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Lecture 19 (April 8)

Derived equivalences of abelian varieties. From Mukai’s theorem, we know
that an abelian variety X and its dual X̂ have isomorphic derived categories. Let’s
say that two abelian varieties X and Y are derived equivalent if Db(X) ⇠= Db(Y ).
We would like to know exactly when this happens. This question was completely
answered by Orlov and Polishchuk. The general idea is that Db(X) ⇠= Db(Y )
happens if and only if X ⇥ X̂ ⇠= Y ⇥ Ŷ are isomorphic as abelian varieties (but only
certain kinds of isomorphisms are allowed).

Let me first explain why the product X ⇥ X̂ shows up. This has to do with “au-
tomorphisms” of the derived category Db(X), or more precisely auto-equivalences.
A closed point x 2 X(k) defines an automorphism tx : X ! X by translation, and
pullback along this automorphism is an auto-equivalence of the derived category:

t⇤
x
: Db(X) ! Db(X).

Similarly, a closed point ↵ 2 X̂(k) defines a line bundle P↵ 2 Pic0(X), and tensor
product by P↵ is also an auto-equivalence:

P↵ ⌦� : Db(X) ! Db(X).

By composition, the closed points of X ⇥ X̂ therefore correspond to a family of
auto-equivalences

T(x,↵) : D
b(X) ! Db(X), T(x,↵)(K) = P↵ ⌦ t⇤

x
K ⇠= t⇤

x
(P↵ ⌦ K).

Because X and X̂ are varieties, this is a connected family; it contains T(0,0) = id.
One can make sense of the group of auto-equivalences AutDb(X) (using more
fancy category theory); it has countably many connected components, and the
neutral component (= the component containing the identity) is X ⇥ X̂. Now if
Db(X) ⇠= Db(Y ), then the automorphism groups of the two categories should be
the same, and so X ⇥ X̂ should be isomorphic to Y ⇥ Ŷ .

Orlov and Polishchuk make this heuristic argument precise, without actually
defining the automorphism group AutDb(X). It requires a careful study of the
kernels of several di↵erent integral transforms. Each T(x,↵) is of course an integral
transform: the kernel is the object

(19.1) (tx, id)⇤P↵ 2 Db(X ⇥ X),

where the notation is as in the following diagram:

X X ⇥ X X

X

(tx,id)

tx

id

p1

p2

Indeed, with this choice, we get from the projection formula that

R(p2)⇤
⇣
p⇤
1
K ⌦ (tx, id)⇤P↵

⌘
⇠= R(p2)⇤(tx, id)⇤

�
t⇤
x
K ⌦ P↵

�
⇠= t⇤

x
K ⌦ P↵.

Now suppose that X and Y are two abelian varieties, whose derived categories
Db(X) ⇠= Db(Y ) are equivalent. By Orlov’s theorem, the equivalence is of the form

R�E : Db(X) ! Db(Y )

for an object E 2 Db(X⇥Y ), unique up to isomorphism. We are going to associate
to E an isomorphism of abelian varieties

'E : X ⇥ X̂ ! Y ⇥ Ŷ ,
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by the following device. For each pair of closed points (x, ↵) 2 X(k) ⇥ X̂(k),
consider the auto-equivalence

T(x,↵) : D
b(X) ! Db(X)

and its conjugate by R�E , which is

R�E � T(x,↵) �R��1

E
: Db(Y ) ! Db(Y ).

We’ll argue below that this is again of the form T'E(x,↵) for a unique closed point

'E(x, ↵) 2 Y (k) ⇥ Ŷ (k), starting from the fact that it is true for the closed point
(0, 0), because T(0,0) = id.

The following lemma will be useful in describing the quasi-inverse R��1

E
as an

integral transform. For a complex E 2 Db(X ⇥ Y ), we define

E_ = RHomOX⇥Y

�
E, OX⇥Y

�
.

