**Derived equivalences of abelian varieties.** From Mukai's theorem, we know that an abelian variety X and its dual  $\hat{X}$  have isomorphic derived categories. Let's say that two abelian varieties X and Y are derived equivalent if  $D^b(X) \cong D^b(Y)$ . We would like to know exactly when this happens. This question was completely answered by Orlov and Polishchuk. The general idea is that  $D^b(X) \cong D^b(Y)$  happens if and only if  $X \times \hat{X} \cong Y \times \hat{Y}$  are isomorphic as abelian varieties (but only certain kinds of isomorphisms are allowed).

Let me first explain why the product  $X \times \hat{X}$  shows up. This has to do with "automorphisms" of the derived category  $D^b(X)$ , or more precisely auto-equivalences. A closed point  $x \in X(k)$  defines an automorphism  $t_x \colon X \to X$  by translation, and pullback along this automorphism is an auto-equivalence of the derived category:

$$t_x^* \colon \mathrm{D}^b(X) \to \mathrm{D}^b(X).$$

Similarly, a closed point  $\alpha \in \hat{X}(k)$  defines a line bundle  $P_{\alpha} \in \text{Pic}^{0}(X)$ , and tensor product by  $P_{\alpha}$  is also an auto-equivalence:

$$P_{\alpha} \otimes -: \mathrm{D}^{b}(X) \to \mathrm{D}^{b}(X).$$

By composition, the closed points of  $X \times \hat{X}$  therefore correspond to a family of auto-equivalences

$$T_{(x,\alpha)} \colon \mathrm{D}^b(X) \to \mathrm{D}^b(X), \quad T_{(x,\alpha)}(K) = P_\alpha \otimes t_x^* K \cong t_x^* (P_\alpha \otimes K).$$

Because X and  $\hat{X}$  are varieties, this is a connected family; it contains  $T_{(0,0)} = \mathrm{id}$ . One can make sense of the group of auto-equivalences  $\mathrm{Aut}\,\mathrm{D}^b(X)$  (using more fancy category theory); it has countably many connected components, and the neutral component (= the component containing the identity) is  $X \times \hat{X}$ . Now if  $\mathrm{D}^b(X) \cong \mathrm{D}^b(Y)$ , then the automorphism groups of the two categories should be the same, and so  $X \times \hat{X}$  should be isomorphic to  $Y \times \hat{Y}$ .

Or lov and Polishchuk make this heuristic argument precise, without actually defining the automorphism group  $\operatorname{Aut} \operatorname{D}^b(X)$ . It requires a careful study of the kernels of several different integral transforms. Each  $T_{(x,\alpha)}$  is of course an integral transform: the kernel is the object

$$(19.1) (t_x, id)_* P_\alpha \in D^b(X \times X),$$

where the notation is as in the following diagram:



Indeed, with this choice, we get from the projection formula that

$$\mathbf{R}(p_2)_* \Big( p_1^* K \otimes (t_x, \mathrm{id})_* P_\alpha \Big) \cong \mathbf{R}(p_2)_* (t_x, \mathrm{id})_* \big( t_x^* K \otimes P_\alpha \big) \cong t_x^* K \otimes P_\alpha.$$

Now suppose that X and Y are two abelian varieties, whose derived categories  $D^b(X) \cong D^b(Y)$  are equivalent. By Orlov's theorem, the equivalence is of the form

$$\mathbf{R}\Phi_E \colon \mathrm{D}^b(X) \to \mathrm{D}^b(Y)$$

for an object  $E \in D^b(X \times Y)$ , unique up to isomorphism. We are going to associate to E an isomorphism of abelian varieties

$$\varphi_E \colon X \times \hat{X} \to Y \times \hat{Y},$$

by the following device. For each pair of closed points  $(x,\alpha) \in X(k) \times \hat{X}(k)$ , consider the auto-equivalence

$$T_{(x,\alpha)} \colon \mathrm{D}^b(X) \to \mathrm{D}^b(X)$$

and its conjugate by  $\mathbf{R}\Phi_E$ , which is

$$\mathbf{R}\Phi_E \circ T_{(x,\alpha)} \circ \mathbf{R}\Phi_E^{-1} \colon \mathrm{D}^b(Y) \to \mathrm{D}^b(Y).$$

We'll argue below that this is again of the form  $T_{\varphi_E(x,\alpha)}$  for a unique closed point  $\varphi_E(x,\alpha) \in Y(k) \times \hat{Y}(k)$ , starting from the fact that it is true for the closed point (0,0), because  $T_{(0,0)} = \mathrm{id}$ .

