
2.2. De�nite IntegralOn the 
ontents of the le
ture. Areas of 
urvilinear trapezia play an extra-ordinary important role in mathemati
s. They generate a key 
on
ept of Cal
ulus| the 
on
ept of the integral.Three basi
 rules. For a nonnegative fun
tion f its integral R ba f(x) dx alongthe interval [a; b℄ is de�ned just as the area of the 
urvilinear trapezium below thegraph of f over [a; b℄. We allow a fun
tion to take in�nite values. Let us remarkthat 
hanging of the value of fun
tion in one point does not a�e
t the integral,be
ause the area of the line is zero. That is why we allow the fun
tions under
onsideration to be unde�ned in a �nite number of points of the interval.Immediately from the de�nition one gets the following three basi
 rules ofintegration:Rule of 
onstant R ba f(x) dx = 
(b� a); if f(x) = 
 for x 2 (a; b),Rule of inequality R ba f(x) dx � R ba g(x) dx; if f(x) � g(x) for x 2 (a; b),Rule of partition R 
a f(x) dx = R ba f(x) dx+ R 
b f(x) dx for b 2 (a; 
).Partition. Let jJ j denote the length of an interval J . Let us say that a se-quen
e fJkgnk=1 of disjoint open subintervals of an interval I is a partition of I ,if Pnk=1 jIkj = jI j. The boundary of a partition P = fJkgnk=1 is de�ned as thedi�eren
e I nSnk=1 Jk and is denoted �P .For any �nite subset S of an interval I , whi
h 
ontains the ends of I , thereis a unique partition of I whi
h has this set as the boundary. Su
h a partition is
alled generated by S. For a monotone sequen
e fxkgnk=0 the generated partitionis f(xk�1; xk)gnk=1.Pie
ewise 
onstant fun
tions. A fun
tion f(x) is 
alled partially 
onstanton a partition fJkgnk=1 of [a; b℄ if it is 
onstant on ea
h Jk. The Rules of Constantand Partition immediately imply:(2.2.1) Z ba f(x) dx = nXk=1 f(Jk)jJk j:Proof. Indeed, the integral splits into a sum of integrals over Jk = [xk�1; xk ℄,and the fun
tion takes the value f(Jk) in (xk�1; xk). �A fun
tion is 
alled pie
ewise 
onstant over an interval if it is partially 
onstantwith respe
t to some �nite partition of the interval.Lemma 2.2.1. Let f and g be pie
ewise 
onstant fun
tions over [a; b℄. ThenR ba (f(x)� g(x)) dx = R ba f(x) dx� R ba g(x) dx.Proof. First, suppose f(x) = 
 is 
onstant on the interval (a; b). Let g take thevalue gk over the interval (xk ; xk+1) for an exhausting fxkgnk=0. Then f(x) + g(x)takes values (
+gk) over (xk; xk+1). Hen
e R ba (f(x)+g(x)) dx =Pn�1k=0 (
+gk)jÆxk jdue to (2.2.1). Splitting this sum and applying (2.2.1) to both summands, one getsPn�1k=0 
jÆxkj +Pn�1k=0 gkjÆxkj = R ba f(x) dx + R ba g(x) dx. This proves the 
ase of a
onstant f . 40



2.2 definite integral 41Now let f be partially 
onstant on the partition generated by fxkgnk=0. Then, bythe partition rule, R ba (f(x)+g(x)) dx =Pnk=1 R xkxk�1(f(x)+g(x)) dx. As f is 
onstanton any (xk�1; xk), for any k one gets R xkxk�1(f(x) + g(x)) dx = R xkxk�1 f(x) dx +R xkxk�1 g(x) dx. Summing up these equalities one 