Compare the following lemma with the formula for the inverse of the Fourier-Mukai
transform.

Lemma 19.2. Let R�E : Db(X) ! Db(Y ) be an equivalence of categories. Then
the quasi-inverse is again an integral transform, with kernel

E_
⌦ p⇤

2
!Y [dimY ].

Proof. The point is that the quasi-inverse R��1

E
: Db(Y ) ! Db(X) is necessarily

the left-adjoint of R�E : Db(X) ! Db(Y ), because

HomDb(Y )

�
A,R�E(B)

�
⇠= HomDb(X)

�
R��1

E
(A), B

�
.

We can easily derive a formula for the left-adjoint:

HomDb(Y )

⇣
A,R�E(B)

⌘
⇠= HomDb(Y )

⇣
A,R(p2)⇤(E

L
⌦ p⇤

1
B)

⌘

⇠= HomDb(X)

⇣
p⇤
2
A, E

L
⌦ p⇤

1
B
⌘

⇠= HomDb(X)

⇣
p⇤
2
A

L
⌦ E_, p⇤

1
B
⌘
.

The exceptional inverse image functor (from Grothendieck duality) is

p!

1
B = p⇤

1
B ⌦ p⇤

2
!Y [dimY ],

and by using Grothendieck duality, we can continue the calculation from above:

HomDb(X)

⇣
p⇤
2
A

L
⌦ E_, p⇤

1
B
⌘
⇠= HomDb(X)

⇣
p⇤
2
A

L
⌦ E_

⌦ p⇤
2
!Y [Y ], p!

1
B
⌘

⇠= HomDb(X)

⇣
R(p1)⇤

�
p⇤
2
A

L
⌦ E_

⌦ p⇤
2
!Y [Y ]

�
, B

⌘

This proves that

R��1

E
(A) ⇠= R(p1)⇤

�
p⇤
2
A

L
⌦ E_

⌦ p⇤
2
!Y [Y ]

�

is equivalent to an integral transform. ⇤

Let’s now return to our problem. Instead of trying to construct the isomorphism
'E : X ⇥ X̂ ! Y ⇥ Ŷ directly, we shall first define an equivalence

FE : Db(X ⇥ X̂) ! Db(Y ⇥ Ŷ ),
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and then argue that FE actually comes from an isomorphism between X ⇥ X̂ and
Y ⇥ Ŷ . This equivalence fits into the following commutative diagram:

(19.3)

Db(X ⇥ X̂) Db(Y ⇥ Ŷ )

Db(X ⇥ X) Db(Y ⇥ Y )

R�A(X)

FE

R�E⇥R�
�1
E

R�
�1
A(Y )

The vertical arrow is an equivalence

R�A(X) : D
b(X ⇥ X̂) ! Db(X ⇥ X)

that takes the skyscraper sheaf k(x, ↵) at a closed point (x, ↵) 2 X(k) ⇥ X̂(↵) to
the object in (19.1). Recall that this object is the kernel of the auto-equivalence
T(x,↵) : D

b(X) ! Db(X). Think of this as saying that X ⇥ X̂ is the parameter
space for all of these auto-equivalences. The correct kernel is

A(X) = µ⇤
�
p⇤
32

PX

�
2 Db(X ⇥ X̂ ⇥ X ⇥ X),

where the notation is as follows:

X ⇥ X̂ ⇥ X X ⇥ X̂ ⇥ X ⇥ X

X ⇥ X̂

p32

µ

The two morphisms act on closed points as

µ(x, ↵, y) = (x, ↵, x + y, y) and p32(x, ↵, y) = (y, ↵).

With this choice, you can easily compute for yourself that

R�A(X)

�
k(x, ↵)

�
⇠= (tx, id)⇤(P↵).

The other vertical arrow in (19.3) is the quasi-inverse to R�A(Y ); one can get an
explicit formula for the kernel from Lemma 19.2.

