
MAT 319, Spring 2012
Solutions to HW 4

1. Prove the following:

(a) If the sequence (xn) is bounded below, and (yn) diverges to +∞, then (xn + yn) diverges to +∞.
Proof: Let α be any number. We must �nd a tail of (xn + yn) that is always greater than α. Let
B be a lower bound for (xn) so that xn ≥ B for all n. There exists a tail of (yn) that is always
greater than α−B. That is: ∃N such that if n > N , then yn > α−B. Therefore, if n > N , then

xn + yn > B + (α−B) = α.

Hence, (xn + yn) diverges to +∞ as desired.

(b) If the sequence (xn) diverges to +∞, then it is bounded below.
Proof: Since (xn) diverges to in�nity, we can always �nd a tail of the sequence whose terms
are as large as we want. In particular, ∃N such that xn > 1000 whenever n > N . (The 1000
is completely arbitrary. I could have picked any other number and found a corresponding tail.
Picking one number is just a way to give us something de�nite to work with.) Therefore, 1000 is
a lower bound for the N -tail.

1000 < xN+1, xN+2, xN+3, . . . .

It is not necessarily a lower bound for the entire sequence. To achieve this, letm = min {x1, x2, . . . , xN , 1000}.
Then m is obviously less than or equal to x1, x2, . . . , xN , and since it is also no bigger than 1000,
it must be less than the terms in the N -tail as well. Therefore, m is a lower bound for the entire
sequence.

(c) If both sequences (xn) and (yn) diverge to +∞, then (xn + yn) diverges to +∞.
Since (xn) diverges to +∞, it is bounded below by 1b. 1a then implies that (xn + yn) diverges
to +∞.

2.

(a) Let (xn) and (zn) be two sequences such that zn = −xn for every n. Prove that xn diverges to
+∞ if and only if zn diverges to −∞.
⇒) Assume (xn) → +∞. Let α < 0. We want to �nd a tail of (zn) that is always SMALLER
than α, a tail in the �neighborhood� (−∞, α) of −∞. We know that we can �nd a tail of (xn) that
is bigger than any given value, so in particular, we can �nd an N -tail such that if n > N , then
xn > −α. Now we can just multiply this inequality by −1. Therefore, if n > N , then −xn < α;
i.e. zn < α. Thus, the N -tail of (zn) is contained in the set (−∞, α). Therefore, (zn)→ −∞.
⇐) Assume (zn)→ −∞. Let α > 0. Now we want to �nd a tail of (xn) that is larger than α. We
know that we can �nd a tail of (zn) as small as we like, so we use the �negative one� trick again:
We can �nd an N -tail such that if n > N , then zn < −α. Therefore, if n > N , then −zn > α; i.e.
xn > α. Hence, the N -tail of (xn) is contained in the �neighborhood of +∞� (α,+∞). Therefore,
(xn)→ +∞.

This result is very useful. If we have a theorem saying that sequences satisfying certain con-
ditions tend to +∞, this result gives us an analogous theorem showing certain other sequences
converge to −∞ for free. All we have to do is multply everything by −1 to obtain this new
theorem. We will see how this works in the other

(b) Suppose (xn) diverges to −∞, and (yn) is bounded above. Show that (xn + yn) diverges to −∞.
Proof: This result looks a lot like that in 1a, except with terms going to −∞ instead of +∞. We
could go through the entire proof of 1a again, or we could multiply everything by −1 and apply
2a and 1a. This is the tack we take.
First, we note that (−yn) is bounded below: if b is an upper bound for (yn), then −b is a lower
bound for (−yn). Also, by 2a, (−xn) diverges to +∞. Therefore, 1a implies that (−xn − yn)
diverges to +∞. Multiplying by −1 again and applying 2a yields the desired result.
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(c) Suppose (xn) and (yn) both diverge to −∞. Prove that (xn + yn) diverges to −∞.
Proof: 2a implies that both (−xn) and (−yn) diverge to +∞. Therefore, 1c implies that
(−xn − yn) diverges to +∞. Applying 2a again yields the result that (xn + yn) diverges to
−∞.