The following lemma will be useful in describing the quasi-inverse  $\mathbf{R}\Phi_E^{-1}$  as an integral transform. For a complex  $E \in \mathcal{D}^b(X \times Y)$ , we define

$$E^{\vee} = \mathbf{R} \mathcal{H}om_{\mathscr{O}_{X \times Y}} (E, \mathscr{O}_{X \times Y}).$$

Compare the following lemma with the formula for the inverse of the Fourier-Mukai transform.

**Lemma 19.2.** Let  $\mathbf{R}\Phi_E \colon D^b(X) \to D^b(Y)$  be an equivalence of categories. Then the quasi-inverse is again an integral transform, with kernel

$$E^{\vee} \otimes p_2^* \omega_Y [\dim Y].$$

*Proof.* The point is that the quasi-inverse  $\mathbf{R}\Phi_E^{-1} \colon \mathrm{D}^b(Y) \to \mathrm{D}^b(X)$  is necessarily the left-adjoint of  $\mathbf{R}\Phi_E \colon \mathrm{D}^b(X) \to \mathrm{D}^b(Y)$ , because

$$\operatorname{Hom}_{\mathrm{D}^b(Y)}(A, \mathbf{R}\Phi_E(B)) \cong \operatorname{Hom}_{\mathrm{D}^b(X)}(\mathbf{R}\Phi_E^{-1}(A), B).$$

We can easily derive a formula for the left-adjoint:

$$\operatorname{Hom}_{\mathrm{D}^{b}(Y)}\left(A, \mathbf{R}\Phi_{E}(B)\right) \cong \operatorname{Hom}_{\mathrm{D}^{b}(Y)}\left(A, \mathbf{R}(p_{2})_{*}(E \overset{\mathbf{L}}{\otimes} p_{1}^{*}B)\right)$$
$$\cong \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(p_{2}^{*}A, E \overset{\mathbf{L}}{\otimes} p_{1}^{*}B\right)$$
$$\cong \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(p_{2}^{*}A \overset{\mathbf{L}}{\otimes} E^{\vee}, p_{1}^{*}B\right).$$

The exceptional inverse image functor (from Grothendieck duality) is

$$p_1^! B = p_1^* B \otimes p_2^* \omega_Y [\dim Y],$$

and by using Grothendieck duality, we can continue the calculation from above:

$$\operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(p_{2}^{*}A\overset{\mathbf{L}}{\otimes}E^{\vee},p_{1}^{*}B\right) \cong \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(p_{2}^{*}A\overset{\mathbf{L}}{\otimes}E^{\vee}\otimes p_{2}^{*}\omega_{Y}[Y],p_{1}^{!}B\right)$$
$$\cong \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathbf{R}(p_{1})_{*}\left(p_{2}^{*}A\overset{\mathbf{L}}{\otimes}E^{\vee}\otimes p_{2}^{*}\omega_{Y}[Y]\right),B\right)$$

This proves that

$$\mathbf{R}\Phi_E^{-1}(A) \cong \mathbf{R}(p_1)_* \left( p_2^* A \overset{\mathbf{L}}{\otimes} E^{\vee} \otimes p_2^* \omega_Y[Y] \right)$$

is equivalent to an integral transform.

Let's now return to our problem. Instead of trying to construct the isomorphism  $\varphi_E \colon X \times \hat{X} \to Y \times \hat{Y}$  directly, we shall first define an equivalence

$$F_E : D^b(X \times \hat{X}) \to D^b(Y \times \hat{Y}),$$

and then argue that  $F_E$  actually comes from an isomorphism between  $X \times \hat{X}$  and  $Y \times \hat{Y}$ . This equivalence fits into the following commutative diagram:

(19.3) 
$$D^{b}(X \times \hat{X}) \xrightarrow{F_{E}} D^{b}(Y \times \hat{Y})$$

$$\downarrow^{\mathbf{R}\Phi_{A(X)}} \qquad \uparrow^{\mathbf{R}\Phi_{A(Y)}^{-1}}$$

$$D^{b}(X \times X) \xrightarrow{\mathbf{R}\Phi_{E} \times \mathbf{R}\Phi_{E}^{-1}} D^{b}(Y \times Y)$$

