| > | jack := VectorCalculus[Jacobian](
[ (v^2 - cos(theta))/v, -sin(theta) - R*v^2 ], [theta, v]); |
![]() |
(1) |
| > | fix:=convert(
solve( { -sin(theta) - R*v^2 = 0, (v^2 - cos(theta))/v =0 }, {theta,v}), radical); |
| (2) |
| > | eval(jack, fix); |
![]() |
(3) |
| > | simplify(eval(jack, fix)); |
![]() |
(4) |
| > | eval(%,R=0); |
| (5) |
| > | jill := unapply( simplify(eval(jack, fix)), R): |
| > | jill(0);
jill(R); jill(0.2); |
![]() |
|
| (6) |
| > | with(LinearAlgebra): |
| > | Eigenvalues(jill(0.2)); |
| (7) |
| > | [Trace(jill(0.2)), Determinant(jill(0.2)) ]; |
| (8) |
for what R is tr^2 = 4*det?
| > | discr := Trace(jill(R))^2 - 4*Determinant(jill(R)); |
| (9) |
| > | solve(discr=0, R); |
| (10) |
| > | evalf(eval(discr,R=2*sqrt(2)+.1)); |
| (11) |
| > | evalf(eval(discr,R=2*sqrt(2)-.1)); |
| (12) |
| > | evalf(eval(discr,R=100)); |
| (13) |
| > | evalf(jill(100)); |
| (14) |
| > | Determinant(jill(100)); |
| (15) |
| > | Determinant(jill(R)); |
| (16) |
| > | R:='R':
xphug:= [ diff(theta(t),t) = ( v(t)^2 - cos(theta(t))) / v(t), diff(v(t),t) = -sin(theta(t)) - R*v(t)^2 , diff(x(t),t) = v(t)*cos(theta(t)), diff(y(t),t) = v(t)*sin(theta(t))]; |
| (17) |
| > | with(DETools):with(plots): |
| > | R:=1;
display( array([ DEplot(xphug, [ theta(t), v(t), x(t), y(t) ], t=0..10, |
| > | [[theta(0)=0, v(0)=2.5, x(0)=0, y(0)=4 ],
[theta(0)=0, v(0)=.8, x(0)=0, y(0)=1 ]], |
| > | theta=-Pi/2..3*Pi, v=0..3, x=-1..6, y=0..7,
scene=[theta,v], |
| > | linecolor=[blue,red], stepsize=0.1, title="v,theta phase"),
|
| > | DEplot(xphug, [ theta(t), v(t), x(t), y(t) ], t=0..10, |
| > | [[theta(0)=0, v(0)=2.5, x(0)=0, y(0)=4 ],
[theta(0)=0, v(0)=.8, x(0)=0, y(0)=1 ]], |
| > | theta=-Pi/2..3*Pi, v=0..3, x=-1..6, y=0..7,
scene=[x,y], title="path of glider", |
| > | linecolor=[blue,red], stepsize=0.1)
])); |
| > |
|
| > | eval(fix); |
| (18) |
| > | R:=3;
display( array([ DEplot(xphug, [ theta(t), v(t), x(t), y(t) ], t=0..10, |
| > | [[theta(0)=0, v(0)=2.5, x(0)=0, y(0)=4 ],
[theta(0)=0, v(0)=.8, x(0)=0, y(0)=1 ]], |
| > | theta=-Pi/2..3*Pi, v=0..3, x=-1..6, y=0..7,
scene=[theta,v], |
| > | linecolor=[blue,red], stepsize=0.1, title="v,theta phase"),
|
| > | DEplot(xphug, [ theta(t), v(t), x(t), y(t) ], t=0..10, |
| > | [[theta(0)=0, v(0)=2.5, x(0)=0, y(0)=4 ],
[theta(0)=0, v(0)=.8, x(0)=0, y(0)=1 ]], |
| > | theta=-Pi/2..3*Pi, v=0..3, x=-1..6, y=0..7,
scene=[x,y], title="path of glider", |
| > | linecolor=[blue,red], stepsize=0.1)
])); |
| > |
|
| > | Eigenvectors(jill(3.0)); evalf(fix); |
| (19) |
| > |