1. Let \(f \) be a continuous function. Find
\[
\lim_{x \to \infty} f \left((1 - \frac{1}{x})^x \right).
\]

2. Consider the equation \(x + e^x = 0 \). Is there a solution to this equation? Why or why not.

3. Find the derivative of the function
\[
e^{2\tan(\sqrt{x})}.
\]

4. Consider the function
\[
f(x) = \begin{cases}
\frac{\sin x}{x} & x < 0 \\
x^3 + 2x + 1 & x \geq 0
\end{cases}
\]

At which points is \(f \) continuous? At which points is it differentiable?

5. Let \(f(x) = x \ln \left(1 + e^{x^2} \right) \). Find \(f'(5) \).

6. Show that the curves
\[
e^{x^2-y^2} \cos(2xy) = 1 \quad \text{and} \quad e^{x^2-y^2} \sin(2xy) = 0
\]
meet orthogonally at the point \((\sqrt{\pi}, \sqrt{\pi})\).

7. Find the derivative of the function
\[
f(x) = \frac{(\sin x)^2 (\tan x)^2}{(x^2 + 1)^2}.
\]

8. Find an equation for the tangent line to the curve
\[
x^2 + y^2 = (2x^2 + 2y^2 - x)^2 = 0
\]
through the point \((0, 0.5)\).

9. If \(f(x) = e^x/(x + 1)^3 \), find \(f'(x) \) and \(f''(x) \).

10. Find the limit
\[
\lim_{x \to 1} \frac{x^\pi - 1}{x^e - 1}.
\]

11. Show that \(e^x \geq 1 + x \) for \(x \geq 0 \). (Hint: Consider the function \(f(x) = e^x - 1 - x \).)
12. A particle is moving along the curve \(y = x^2 \). As it passes through the point \((2, 4)\), its \(y \) coordinate changes at a rate of 5 m/sec. What is the rate of change of the particle’s distance to the origin at this instant?

13. Find the absolute maximum and absolute minimum values of the function

\[f(x) = x^2 - \ln x^2 \]

on the interval \([1/4, 4]\).

14. Find

\[\lim_{x \to \frac{\pi}{2}} \tan(7x)\cos(4x). \]

15. A woman wants to get from a point \(A \) on the shore of a circular lake to a point \(C \) diametrically opposite \(A \) in the shortest possible time. She can walk at a speed of 4 \(\text{mi/hr} \) and row at a speed of 2 \(\text{mi/hr} \). How should she proceed?

16. Consider the function

\[f(x) = x^3 - 7x^2 + 9x - \pi. \]

(i) Find all the critical points of \(f \), and the values of \(f \) at those points. State weather these points are local maxima, local minima or neither.

(ii) Find all the inflection of points of \(f \).