The vertical arrow is an equivalence

$$\mathbf{R}\Phi_{A(X)} \colon \mathrm{D}^b(X \times \hat{X}) \to \mathrm{D}^b(X \times X)$$

that takes the skyscraper sheaf  $k(x,\alpha)$  at a closed point  $(x,\alpha) \in X(k) \times \hat{X}(\alpha)$  to the object in (19.1). Recall that this object is the kernel of the auto-equivalence  $T_{(x,\alpha)} \colon \mathrm{D}^b(X) \to \mathrm{D}^b(X)$ . Think of this as saying that  $X \times \hat{X}$  is the parameter space for all of these auto-equivalences. The correct kernel is

$$A(X) = \mu_*(p_{32}^* P_X) \in D^b(X \times \hat{X} \times X \times X),$$

where the notation is as follows:

$$\begin{array}{c} X \times \hat{X} \times X \stackrel{\mu}{\longrightarrow} X \times \hat{X} \times X \times X \\ \downarrow^{p_{32}} \\ X \times \hat{X} \end{array}$$

The two morphisms act on closed points as

$$\mu(x,\alpha,y) = (x,\alpha,x+y,y)$$
 and  $p_{32}(x,\alpha,y) = (y,\alpha)$ .

With this choice, you can easily compute for yourself that

$$\mathbf{R}\Phi_{A(X)}(k(x,\alpha)) \cong (t_x,\mathrm{id})_*(P_\alpha).$$

The other vertical arrow in (19.3) is the quasi-inverse to  $\mathbf{R}\Phi_{A(Y)}$ ; one can get an explicit formula for the kernel from Lemma 19.2.

Exercise 19.1. Verify that  $\mathbf{R}\Phi_{A(X)}$  is indeed an equivalence. (*Hint:* Write it as the composition of an automorphism of  $X \times X$  and Mukai's Fourier transform.)

The horizontal arrow in (19.3) is conjugation by  $\mathbf{R}\Phi_E$ . If we set  $g = \dim Y$ , then the kernel for  $\mathbf{R}\Phi_E^{-1}$  is  $E^{\vee}[g]$ , and so the kernel representing conjugation is

$$p_{13}^* E^{\vee}[g] \overset{\mathbf{L}}{\otimes} p_{24}^* E \in D^b(X \times X \times Y \times Y).$$

As the composition of three equivalences,  $F_E \colon D^b(X \times \hat{X}) \to D^b(Y \times \hat{Y})$  is an equivalence. It is also an integral transform for some  $\tilde{E} \in D^b(X \times \hat{X} \times Y \times \hat{Y})$ . One can in principle derive a formula for the kernel  $\tilde{E}$  (using convolutions), but the actual formula doesn't matter for us. Here is Orlov's theorem.

Theorem 19.4. There is an isomorphism of abelian varieties

$$\varphi_E \colon X \times \hat{X} \to Y \times \hat{Y}$$

and a line bundle  $N_E \in \text{Pic}(X \times \hat{X})$ , such that

$$F_E = \mathbf{R}(\varphi_E)_* (N_E \otimes -).$$

Equivalently, the kernel representing  $F_E$  is

$$(\mathrm{id}, \varphi_E)_* N_E \in \mathrm{D}^b(X \times \hat{X} \times Y \times \hat{Y}).$$

We'll prove the theorem after looking at a few examples. A by-product of the construction is that for every pair of closed points  $(x, \alpha) \in X(k) \times \hat{X}(k)$ , the conjugated auto-equivalence

$$\mathbf{R}\Phi_E \circ T_{(x,\alpha)} \circ \mathbf{R}\Phi_E^{-1} \cong T_{\varphi_E(x,\alpha)}$$

is again of the same form. We can rewrite this identity as

(19.5) 
$$\mathbf{R}\Phi_E \circ T_{(x,\alpha)} \cong T_{\varphi_E(x,\alpha)} \circ \mathbf{R}\Phi_E.$$

As another exercise, you can compute the convolutions of the two kernels on each side. The result is that if  $\varphi_E(x,\alpha) = (y,\beta)$ , then one has

$$(19.6) (t_x \times \mathrm{id})_* (p_1^* P_{X,\alpha} \otimes E) \cong (\mathrm{id} \times t_y)^* E \otimes p_2^* P_{Y,\beta}$$

in  $D^b(X \times Y)$ . In other words, the automorphism  $\varphi_E$  records how the kernel E responds to translations and tensor products on both X and Y.

