2.2. Definite Integral

On the contents of the lecture. Areas of curvilinear trapezia play an extra-
ordinary important role in mathematics. They generate a key concept of Calculus
— the concept of the integral.

Three basic rules. For a nonnegative function f its integral fab f(z) dz along
the interval [a,b] is defined just as the area of the curvilinear trapezium below the
graph of f over [a,b]. We allow a function to take infinite values. Let us remark
that changing of the value of function in one point does not affect the integral,
because the area of the line is zero. That is why we allow the functions under
consideration to be undefined in a finite number of points of the interval.

Immediately from the definition one gets the following three basic rules of
integration:

Rule of constant fab fl@)de = c¢(b—a), if f(z) =c for x € (a,b),
Rule of inequality fab flx)de < f;g(:v) dz, if f(x) < g(x) for x € (a,b),
Rule of partition [ f(x) da = fab fl@)dz + [ f(x)d for b € (a,c).

b
b

Partition. Let |J| denote the length of an interval J. Let us say that a se-
quence {J}7_; of disjoint open subintervals of an interval I is a partition of I,
if > 41 |Zx| = |I]. The boundary of a partition P = {J;}}_, is defined as the
difference I \ |J;_, Jk and is denoted dP.

For any finite subset S of an interval I, which contains the ends of I, there
is a unique partition of I which has this set as the boundary. Such a partition is
called generated by S. For a monotone sequence {zj}}_, the generated partition

is {(zk—1,7k) } oy -

Piecewise constant functions. A function f(x) is called partially constant
on a partition {J}}_, of [a,b] if it is constant on each J;. The Rules of Constant
and Partition immediately imply:

b n
(2.2.1) [ t@yde =3 11l
a k=1

Proor. Indeed, the integral splits into a sum of integrals over Ji, = [zf_1, Z],
and the function takes the value f(Ji) in (zr—1, ). O

A function is called piecewise constant over an interval if it is partially constant
with respect to some finite partition of the interval.

LEMMA 2.2.1. Let f and g be piecewise constant functions over [a,b]. Then
b b b
Jo (f(@) £ g(z))dz = [, f(z)dw + [, g(z) dz.

ProOOF. First, suppose f(x) = cis constant on the interval (a, b). Let g take the
value gy, over the interval (zx,zg+1) for an exhausting {x;}}_,. Then f(z) + g(z)
takes values (c¢+ gi) over (zy, z+1). Hence f;(f(:v)-i—g(x)) dx = Z;S(c+gk)|6:ck|
due to (2.2.1). Splitting this sum and applying (2.2.1) to both summands, one gets
S hso clok| + Sy gklowk| = f; f(z)de + f;g(x) dx. This proves the case of a
constant f.

40
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Now let f be partially constant on the partition generated by {zy}7_,. Then, by
the partition rule, f;(f($)+g(a:)) de =Y, f;:ﬁl(f(:n)+g(a:)) dz. As f is constant

on any (zj_1,z), for any k one gets [ (f(z) + g(z))dz = [7* f(z)dz +

Tp—1 Tp—1

ff:fl g(x)dzr. Summing up these equalities one completes the proof of Lemma

2.2.1 for the sum.
The statement about differences follows from the addition formula applied to

g(z) and f(z) - g(). .

LEMMA 2.2.2. For any monotone nonnegative function f on the interval [a,b]
and for any € > 0 there is such piecewise constant function f such that f- < f(z) <

fe(z) + €.
PROOF. f.(z) =Y po, kelke < f(z) < (k+ 1)e]. ad

THEOREM 2.2.3 (Addition Theorem). Let f and g be nonnegative monotone
functions defined on [a,b]. Then

b b b
[ G@+g@yde= [ f@de+ [ g o
PrOOF. Let f. and g. be e-approximations of f and g respectively provided
by Lemma 2.2.2. Set f¢(z) = f.(z) + ¢ and ¢°(z) = g.(z) + . Then f.(z) <

flz) < f°(z) and g.(z) < g(z) < ¢°(z) for z € (a,b). Summing and integrating
these inequalities in different order gives

b b b
/a (f- () + g-(x)) do < / (f(@) + g(a)) dar < / (f°(2) + °(2)) do
/ o) d + / g0 d < / ) do + / g d < / (@) da + / () do.

Due to Lemma, 2.2.1, the left-hand sides of these inequalities coincide, as well as the
right-hand sides. Hence the difference between the central parts does not exceed

b b
[ @ - @+ [ (@) - @) e < 2600 a)
Hence, for any positive €
b b b
/ (f(z) + g(z)) dx —/ flz)dz —/ g(z) dz| < 2¢(b— a).

This implies that the left-hand side vanishes. O

Term by term integration of a functional series.

LEMMA 2.24. Let {fn}22, be a sequence of nonnegative nondecreasing func-
tions and let p be a piecewise constant function. If ;- fe(z) > p(x) for all

z € [a,b] then Y., fab fr(z)dx > fabp(a:) dz.