ompletes the proof of Lemma2.2.1 for the sum.The statement about di�eren
es follows from the addition formula applied tog(x) and f(x)� g(x). �Lemma 2.2.2. For any monotone nonnegative fun
tion f on the interval [a; b℄and for any " > 0 there is su
h pie
ewise 
onstant fun
tion f" su
h that f" � f(x) �f"(x) + ".Proof. f"(x) =P1k=0 k"[k" � f(x) < (k + 1)"℄. �Theorem 2.2.3 (Addition Theorem). Let f and g be nonnegative monotonefun
tions de�ned on [a; b℄. ThenZ ba (f(x) + g(x)) dx = Z ba f(x) dx + Z ba g(x) dx:Proof. Let f" and g" be "-approximations of f and g respe
tively providedby Lemma 2.2.2. Set f"(x) = f"(x) + " and g"(x) = g"(x) + ". Then f"(x) �f(x) � f"(x) and g"(x) � g(x) � g"(x) for x 2 (a; b). Summing and integratingthese inequalities in di�erent order givesZ ba (f"(x) + g"(x)) dx � Z ba (f(x) + g(x)) dx � Z ba (f"(x) + g"(x)) dxZ ba f"(x) dx + Z ba g"(x) dx � Z ba f(x) dx + Z ba g(x) dx � Z ba f"(x) dx + Z ba g"(x) dx:Due to Lemma 2.2.1, the left-hand sides of these inequalities 
oin
ide, as well as theright-hand sides. Hen
e the di�eren
e between the 
entral parts does not ex
eedZ ba (f"(x) � f"(x)) dx + Z ba (g"(x) � g"(x)) dx � 2"(b� a):Hen
e, for any positive "�����Z ba (f(x) + g(x)) dx � Z ba f(x) dx� Z ba g(x) dx����� < 2"(b� a):This implies that the left-hand side vanishes. �Term by term integration of a fun
tional series.Lemma 2.2.4. Let ffng1n=1 be a sequen
e of nonnegative nonde
reasing fun
-tions and let p be a pie
ewise 
onstant fun
tion. If P1k=1 fk(x) � p(x) for allx 2 [a; b℄ then P1k=1 R ba fk(x) dx � R ba p(x) dx.Proof. Let p be a pie
ewise 
onstant fun
tion with respe
t to fxigni=0. Chooseany positive ". Sin
eP1k=1 fk(xi) � p(
), eventually one hasPmk=1 fk(xi) > p(xi)�". Fixm su
h that this inequality holds simultaneously for all fxigni=0. Let [xi; xi+1℄be an interval where p(x) is 
onstant. Then for any x 2 [xi; xi+1℄ one has theseinequalities: Pmk=1 fk(x) � Pmk=1 fk(xk) > p(xk) � " = p(x) � ". Consequently



42 2.2 definite integralfor all x 2 [a; b℄ one has the inequality Pmk=1 fk(x) > p(x) � ". Taking integralsgives R ba Pmk=1 fk(x) dx � R ba (p(x)� ") dx = R ba p(x) dx� "(b� a). By the AdditionTheorem R ba Pmk=1 fk(x) dx = Pmk=1 R ba fk(x) dx � P1k=1 R ba fk(x) dx. ThereforeP1k=1 R ba fk(x) dx � R ba p(x) dx � "(b � a) for any positive ". This implies theinequality P1k=1 R ba fk(x) dx � R ba p(x) dx. �Theorem 2.2.5. For any sequen
e ffng1n=1 of nonnegative nonde
reasing fun
-tions on an interval [a; b℄Z ba 1Xk=1 fk(x) dx = 1Xk=1 Z ba fk(x) dx:Proof. Sin
e Pnk=1 fk(x) �P1k=1 fk(x) for all x, by integrating one getsZ ba nXk=1 fk(x) dx � Z ba 1Xk=1 fk(x) dx:By the the Addition Theorem the left-hand side is equal toPnk=1 R ba fk(x) dx, whi
his a partial sum of P1k=1 R ba fk(x) dx. Then by All-for-One one gets the inequalityP1k=1 R ba fk(x) dx � R ba P1k=1 fk(x) dx.To prove the opposite inequality for any positive ", we apply Lemma 2.2.2to �nd a pie
