$

so

$$\lim_{x \to 1} \frac{x^2 - x^{-1}}{x - 1} = \lim_{x \to 1} \frac{x^2 + x + 1}{x} = 3.$$

Alternatively, since the limit of the numerator and denominator are both 0, we can apply L'Hôpital's rule to get

$$\lim_{x \to 1} \frac{x^2 - x^{-1}}{x - 1} = \lim_{x \to 1} \frac{2x + x^{-2}}{1} = 2 + 1 = 3.$$

10 pts 3. Let
$$f(x) = \begin{cases} x^2 \sin(1/x^2) + x/2 & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

(a) Compute f'(0).

Solution: Using the definition of the derivative, we have

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin(1/x^2) + x/2}{x} = \lim_{x \to 0} x \sin(1/x^2) + 1/2 = 1/2,$$

using the fact that $-1 \le \sin(1/x^2) \le 1$ to see that $x \sin(1/x^2) \to 0$.

(b) Is there an interval (-a, a) about zero on which f(x) is increasing? Explain.

Solution: No.

Although f'(0) > 0, observe that for $x \neq 0$ we have

$$f'(x) = 2x\sin(1/x^2) - 2x^{-1}\cos(1/x^2) + 1/2.$$

In any interval about 0, f'(x) will take on all values in \mathbb{R} (since as $x \to 0$, $\cos(1/x)$ changes sign infinitely often, and x^{-1} is unbounded). So f(x) oscillates wildly as $x \to 0$, and cannot be said to be increasing on any interval containing 0.

10 pts

4. Let $f_n(x) = (x - \frac{1}{n})^2$ for $x \in [0, 1]$. Does $\{f_n\}$ converge uniformly on [0, 1]? Fully justify your answer.

Solution: Clearly $\lim f_n(x) = x^2$ pointwise.

To see that the convergence is uniform, we need to show that for any $\epsilon > 0$, there is an N so that for all n > N, we have $|f_n(x) - x^2| < \epsilon$ for all $x \in [0, 1]$.

Let $\epsilon > 0$, and take $n > 2/\epsilon$. Then we have

$$\left| \left(x - \frac{1}{n} \right)^2 - x^2 \right| = \left| x^2 - \frac{2x}{n} + \frac{1}{n^2} - x^2 \right| = \frac{2x}{n} - \frac{1}{n^2} < \frac{2x}{n} < \frac{2x}{2/\epsilon} = x\epsilon \le \epsilon,$$

since $0 \le x \le 1$.

So the convergence is uniform on [0, 1].

The uniform convergence should be apparent in the graph below.

10 pts

5. A function $g: A \to \mathbb{R}$ is an **open mapping** if for every open set $U \subseteq A$, its image g(U) is open. Not all open mappings are continuous¹.

Show that if $g \colon \mathbb{R} \to \mathbb{R}$ is an open mapping and and g is increasing, then it is continuous at every $x \in \mathbb{R}$.

Solution: One way to do this is as follows:

Since g is increasing and open, it must be strictly increasing (if there were an interval (a,b) on which g were constant, then g would send the open set (a,b) to a point, which is not open). We've see that if g is a strictly monotone map with $g(\mathbb{R}) = B$, then it has an inverse map $g^{-1} \colon B \to \mathbb{R}$ (this inverse may not be continuous—but we will see that it is in this case).

We also saw that a map is continuous if and only if the preimage of open sets are open. Let U be any open set in \mathbb{R} . Then since g is open, g(U) is also open. But since g is the inverse of g^{-1} , this means that for g^{-1} , preimages of open sets are open. So g^{-1} is continuous, and hence g is also continuous.

If you don't like that, here's another way:

Suppose g is discontinuous at some $c \in \mathbb{R}$. Then g cannot have a removable discontinuity at c; that is, if $\lim_{x\to c} g(x)$ exists, it must equal g(c). This is because

$$\lim_{x\to c^-}g(x)\leq g(c)\leq \lim_{x\to c^+}g(x)$$

since g is increasing, yet the one-sided limits must be equal for the two-sided limit to exist.

