1. (2 pts each, 40 pts total) Place the letter corresponding to the correct answer in the box next to each question. Each correct answer is worth 2 points.

(i) \[\text{Simplify } \ln(x^2e^{2x}) \] (a) \(2 \ln(x) + 2x \) (b) \(4x \ln(x) \) (c) \(2x \ln(x) \) (d) \(2 \ln(x) + x^2 \) (e) \(4x^2 \) (f) none of these.

(ii) If \(\frac{5x-3}{x^2-2x-3} = \frac{A}{x+1} + \frac{B}{x-3} \) then \(A = \) (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) none of these.

(iii) With the substitution \(x = 3 \sin \theta \), the integral \(\int \frac{x^2 dx}{\sqrt{9-x^2}} \) becomes (a) \(9 \int \frac{d\theta}{\sin \theta} \) (b) \(9 \int \sin^2 \theta d\theta \) (c) \(9 \int \sin^3 \theta d\theta \) (d) \(27 \int (1 - \sin \theta) d\theta \) (e) \(27 \int \sin^3 \theta d\theta \) (f) none of these.

(iv) Which of the following improper integrals converges? (a) \(\int_0^1 \frac{\ln x}{x} dx \) (b) \(\int_0^1 x^{-3} dx \) (c) \(\int_0^1 x^{-1/4} dx \) (d) \(\int_1^\infty \frac{1}{\sqrt{x}} dx \) (e) \(\int_0^1 \frac{1}{x} dx \). (f) none of these.

(v) If the Taylor series \(\sum_{n=1}^\infty c_n(x-2)^n \) converges at \(x = 5 \), then it must also converge at (a) -5 (b) -2 (c) -1 (d) 0 (e) 7 (f) none of these.

(vi) Evaluate \(\int_0^2 \frac{2x dx}{x^2-5} \). (a) \(\ln 2 \) (b) \(-\ln 2 \) (c) 0 (d) -\ln 5 (e) \(\ln 4 \) (f) none of these.

(vii) What is the inverse of \(y = e^{2x+1} \)? (a) \(y = \sqrt{\ln(x)} - 1 \) (b) \(y = \frac{1}{2} \ln(x/e) \) (c) \(y = \ln(\sqrt{x}) \) (d) \(y = \frac{1}{2} \ln(x) + 1 \) (e) \(y = \ln(2x+1) \) (f) none of these.

(viii) The formula for Euler’s method of solving \(y' = f(x, y) \) is (a) \(y_{n+1} = y_n - f(x_n, y_n) \Delta x \) (b) \(y_{n+1} = y_n + f(x_n, y_n) \) (c) \(y_{n+1} = y_n + f(x_n, y_n) \Delta x \) (d) \(y_{n+1} = y_n - f(x_n, y_n) \) (e) \(y_{n+1} = y_n + f(x_n, y_n)(\Delta x)^2 \) (f) none of these.

(ix) Find the solution of the differential equation \(\frac{dy}{dx} = (1 + y^2)e^x \). (a) \(y = \tan x \) (b) \(y = e^{\tan x} \) (c) \(y = 1 + \tan^2 x \) (d) \(y = e^x \) (e) \(y = \tan(e^x) \) (f) none of these.
(x) In an oil refinery, a tank contains 2000 gallons of gasoline that initially has 100 pounds of additive dissolved in it. Gasoline containing 2 pounds of additive per gallon is pumped into the tank at 40 gal/min and the well mixed solution is pumped out at 45 gal/min. If \(y(t) \) is the amount of additive at time \(t \) then \(y \) satisfies which of the following differential equations: (a) \(\frac{dy}{dt} = 40 - \frac{45y}{2000-45t} \) (b) \(\frac{dy}{dt} = 80 - \frac{45y}{2000-45t} \) (c) \(\frac{dy}{dt} = 40 - \frac{45y}{2000-45t} \) (d) \(\frac{dy}{dt} = 80 - \frac{40y}{2000-45t} \) (e) \(\frac{dy}{dt} = 40 - \frac{40y}{2000-45t} \) (f) none of these.

(xi) Which of the following is a true identity for hyperbolic trig functions? (a) \(\sinh 2x = 2 \sinh x \cosh x \) (b) \(\sinh^2 x + \cosh^2 x = 1 \) (c) \(\cosh 2x = \cosh x + \sinh x \) (d) \(\cosh^2 x = \sinh^2 x \) (e) \(\sinh^2 x = \frac{1}{2} \cosh 2x \) (f) none of these.

(xii) The improper integral \(\int_0^\infty (1 + x^2)^{-2} dx \) converges if and only if (a) \(s > 1 \) (b) \(s > 1/2 \) (c) \(s > 0 \) (d) \(s < -1 \) (e) \(s < 0 \) (f) none of these.