Exercise 19.1. Verify that R�A(X) is indeed an equivalence. (Hint: Write it as the
composition of an automorphism of X ⇥ X and Mukai’s Fourier transform.)

The horizontal arrow in (19.3) is conjugation by R�E . If we set g = dimY , then
the kernel for R��1

E
is E_[g], and so the kernel representing conjugation is

p⇤
13

E_[g]
L
⌦ p⇤

24
E 2 Db(X ⇥ X ⇥ Y ⇥ Y ).

As the composition of three equivalences, FE : Db(X ⇥ X̂) ! Db(Y ⇥ Ŷ ) is an
equivalence. It is also an integral transform for some Ẽ 2 Db(X ⇥ X̂ ⇥ Y ⇥ Ŷ ).
One can in principle derive a formula for the kernel Ẽ (using convolutions), but the
actual formula doesn’t matter for us. Here is Orlov’s theorem.

Theorem 19.4. There is an isomorphism of abelian varieties

'E : X ⇥ X̂ ! Y ⇥ Ŷ

and a line bundle NE 2 Pic(X ⇥ X̂), such that

FE = R('E)⇤
�
NE ⌦�).

Equivalently, the kernel representing FE is

(id, 'E)⇤NE 2 Db(X ⇥ X̂ ⇥ Y ⇥ Ŷ ).
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We’ll prove the theorem after looking at a few examples. A by-product of the
construction is that for every pair of closed points (x, ↵) 2 X(k) ⇥ X̂(k), the
conjugated auto-equivalence

R�E � T(x,↵) �R��1

E
⇠= T'E(x,↵)

is again of the same form. We can rewrite this identity as

(19.5) R�E � T(x,↵)
⇠= T'E(x,↵) �R�E .

As another exercise, you can compute the convolutions of the two kernels on each
side. The result is that if 'E(x, ↵) = (y, �), then one has

(19.6) (tx ⇥ id)⇤
�
p⇤
1
PX,↵ ⌦ E) ⇠= (id⇥ty)

⇤E ⌦ p⇤
2
PY,�

in Db(X ⇥ Y ). In other words, the automorphism 'E records how the kernel E
responds to translations and tensor products on both X and Y .

Example 19.7. Consider the Fourier transform R�P : Db(X) ! Db(X̂). Here Y =
X̂ and E = P ; by symmetry, Ŷ ⇠= X and P̂ = �⇤P . What is the isomorphism

'P : X ⇥ X̂ ! X̂ ⇥ X

in this case? We can figure out the answer with very little pain if we make use of
(19.6). Suppose that 'P (x, ↵) = (↵0, x0). Then

(tx ⇥ id)⇤
�
p⇤
1
P↵ ⌦ P ) ⇠= (id⇥t↵0)⇤P ⌦ p⇤

2
P̂x0

on X ⇥ X̂. By the seesaw theorem,

(id⇥t↵0)⇤P ⇠= P ⌦ p⇤
1
P↵0 and (tx ⇥ id)⇤P ⇠= P ⌦ p⇤

2
P̂�x,

and so the identity from above becomes

p⇤
1
P↵ ⌦ P ⌦ p⇤

2
P̂�x

⇠= p⇤
1
P↵0 ⌦ P ⌦ p⇤

2
P̂x0 .

Comparing the two sides, we find that ↵0 = ↵ and x0 = �x, and so

'P (x, ↵) = (↵,�x).

This tells us how 'P acts on closed points. Not surprisingly, one also has NP
⇠= P

(but proving this takes a lot more work).

Here is another example where the line bundle NE is nontrivial.