ewise 
onstant fun
tion F", su
h that F"(x) � P1k=1 fk(x)dx andR ba P1k=1(fk(x)� F"(x)) dx < ". On the other hand, by Lemma 2.2.4 one gets1Xk=1 Z ba fk(x) dx � Z ba F"(x) dx:Together these inequalities implyP1k=1 R ba fk(x) dx+" � R ba P1k=1 fk(x) dx. As thelast inequality holds for all " > 0, it holds also for " = 0 �Theorem 2.2.6 (Mer
ator,1668). For any x 2 (�1; 1℄ one has(2.2.2) ln(1 + x) = 1Xk=1 (�1)k+1xkkProof. Consider x 2 [0; 1). Sin
e R x0 tk dt = tk+1k+1 due to the Fermat Theorem2.1.2, termwise integration of the geometri
 series P1k=0 tk over the interval [0; x℄for x < 1 gives R x0 11�t dt =P1k=0 R x0 tk dt =P1k=0 xk+1k+1 .Lemma 2.2.7. R x0 11�t dt = ln(1� x).Proof of Lemma. Constru
t a translation of the plane whi
h transforms the
urvilinear trapezium below 11�t over [0; x℄ into the trapezium for ln(1�x). Indeed,the re
e
tion of the plane ((x; y)! (2� x; y)) along the line x = 1 transforms thistrapezium to the 
urvilinear trapezium under 1x�1 over [2 � x; 2℄. The paralleltranslation by 1 to the left of the latter trapezium (x; y)! (x� 1; y) transforms itjust in to the ogarithmi
 trapezium for ln(1� x). �The Lemma proves the Mer
ator Theorem for negative x. To prove it forpositive x, set fk(x) = x2k�1 � x2k . All fun
tions fk are nonnegative on [0; 1℄ and



2.2 definite integral 43P1k=1 fk(x) = 11+x . Termwise integration of this equality over [0; x℄ gives (2.2.2),modulo the equality R x0 11+t dt = R x1 1t dt. The latter is proved by parallel translationof the plane. Let us remark, that in the 
ase x = 1 the seriesP1k=1 (�1)k+1xkk is notabsolutely 
onvergent, and under its sum we meanP1k=1 12k(2k�1) =P1k=1( 12k�1 �12k ). And the above proof proves just this fa
t. �The arithmeti
 mean of Mer
ator's series evaluated at x and �x givesGregory'sSeries(2.2.3) 12 ln 1 + x1� x = x+ x33 + x55 + x77 + : : : :Gregory's series 
onverges mu
h faster than Mer
ator's one. For example, puttingx = 13 in (2.2.3) one getsln 2 = 23 + 23 � 33 + 25 � 35 + 27 � 37 + : : : :Problems.1. Prove that ���R ba f(x) dx��� � R ba jf(x)j dx.2. Prove the following formulas via pie
ewise 
onstant approximations:Z ba �f(x) dx = � Z ba f(x) dx(multipli
ation formula) Z ba f(x) dx = Z b+
a+
 f(x� 
) dx(shift formula) Z a0 f(x) dx = Z 0�a f(�x) dx(re
e
tion formula) Z a0 f(x) dx = 1k Z ka0 f �xk� dx(
ompression formula)3. Evaluate R 2�0 (sinx+ 1) dx.4. Prove the inequality R 2�2(2 + x32x) dx > 8.5. Prove R 2�0 x(sin x+ 1) dx < 2�.6. Prove R 200�100� x+sin(x)x dx � 100� + 150�.7. Denote by sn the area of f(x; y) j 0 � x � 1; (1 � x) ln n + x ln(n + 1) � y �ln(1 + x)g. Prove that P1k=1 sk <1.8. Prove that P2nk=1(�1)k+1 xkk < ln(1 + x) <P2n+1k=1 (�1)k+1 xkk for x > 0.9. Compute the logarithms of the primes 2; 3; 5; 7 with a

ura
y 0:01.10. Evaluate R 10 px dx.�11. Evaluate R �0 sinx dx.