(xiii) Which of the following is a geometric series? (a) \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots \) (b) \(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \) (c) \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \ldots \) (d) \(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots \) (e) \(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots \) (f) none of these.

(xiv) The solution of the differential equation \(y' = y^2 - y - 2 \) with initial condition \(y(0) = 0 \) (a) is constant (b) decreases to \(-1\) (c) decreases to \(-\infty\) (d) increases to \(+\infty\) (f) none of these.

(xv) The sequence \(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n}{n+1}, \ldots \) is (a) non-decreasing and convergent (b) non-increasing and convergent (c) non-decreasing and divergent (d) non-increasing and divergent (e) bounded and divergent (f) none of these.

(xvi) Which of the following sequences is not bounded for \(n = 1, 2, 3, \ldots \)? (a) \(\{n^2 2^{-n}\} \) (b) \(\{\sqrt{n+1} - \sqrt{n}\} \) (c) \(\{n^2/(1+n^3)\} \) (d) \(\{n/\ln n\} \) (e) \(\{n^2/(1+n)^2\} \) (f) none of these.

(xvii) Suppose \(a_n = 2a_{n-1} + 1 \). If \(a_1 = 1 \) then \(a_5 = \) (a) 15 (b) 5 (c) 31 (d) 8 (e) 16 (f) none of these.

(xviii) The series \(\sum_{n=1}^\infty (2x+1)^n \) converges exactly for (a) all \(x \) (b) \(-1 < x < 0 \) (c) \(-1 < x < 1 \) (d) \(0 < x < 1 \) (e) \(0 < x < 1/2 \) (f) none of these.

(xix) The root test says that if \(a_n \geq 0 \) then \(\sum_{n=0}^\infty a_n \) converges if (a) \(\lim_{n \to \infty} a_{n+1}/a_n < 1 \) (b) \(\lim_{n \to \infty} a_n < 1 \) (c) \(\lim_{n \to \infty} (a_n)^{1/n} < 1 \) (d) \(\lim_{n \to \infty} a_n/a_{n+1} < 1 \) (e) \(\lim_{n \to \infty} n a_n < 1 \) (f) none of these.

(xx) Evaluate the improper integral \(\int_{-\infty}^{\infty} \frac{dx}{1+x^2} \). (a) \(\pi \) (b) \(\pi/2 \) (c) 1 (d) \(2\pi \) (e) 2 (f) none of these.
2. (1 pt each, 10 pts total) Match each function with its Taylor series expansion.

(i) \((1 - x)^{-1} \)
(ii) \(\sin x \)
(iii) \(\ln(1 + x) \)
(iv) \((1 + x)^{1/3} \)
(v) \(e^x \)
(vi) \(x^2 \cos x \)
(vii) \(e^{x^2} \)
(viii) \(\frac{\ln(1 + x)}{1 + x} \)
(ix) \(\cos x - \sin x \)
(x) \(\sqrt{1 + x^2} \)

A 1 + 2x + 4x^2 + 8x^3 + 16x^4 + ...
B 2x + \frac{2}{3}x^3 + \frac{2}{5}x^5 + ...
C x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + ...
D 1 + x^2 + x^4 + x^6 + ...
E 1 + \frac{1}{3}x - \frac{1}{5}x^2 + \frac{10}{17}x^3 - \frac{80}{81}x^4 + ...
F 1 - x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 - \frac{1}{5}x^5 - ...
G 1 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{3}{5}x^5 - \frac{15}{16}x^6 + ...
H x + \frac{2}{3}x^3 + \frac{2}{5}x^5 + \frac{2}{7}x^7 + ...
I 1 + x + \frac{1}{2}x^2 + \frac{3}{5}x^3 + \frac{1}{4}x^4 + ...
J 1 + x + x^2 + x^3 + x^4 + ...
K 1 + 2x + x^2 + \frac{3}{5}x^3 + \frac{1}{12}x^4 + \frac{1}{60}x^5 + ...
L x^2 - \frac{1}{3}x^3 + \frac{1}{12}x^4 + ...
M x + \frac{1}{3}x^3 + \frac{1}{12}x^5 + ...