Example 19.8. Let L 2 Pic(X), and consider L⌦� : Db(X) ! Db(X). In this case,
Y = X and E = �⇤L. Let’s again determine

'E : X ⇥ X̂ ! X ⇥ X̂

with the help of (19.6). Suppose that 'E(x, ↵) = (y, �). Then

(tx ⇥ id)⇤
�
p⇤
1
P↵ ⌦�⇤L) ⇠= (id⇥ty)

⇤�⇤L ⌦ p⇤
2
P�

We can simplify the left-hand side using the diagram

X X ⇥ X X ⇥ X

X

(tx,id)

�

id
p1

tx⇥id

From the projection formula, we get

(tx ⇥ id)⇤
�
p⇤
1
P↵ ⌦�⇤L) ⇠= (tx ⇥ id)⇤�⇤(L ⌦ P↵) ⇠= (tx, id)⇤(L ⌦ P↵).



5

We can also simplify the right-hand side using the Cartesian diagram

X X ⇥ X

X X ⇥ X.

ty

(ty,id)

id⇥ty

�

Flat base change (for the automorphism id⇥ty gives

(id⇥ty)
⇤�⇤L ⌦ p⇤

2
P�

⇠= (ty, id)⇤t
⇤
y
L ⌦ p⇤

2
P� .

If we compare the two sides of our original identity, we get

(tx, id)⇤(L ⌦ P↵) ⇠= (ty, id)⇤t
⇤
y
L ⌦ p⇤

2
P� ,

and therefore y = x and L ⌦ P↵
⇠= t⇤

x
L ⌦ P� . When we looked at line bundles on

abelian varieties, we defined the homomorphism

�L : X ! X̂, P�L(x)
⇠= t⇤

x
L ⌦ L�1.

Substituting this into the above formula, we get ↵ = � + �L(x), and so

'E : X ⇥ X̂ ! X ⇥ X̂, 'E(x, ↵) =
�
x, ↵ � �L(x)

�
.

When L 2 Pic0(X) is translation invariant, 'E is the identity; but otherwise, it
isn’t. One can also check that NE = p⇤

1
L, and so the line bundle in Theorem 19.4

is nontrivial in this example.

Example 19.9. For the shift functor [n] : Db(X) ! Db(X), we have Y = X and
E = �⇤OX [n]. In this case, E_ has a shift by �n in it, and so the two cancel
out; the result is that 'E = id and NE = O

X⇥X̂
. From the point of view of

Theorem 19.4, a shift is therefore indistinguishable from the identity.

Proof of Orlov’s theorem. Let’s now prove Theorem 19.4. The equivalence

FE : Db(X ⇥ X̂) ! Db(Y ⇥ Ŷ )

from (19.3) is an integral transform with a certain kernel Ẽ 2 Db(X ⇥ X̂ ⇥Y ⇥ Ŷ ).
It has two additional properties that we can make use of. The first is that

FE

�
k(0, 0)

�
⇠= k(0, 0).

Indeed, R�A(X)

�
k(0, 0)

�
is the kernel corresponding to T(0,0), which is the identity.

Conjugating by R�E takes this to

R�E � T(0,0) �R��1

E
⇠= T(0,0),

because the identity of course commutes with R�E . Under R��1

A(Y )
, this goes back

to the skyscraper sheaf k(0, 0) at the closed point (0, 0) 2 Y (k)⌦ Ŷ (k).
The second property is that FE is something like a homomorphism. Suppose

that (x1, ↵2) and (x2, ↵2) are closed points such that

FE

�
k(xi, ↵i)

�
⇠= k(yi, �i)

for closed points (yi, �i) 2 Y (k)⌦ Ŷ (k). This means that

R�E � T(xi,↵i)
�R��1

E
⇠= T(yi,�i)

.