Example 19.7. Consider the Fourier transform  $\mathbf{R}\Phi_P \colon \mathrm{D}^b(X) \to \mathrm{D}^b(\hat{X})$ . Here  $Y = \hat{X}$  and E = P; by symmetry,  $\hat{Y} \cong X$  and  $\hat{P} = \sigma^* P$ . What is the isomorphism

$$\varphi_P \colon X \times \hat{X} \to \hat{X} \times X$$

in this case? We can figure out the answer with very little pain if we make use of (19.6). Suppose that  $\varphi_P(x,\alpha) = (\alpha',x')$ . Then

$$(t_x \times \mathrm{id})_* (p_1^* P_\alpha \otimes P) \cong (\mathrm{id} \times t_{\alpha'})^* P \otimes p_2^* \hat{P}_{x'}$$

on  $X \times \hat{X}$ . By the seesaw theorem,

$$(\mathrm{id} \times t_{\alpha'})^* P \cong P \otimes p_1^* P_{\alpha'}$$
 and  $(t_x \times \mathrm{id})_* P \cong P \otimes p_2^* \hat{P}_{-x}$ ,

and so the identity from above becomes

$$p_1^* P_{\alpha} \otimes P \otimes p_2^* \hat{P}_{-x} \cong p_1^* P_{\alpha'} \otimes P \otimes p_2^* \hat{P}_{x'}.$$

Comparing the two sides, we find that  $\alpha' = \alpha$  and x' = -x, and so

$$\varphi_P(x,\alpha) = (\alpha, -x).$$

This tells us how  $\varphi_P$  acts on closed points. Not surprisingly, one also has  $N_P \cong P$  (but proving this takes a lot more work).

Here is another example where the line bundle  $N_E$  is nontrivial.

Example 19.8. Let  $L \in \text{Pic}(X)$ , and consider  $L \otimes -: D^b(X) \to D^b(X)$ . In this case, Y = X and  $E = \Delta_* L$ . Let's again determine

$$\varphi_E \colon X \times \hat{X} \to X \times \hat{X}$$

with the help of (19.6). Suppose that  $\varphi_E(x,\alpha) = (y,\beta)$ . Then

$$(t_x \times \mathrm{id})_* (p_1^* P_\alpha \otimes \Delta_* L) \cong (\mathrm{id} \times t_y)^* \Delta_* L \otimes p_2^* P_\beta$$

We can simplify the left-hand side using the diagram

$$X \xrightarrow{(t_x, \mathrm{id})} X \times X \xrightarrow{t_x \times \mathrm{id}} X \times X$$

$$\downarrow^{p_1} X$$

From the projection formula, we get

$$(t_x \times \mathrm{id})_* (p_1^* P_\alpha \otimes \Delta_* L) \cong (t_x \times \mathrm{id})_* \Delta_* (L \otimes P_\alpha) \cong (t_x, \mathrm{id})_* (L \otimes P_\alpha).$$

We can also simplify the right-hand side using the Cartesian diagram

$$\begin{array}{ccc} X \xrightarrow{(t_y, \mathrm{id})} X \times X \\ \downarrow^{t_y} & \downarrow^{\mathrm{id} \times t_y} \\ X \xrightarrow{\Delta} X \times X. \end{array}$$

Flat base change (for the automorphism id  $\times t_y$  gives

$$(\mathrm{id} \times t_y)^* \Delta_* L \otimes p_2^* P_\beta \cong (t_y, \mathrm{id})_* t_y^* L \otimes p_2^* P_\beta.$$

If we compare the two sides of our original identity, we get

$$(t_x, \mathrm{id})_*(L \otimes P_\alpha) \cong (t_y, \mathrm{id})_* t_y^* L \otimes p_2^* P_\beta,$$

and therefore y = x and  $L \otimes P_{\alpha} \cong t_x^* L \otimes P_{\beta}$ . When we looked at line bundles on abelian varieties, we defined the homomorphism

$$\phi_L \colon X \to \hat{X}, \quad P_{\phi_L(x)} \cong t_x^* L \otimes L^{-1}.$$

Substituting this into the above formula, we get  $\alpha = \beta + \phi_L(x)$ , and so

$$\varphi_E \colon X \times \hat{X} \to X \times \hat{X}, \quad \varphi_E(x, \alpha) = (x, \alpha - \phi_L(x)).$$

When  $L \in \text{Pic}^0(X)$  is translation invariant,  $\varphi_E$  is the identity; but otherwise, it isn't. One can also check that  $N_E = p_1^*L$ , and so the line bundle in Theorem 19.4 is nontrivial in this example.