N 1 - \frac{1}{3}x^2 + \frac{1}{10}x^4 - ...
O x - \frac{1}{5}x^2 + \frac{1}{6}x^3 - \frac{25}{12}x^4 + ...
P x^2 - \frac{1}{6}x^4 + \frac{1}{24}x^6 - ...
Q 1 + x^2 + \frac{1}{3}x^4 + \frac{1}{6}x^6 + ...
R 1 + \frac{1}{3}x + \frac{1}{9}x^2 + \frac{1}{27}x^3 + ...
S 1 - \frac{1}{2}x^2 + \frac{1}{23}x^4 + ...
T 1 - x + x^2 - x^3 + x^4 - ...
U x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + ...
V 1 - \frac{1}{3}x^3 + \frac{1}{5}x^4 - \frac{1}{7}x^5 + ...
W x + x^3 + x^5 + x^7 + ...
X 1 + \frac{1}{4}x^2 + \frac{1}{23}x^3 + \frac{1}{50}x^4 + ...
Y 1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{3}{8}x^3 + ...
Z none of these

3. (1 pt each, 10 pts total) Label each series as either A (Absolutely convergent), or C (Conditionally convergent or D (Divergent). each of the following infinite series converges or diverges.

(i) \(1 + 1 + 1 + ... \)
(ii) \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \)
(iii) \(1 - 1 + \frac{1}{2} - \frac{1}{2} - \frac{1}{3} + \frac{1}{3} + ... \)
(iv) \(\sum_{n=1}^{\infty} n^{2n-2} \)
(v) \(\sum_{n=1}^{\infty} \frac{n}{n^2} \)
(vi) \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + ... \)
(vii) \(\sum_{n=0}^{\infty} \frac{\cos(n)}{n^2} \)
(viii) \(\sum_{n=0}^{\infty} \frac{\cos(n\pi)}{n} \)
(ix) \(\sum_{n=1}^{\infty} (\ln n)^{-2} \)
(x) \(\sum_{n=0}^{\infty} \sin(n) \)
4. (1 pt each, 10 pts total) Evaluate each derivative or find some integral and put the letter of the correct answer in the box.

(i) \[\frac{d}{dx} \ln x \] \hspace{1cm} (iv) \[\frac{d}{dx} \cosh^{-1}(x) \] \hspace{1cm} (vii) \[\int \sec x \, dx \]

(ii) \[\frac{d}{dx} \arcsin(x) \] \hspace{1cm} (v) \[\frac{d}{dx} \cosh x \] \hspace{1cm} (viii) \[\int x \cos x \, dx \]

(iii) \[\frac{d}{dx} x \sin x \] \hspace{1cm} (vi) \[\int \frac{dx}{\sqrt{x^2 - 4x^2}} \] \hspace{1cm} (ix) \[\int \sin^3 x \cos^2 x \, dx \]

(x) \[\int \frac{dx}{1 + x^2} \]

A \(x \sin x (\frac{1}{x} \sin x + \ln x \cos x) \)
B \(\frac{1}{\sqrt{1-x^2}} \)
C \(\frac{1}{x} \)
D \(-\sinh x \)
E \(\tan(x) \)
F \(x \sin x \ln x \cos x \)
G \(e^x \)
H \(\ln |\sec x + \tan x| \)
I \(x \cos x + \sin x \)
J \(\frac{1}{2} \arcsin(\frac{x}{\sqrt{2}}) \)
K \(x \ln x \)
L \(\ln |\cos x + \tan x| \)
M \(1/\sqrt{1-x^2} \)

N \(1/(|x|\sqrt{x^2-1}) \)
O \(\frac{1}{5} \cos^5 x - \frac{1}{3} \cos^3 x \)
P \(\sin x - \frac{2}{3} \sin^3 x + \frac{1}{5} \sin^5 x \)
Q \(\cos^5 x - \sin^3 x \)
R \(\cosh x \)
S \(\cot x \)
T \(\tanh x \)
U \(\frac{1}{\sqrt{x^2-1}} \)
V \(\arcsin(x) \)
W \(x \cos x \)
X \(x \sin x + \cos x \)
Y \(\sinh x \)
Z none of these

5. (5 pts each, 10 pts total) Do TWO of the following problems (your choice). Put a mark in the box next to the two problems you want to be graded. Put your work on the following pages and clearly mark which problem you are doing.

(i) \[\text{Solve the following differential equation: } (x + 1) \frac{dy}{dx} - 2(x^2 + x)y = e^x/(x + 1). \]

(ii) \[\text{State Taylor’s theorem (or the remainder estimation theorem) and use it to prove that the Maclaurin series for } \sinh x \text{ converges to } \sinh x \text{ for all real numbers.} \]

(iii) \[\text{Find a power series solution (up to and including the } x^4 \text{ term) to the differential equation } y'' - y' - y = 0 \text{ with } y'(0) = 1 \text{ and } y(0) = 1 \]

(iv) \[\text{Give an example of a series so that } \sum_{n=1}^{\infty} a_n \text{ converges but such that } \sum_{n=1}^{\infty} (a_n)^2 \text{ diverges.} \]

(v) \[\text{Prove } e = \sum_{n=0}^{\infty} \frac{1}{n!} \text{ is irrational.} \]