3.

(a) Suppose that xn diverges to +∞, and that yn ≥ xn for every n. Prove that yn also diverges to
+∞.
Proof: Let α > 0. We want a tail of (yn) contained in (α,+∞). We know we can �nd a tail of (xn)
contained in this set. There exists a number N such that whenever n > N , xn > α. Therefore,
for these same values of n, yn ≥ xn > α. Since α was arbitrary, yn also diverges to +∞.

(b) Suppose that xn diverges to −∞, and that yn ≤ xn for every n. Prove that yn also diverges to
−∞.
Proof: We could repeat the proof of 3a, reversing all the correct inequalities, or we could use 2a
again. By 2a, (−xn) diverges to +∞. Also, −yn ≥ −xn for every n. Hence, by 3a, (−yn) also
diverges to +∞. Then 2a implies that (yn) diverges to −∞.

4.

(a) Suppose that (xn) converges to 0 and (yn) is bounded. Prove that (xnyn) converges to 0.
Proof: Let ε > 0. Let B > 0 be a bound for (yn), so that |yn| ≤ B for all n. We can �nd a
number N such that if n > N , then |xn − 0| = |xn| < ε

B . Thus, if n > N , then

|xnyn − 0| = |xnyn| = |xn| |yn| <
ε

B
B = ε.

Since ε was arbitrary, this shows (xnyn)→ 0.

(b) If xn = 1
n and yn = n, then (xn) → 0, (yn) → +∞, and (xnyn) converges to the �nite limit 1.

(In fact, it is the constant sequence.)
If xn = 1

n and yn = n2, then (xn) → 0, (yn) → +∞, but xnyn = n, so that (xnyn) diverges to
+∞.
If xn = (−1)n /n, then (xn) → 0. (For a proof of this, one can appeal to 4a, as xn is the
product of a bounded sequence, (−1)n, and a sequence converging to 0, 1/n.) Let yn = n, so that
(yn)→ +∞. Then (xnyn) = ((−1)n) is a sequence that has no �nite or in�nite limit.
If you prefer to only work with positive sequences, set xn = 1

n , and set

yn =

{
n if n is odd

n2 if n is even.

Then yn still tends toward +∞, but

xnyn =

{
1 if n is odd

n if n is even

does not converge or tend to +∞.

5. Find the following limits. Justify each step.

(a) xn = 3
√
n2 − n− 1.

This sequence diverges to +∞. One method of justifying this is by comparison: If n ≥ 3, then
n2 − n− 1 ≥ n. In fact, the quadratic formula tells us that n2 − 2n− 1 ≥ 0 whenevern ≥ 1+

√
2.

Thus, if we restrict our attention to n ≥ 3 > 1+
√
2, then xn ≥ n1/3. Since n1/3 diverges to +∞,

3a implies xn tends to +∞ as well.
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(b) xn =
7n2 + n+ 1√
n4 − 5n3 − 3

.

We rewrite xn in the equivalent form

xn =
7 + 1

n + 1
n2√

1− 5
n −

3
n4

.

We know that
(

1
np

)
→ 0 for all p > 0, and furthermore, we can multiply by any constant c so that(

c
np

)
→ 0. Therefore,

(
1
n

)
,
(

1
n2

)
,
(
− 5
n

)
,
(
− 3
n4

)
all converge to 0. We now apply the limit sum

formula to see
(
7 + 1

n + 1
n2

)
→ 7 and

(
1− 5

n −
3
n4

)
→ 1. Since 1− 5

n −
3
n4 converges to a positive

number, it must be eventually positive, (in fact it is positive for n ≥ 6), and so we can apply our

root rule to see
(√

1− 5
n −

3
n4

)
→
√
1 = 1. Finally, we can apply the limit quotient rule because

the numerator and denominator both converge � and the denominator does not converge to 0:

lim (xn) =
7

1
= 7.
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