Example 19.9. For the shift functor  $[n]: D^b(X) \to D^b(X)$ , we have Y = X and  $E = \Delta_* \mathscr{O}_X[n]$ . In this case,  $E^{\vee}$  has a shift by -n in it, and so the two cancel out; the result is that  $\varphi_E = \operatorname{id}$  and  $N_E = \mathscr{O}_{X \times \hat{X}}$ . From the point of view of Theorem 19.4, a shift is therefore indistinguishable from the identity.

**Proof of Orlov's theorem.** Let's now prove Theorem 19.4. The equivalence

$$F_E : D^b(X \times \hat{X}) \to D^b(Y \times \hat{Y})$$

from (19.3) is an integral transform with a certain kernel  $\tilde{E} \in D^b(X \times \hat{X} \times Y \times \hat{Y})$ . It has two additional properties that we can make use of. The first is that

$$F_E(k(0,0)) \cong k(0,0).$$

Indeed,  $\mathbf{R}\Phi_{A(X)}(k(0,0))$  is the kernel corresponding to  $T_{(0,0)}$ , which is the identity. Conjugating by  $\mathbf{R}\Phi_E$  takes this to

$$\mathbf{R}\Phi_E \circ T_{(0,0)} \circ \mathbf{R}\Phi_E^{-1} \cong T_{(0,0)},$$

because the identity of course commutes with  $\mathbf{R}\Phi_E$ . Under  $\mathbf{R}\Phi_{A(Y)}^{-1}$ , this goes back to the skyscraper sheaf k(0,0) at the closed point  $(0,0) \in Y(k) \otimes \hat{Y}(k)$ .

The second property is that  $F_E$  is something like a homomorphism. Suppose that  $(x_1, \alpha_2)$  and  $(x_2, \alpha_2)$  are closed points such that

$$F_E(k(x_i, \alpha_i)) \cong k(y_i, \beta_i)$$

for closed points  $(y_i, \beta_i) \in Y(k) \otimes \hat{Y}(k)$ . This means that

$$\mathbf{R}\Phi_E \circ T_{(x_i,\alpha_i)} \circ \mathbf{R}\Phi_E^{-1} \cong T_{(y_i,\beta_i)}.$$

If we compose the two equivalences, we get

$$\mathbf{R}\Phi_{E} \circ T_{(x_{1}+x_{2},\alpha_{1}+\alpha_{2})} \circ \mathbf{R}\Phi_{E}^{-1} \cong \mathbf{R}\Phi_{E} \circ T_{(x_{1},\alpha_{1})} \circ T_{(x_{2},\alpha_{2})} \circ \mathbf{R}\Phi_{E}^{-1}$$

$$\cong \mathbf{R}\Phi_{E} \circ T_{(x_{1},\alpha_{1})} \circ \mathbf{R}\Phi_{E}^{-1} \circ \mathbf{R}\Phi_{E} \circ T_{(x_{2},\alpha_{2})} \circ \mathbf{R}\Phi_{E}^{-1}$$

$$\cong T_{(y_{1},\beta_{1})} \circ T_{(y_{2},\beta_{2})} \cong T_{(y_{1}+y_{2},\beta_{1}+\beta_{2})},$$

because  $t_{x_1} \circ t_{x_2} = t_{x_1+x_2}$  and  $P_{\alpha_1} \otimes P_{\alpha_2} \cong P_{\alpha_1+\alpha_2}$ . This is saying that the set

$$\{(x,\alpha) \in X(k) \times \hat{X}(k) \mid F_E(k(x,\alpha)) \cong k(y,\beta) \text{ for some } (y,\beta) \in Y(k) \times \hat{Y}(k) \}$$

is a subgroup of  $X(k) \times \hat{X}(k)$ . (In fact, we have shown that it contains the zero element and is closed under addition.)