If we compose the two equivalences, we get

R�E � T(x1+x2,↵1+↵2)
�R��1

E
⇠= R�E � T(x1,↵1)

� T(x2,↵2)
�R��1

E

⇠= R�E � T(x1,↵1)
�R��1

E
�R�E � T(x2,↵2)

�R��1

E

⇠= T(y1,�1)
� T(y2,�2)

⇠= T(y1+y2,�1+�2)
,
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because tx1 � tx2 = tx1+x2 and P↵1 ⌦ P↵2
⇠= P↵1+↵2 . This is saying that the set

�
(x, ↵) 2 X(k)⇥ X̂(k)

�� FE

�
k(x, ↵)

�
⇠= k(y, �) for some (y, �) 2 Y (k)⇥ Ŷ (k)

 

is a subgroup of X(k) ⇥ X̂(k). (In fact, we have shown that it contains the zero
element and is closed under addition.)

Theorem 19.4 is therefore a consequence of the following abstract result about
derived equivalences between abelian varieties. (The point is that the notation
becomes much simpler if we consider arbitrary abelian varieties!)

Proposition 19.10. Let X, Y be abelian varieties, and let R�E : Db(X) ! Db(Y )
be an equivalence. If the set

�
x 2 X(k)

�� R�E

�
k(x)

�
⇠= k(y) for some y 2 Y (k)

 

is a subgroup of X(k), then E ⇠= (id⇥')⇤N for an isomorphism ' : X ! Y and a
line bundle N 2 Pic(X).

Proof. For each closed point x 2 X(k), we set Ex = E|{x}⇥Y , so that

R�P

�
k(x)

�
= Ex 2 Db(Y ).

As usual, we view these as a family of objects in the derived category Db(Y ),
parametrized by the closed points of X. They form an algebraic family because
E 2 Db(X ⇥ Y ) is a bounded complex of coherent sheaves on the product.

Let’s first argue that E must be supported on the graph of a homomorphism
' : X ! Y . Let S = SuppE be the support of the complex E (= the union of the
supports of all its cohomology sheaves). This is a closed subset of X ⇥Y . Consider
the projection p1 : S ! X. Because E0

⇠= k(0), we know that p�1

1
(0) = {0}. By

the theorem about fiber dimensions, the set of x 2 X(k) such that dim p�1

1
(x) = 0

is the set of closed points of an open subscheme U ✓ X; of course, 0 2 U(k). This
means that Ex is supported on a finite set of points for x 2 U(k).

Because R�E is an equivalence, it is in particular fully faithful, and therefore

HomDb(Y )(Ex, Ex) ⇠= HomDb(X)

�
k(x), k(x)

�
⇠= k.

If SuppEx was two or more points, then Ex would split as a direct sum of complexes
supported at each point, and then the left-hand side would have dimension � 2.
Similarly, if Ex had more than one nontrivial cohomology sheaf, we could again
decompose Ex and get too many endomorphisms. Since E0

⇠= k(0), it follows that
for x 2 U(k), the complex Ex is actually a sheaf supported at a single closed point
in Y (k). If we denote this closed point by '(x) 2 Y (k), then ' : U ! Y is a
morphism (because its graph is S \ U ⇥ Y ). Now in fact

Ex
⇠= k

�
'(x)

�
;

indeed, you can easily check that if M is a finitely-generated module over a local
k-algebra (A,m) such that SuppM = {m} and HomA(M, M) ⇠= k, then M ⇠= k.

This says of course that U(k) is contained in the subgroup
�

x 2 X(k)
�� R�E

�
k(x)

�
⇠= k(y) for some y 2 Y (k)

 
.

Because X is an abelian variety, any open neighborhood of 0 generates X as a
group; therefore U = X, the morphism ' is defined on all of X, and Ex

⇠= k
�
'(x)

�

for every x 2 X(k). Since we also know that '(0) = 0, we see that ' : X ! Y is a
homomorphism. It then follows from Nakayama’s lemma that

E ⇠= (id, ')⇤N

for a line bundle N 2 Pic(X). It is a line bundle because its stalk at every point is
a one-dimensional k-vector space. Therefore

R�E
⇠= R'⇤(N ⌦�),
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and this can only be an equivalence if ' : X ! Y is an isomorphism. ⇤