Similarly, g(x) cannot have an essential discontinuity at c, since for this to happen, one of the one-sided limits must not exist. To see this, let $L = \sup_{x < c} \{ \ g(x) \ \}$. Since L is a least upper bound for this set, for any $\epsilon > 0$ there is an x < c with $|g(x) - L| < \epsilon$. For every y > x we have g(y) > g(x); this means that every point y in the interval (x,c) satisfies $|g(y) - L| < \epsilon$. That is, $\lim_{x \to c^+} g(x) = L$. A similar argument shows that $\lim_{x \to c^+} g(x)$ must exist.

Suppose g has a jump discontinuity at c. Then either

$$\lim_{x \to c^-} g(x) < g(c) \quad \text{or} \quad g(c) < \lim_{x \to c^+} g(x).$$

Now let $U = (c - \delta, c + \delta)$ for some small $\delta > 0$, and observe that g(U) is not open, since g(c) will not be interior to g(U).

Since g cannot have a removable, jump, or essential discontinuity at c, it must be continuous at c. Since c was arbitrary, g must be continuous on all of \mathbb{R} .

¹For example, let \mathcal{C} be the middle-thirds Cantor set, and define f(x) = 0 when $x \in \mathcal{C} \cap (0,1)$. Let f send each of the open intervals $I_{a,n} = (a/3^n, (a+1)/3^n)$ in $(0,1) \setminus \mathcal{C}$ monotonically increasing onto the interval (-1,1). Then f is an open mapping from (0,1) to (-1,1) but f is not continuous.

Extra Credit [5 pts]: on the back of this page, prove that *f* as described above is indeed an open mapping.

Extra Credit: The map f described in the footnote is clearly not continuous. For example, $\lim_{x\to \frac{2}{\pi}} f(x) = 1$, but f(2/3) = 0.

To see that f is an open mapping, let U be an open set.

If $U \cap \mathcal{C} = \emptyset$, then f(U) will be an open subset of (-1,1). It might not be the whole interval, but since f is monotone on such pieces, f(U) will be open.

Suppose instead U contains an interval (a,b) intersecting \mathcal{C} . Let x be a point in $\mathcal{C} \cap (a,b)$. Since every point $x \in \mathcal{C}$ is a limit point of \mathcal{C} , there is a sequence of points $\{x_n\}$ with $x_n \in \mathcal{C}$ that converges to x, and in particular we have another point $y \in \mathcal{C} \cap (a,b)$ with $y \neq x$.

Since C is totally disconnected, between any two points in C there will be an interval of the form $I_{a,n}$, so f(U) = (-1,1).

Thus, f is an open mapping, but is not continuous.

10 pts

- 6. Let g be a differentiable function defined on [0,2] with g(0)=1, g(1)=1 and g(2)=2.
 - (a) Prove that at some point $c \in (0, 2)$, we have g'(c) = 1/2.

Solution: Since g(0)=1 and g(2)=2 and g is differentiable, we can apply the Mean Value Theorem to get the existence of a point $c\in(0,2)$ for which

$$g'(c) = \frac{g(2) - g(0)}{2 - 0} = \frac{1}{2}.$$

(b) Prove that at some point $b \in [0, 2]$, we have g'(b) = 1/3.

Solution: Using the previous part, we found a point c with g'(c)=1/2. Since g(0)=g(1), we can also apply to Mean Value Theorem (or Rolle's Theorem, in this case) to find a point $a \in (0,1)$ with g'(a)=0. Although g'(x) need not be continuous on [0,2], by Darboux's Theorem it cannot have a jump discontinuity. Thus, it takes on all values between 0 and $\frac{1}{2}$. In particular, there is a $b \in (a,c) \subseteq (0,2)$ for which g'(b)=1/3 (or, indeed, any number between 0 and $\frac{1}{2}$).