Theorem 19.4 is therefore a consequence of the following abstract result about derived equivalences between abelian varieties. (The point is that the notation becomes much simpler if we consider arbitrary abelian varieties!)

**Proposition 19.10.** Let X, Y be abelian varieties, and let  $\mathbf{R}\Phi_E \colon D^b(X) \to D^b(Y)$  be an equivalence. If the set

$$\{x \in X(k) \mid \mathbf{R}\Phi_E(k(x)) \cong k(y) \text{ for some } y \in Y(k)\}$$

is a subgroup of X(k), then  $E \cong (\operatorname{id} \times \varphi)_* N$  for an isomorphism  $\varphi \colon X \to Y$  and a line bundle  $N \in \operatorname{Pic}(X)$ .

*Proof.* For each closed point  $x \in X(k)$ , we set  $E_x = E|_{\{x\}\times Y}$ , so that

$$\mathbf{R}\Phi_P(k(x)) = E_x \in \mathrm{D}^b(Y).$$

As usual, we view these as a family of objects in the derived category  $D^b(Y)$ , parametrized by the closed points of X. They form an algebraic family because  $E \in D^b(X \times Y)$  is a bounded complex of coherent sheaves on the product.

Let's first argue that E must be supported on the graph of a homomorphism  $\varphi \colon X \to Y$ . Let  $S = \operatorname{Supp} E$  be the support of the complex E (= the union of the supports of all its cohomology sheaves). This is a closed subset of  $X \times Y$ . Consider the projection  $p_1 \colon S \to X$ . Because  $E_0 \cong k(0)$ , we know that  $p_1^{-1}(0) = \{0\}$ . By the theorem about fiber dimensions, the set of  $x \in X(k)$  such that  $\dim p_1^{-1}(x) = 0$  is the set of closed points of an open subscheme  $U \subseteq X$ ; of course,  $0 \in U(k)$ . This means that  $E_x$  is supported on a finite set of points for  $x \in U(k)$ .

Because  $\mathbf{R}\Phi_E$  is an equivalence, it is in particular fully faithful, and therefore

$$\operatorname{Hom}_{\mathcal{D}^b(Y)}(E_x, E_x) \cong \operatorname{Hom}_{\mathcal{D}^b(X)}(k(x), k(x)) \cong k.$$

If Supp  $E_x$  was two or more points, then  $E_x$  would split as a direct sum of complexes supported at each point, and then the left-hand side would have dimension  $\geq 2$ . Similarly, if  $E_x$  had more than one nontrivial cohomology sheaf, we could again decompose  $E_x$  and get too many endomorphisms. Since  $E_0 \cong k(0)$ , it follows that for  $x \in U(k)$ , the complex  $E_x$  is actually a sheaf supported at a single closed point in Y(k). If we denote this closed point by  $\varphi(x) \in Y(k)$ , then  $\varphi \colon U \to Y$  is a morphism (because its graph is  $S \cap U \times Y$ ). Now in fact

$$E_x \cong k(\varphi(x));$$

indeed, you can easily check that if M is a finitely-generated module over a local k-algebra  $(A, \mathfrak{m})$  such that  $\operatorname{Supp} M = \{\mathfrak{m}\}$  and  $\operatorname{Hom}_A(M, M) \cong k$ , then  $M \cong k$ .

This says of course that U(k) is contained in the subgroup

$$\{x \in X(k) \mid \mathbf{R}\Phi_E(k(x)) \cong k(y) \text{ for some } y \in Y(k) \}.$$

Because X is an abelian variety, any open neighborhood of 0 generates X as a group; therefore U=X, the morphism  $\varphi$  is defined on all of X, and  $E_x\cong k\big(\varphi(x)\big)$  for every  $x\in X(k)$ . Since we also know that  $\varphi(0)=0$ , we see that  $\varphi\colon X\to Y$  is a homomorphism. It then follows from Nakayama's lemma that

$$E \cong (\mathrm{id}, \varphi)_* N$$

for a line bundle  $N \in \text{Pic}(X)$ . It is a line bundle because its stalk at every point is a one-dimensional k-vector space. Therefore

$$\mathbf{R}\Phi_E \cong \mathbf{R}\varphi_*(N \otimes -),$$

and this can only be an equivalence if  $\varphi \colon X \to Y$  is an isomorphism.