PRrOOF. Let p be a piecewise constant function with respect to {x;}~,. Choose
any positive e. Since Y po; fr(z;) > p(c), eventually one has > ,- fi(z;) > p(x;) —
e. Fix m such that this inequality holds simultaneously for all {z;}? . Let [x;, Z;y1]
be an interval where p(x) is constant. Then for any x € [z;,2;41] one has these
inequalities: Y ;" | fu(z) > >pt, fr(zk) > p(zr) —e = p(z) —e. Consequently
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for all € [a,b] one has the inequality e L fr(z) > p(z) —e. Taking integrals

gives [V fr(z) de > [’ (p(x) — ) dzw = [ p(x) dz — (b — a). By the Addition
Theorem [ Ekzl fk( )d:c = zk Y @) de < 52 Y fu(x) de. Therefore
POy fb fr(z f p(z)dz — s(b - a) for any positive e. This implies the
inequality Zk 1f fk d:z: > f p(z O

THEOREM 2.2.5. For any sequence { fn}52; of nonnegative nondecreasing func-
tions on an interval [a, b

/a Zlfku)dx:?jl/:fk(x)dx

PROOF. Since Y_;_, fr(z) < > po; fr(z) for all z, by integrating one gets

/abfjfku)dxs/abfjfk(x)dx

By the the Addition Theorem the left-hand side is equal to Y ;_, f fr(x) dx, which
is a partlal sum of Ek 1 f fr(z) dz. Then by All-for-One one gets the inequality

Py 1f fr(z dar<f >oret fr(x) da

To prove the opposite mequahty for any positive €, we apply Lemma 2.2.2
to find a piecewise constant function F., such that F.(z) < Y7, fi(z)dz and

f; > ey (fu(z) = F.(z)) dw < e. On the other hand, by Lemma 2.2.4 one gets

i/abfk(w)dxz/abﬂ(x)dx.

Together these inequalities imply Ek 1 f fe(z)dz+e > f Ek 1 fu(z)dz. Asthe
last inequality holds for all € > 0, it holds also for e=0 O

THEOREM 2.2.6 (Mercator,1668). For any x € (—1,1] one has

| (—1)kHgh
(2.2.2) n(1 + z) Z
k=1
Proor. Consider z € [0,1). Since fo th dt = k—+1 due to the Fermat Theorem

2.1.2, termwise integration of the geometric series Y., t* over the interval [0, z]
for z < 1gives [ fpdt =377, [o thdt =317, ,;:
LEMMA 2.2.7. [ {35 dt =In(1 — ).

PROOF OF LEMMA. Construct a translation of the plane which transforms the
curvilinear trapezium below 1 over [0, z] into the trapezium for In(1—z). Indeed,
the reflection of the plane ((z,y) — (2 — z,y)) along the line z = 1 transforms this
trapezium to the curvilinear trapezium under —- over [2 — x,2]. The parallel
translation by 1 to the left of the latter trapezium (z,y) — (z — 1,y) transforms it

just in to the ogarithmic trapezium for In(1 — z). O

The Lemma proves the Mercator Theorem for negative x. To prove it for
positive z, set f(z) = z?*~1 — 2%*. All functions f; are nonnegative on [0, 1] and
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> iey fr(x) = - Termwise integration of this equality over [0,z] gives (2.2.2),

modulo the equality f0$ 1+-t dt = |, f % dt. The latter is proved by parallel translation

k+1,_k
of the plane. Let us remark, that in the case z = 1 the series Zzo 1 % is not

absolutely convergent, and under its sum we mean 327 | 5o S T = ke VGG —
5 k). And the above proof proves just this fact. a

The arithmetic mean of Mercator’s series evaluated at x and —z gives Gregory’s
Series

1+ +x3+x5+x7+
=+ —+—+—=—+....
1—=z 3 5 7

Gregory’s series converges much faster than Mercator’s one. For example, putting

z = % in (2.2.3) one gets

(2.2.3) %m

-
3.3 5.3 7-37

2
In2 =2
n 3+

Problems.
1. Prove that ‘fab f(x) dx‘ < fab |f(z)] dw.
2. Prove the following formulas via piecewise constant approximations:

b b
(multiplication formula) / M(z)de = )\/ f(z)dx
‘ b bic
(shift formula) / flz)de = / flz —c)dz
a a+tc
a 0
(reflection formula) / flz)dz = f(—z)dz
0 —a
a 1 ka z
(compression formula) /0 flz)de = % /0 f (E) dz
3. Evaluate f027r(sina: +1)dz.
4. Prove the inequality ff2(2 + 232%) dx > 8.
5. Prove fOZW (sinz + 1) dz < 2.
6. Prove f120000: H+n(w) dz < 1007 + .
7. Denote by s, the area of {(z,y) |0 <z <1,(1—2)lnn+zln(n+1) <y <

In(1+ x)}. Prove that E,io 1 Sk < 00.
Prove that 77, (~1)F 20 < In(1 4+ 2) < ot (= 1)FH122 for 2 > 0,
9. Compute the logarlthms of the primes 2, 3,5, 7 with accuracy 0.01.
10. Evaluate [, /7 da.
*11. Evaluate [ sinz da.

®



