PS2-Problem 1 (20pts)

(a; 10pts) Use the second-order integrating factor method to find the real general solution of

\[y'' + 4y = 4\cos 2t. \]

(1)

Here is one approach. The general real solution \(y = y(t) \) of this equation is given by \(y = \text{Re} \, z \), where \(z = z(t) \) is the complex general solution of

\[z'' + 4z = 4e^{2it}. \]

(2)

The characteristic polynomial for this equation is

\[\lambda^2 + 0 \cdot \lambda + 4 = (\lambda + 2i)(\lambda - 2i). \]

Thus, the two characteristic roots are \(\lambda_1 = 2i \) and \(\lambda_2 = -2i \), and

\[(e^{((-2i) - (2i))t}(e^{(-2i)t}z))' = e^{(-2i)t}(z'' + 4z). \]

(3)

Multiplying both sides of (2) by \(e^{-2it} \) and using (3), we obtain

\[z'' + 4z = 4e^{2it} \implies e^{-2it}(z'' + 4z) = 4 \implies (e^{-4it}(e^{2it}z))' = 4. \]

Integrating twice, we obtain

\[(e^{-4it}(e^{2it}z))' = 4 \implies e^{-4it}(e^{2it}z)' = 4t + C_1 \implies (e^{2it}z)' = 4te^{4it} + C_1e^{4it} \implies e^{2it}z = \int (4te^{4it} + C_1e^{4it})dt = \frac{4}{4i}(te^{4it} - \int e^{4it}dt) + C_1e^{4it} \]

\[= \frac{1}{4}te^{4it} + \frac{1}{4}e^{4it} + \frac{C_1}{4i}e^{4it} + C_2. \]

Since we can replace \((1/4) + (C_1/4i)\) with \(C_1 \), the general solution of (2) is

\[z(t) = \frac{1}{i}te^{2it} + C_1e^{2it} + C_2e^{-2it}. \]

Taking the real part of this equation and modifying the constants, we obtain

\[y(t) = \text{Re} \, z(t) = t\sin 2t + C_1\cos 2t + C_2\sin 2t. \]
Here is another approach. The characteristic polynomial and roots for the original equation are the same as for its complex version. Thus, (3) holds with \(z \) replaced by \(y \), and
\[
y'' + 4y = 4\cos 2t \quad \implies \quad e^{-2it}(y'' + 4y) = 4e^{-2it}\cos 2t \quad \implies \quad (e^{-4it}(e^{2it}y))' = 4e^{-2it}\cos 2t.
\]
Integrating the last expression once, we obtain
\[
e^{-4it}(e^{2it}y)' = \int 4e^{-2it}\cos 2t \, dt = 4\int \cos^2 2t \, dt - 4i\int \cos 2t \sin 2t \, dt
\]
\[
= 2\int (\cos 4t + 1) dt - 2i\int \sin 4t \, dt = \frac{1}{2}\sin 2t + 2t + \frac{i}{2}\cos 4t + C_1 = \frac{i}{2}e^{-4it} + 2t + C_1.
\]
The second and last equalities above follow from Euler’s formula, applied in opposite directions. The third inequality uses the half-angle trigonometric formulas. Finally, proceeding as in the second integration step of the first approach, we obtain
\[
e^{2it}y = \int (2te^{4it} + C_1e^{4it} + \frac{i}{2}) \, dt = \frac{1}{2it}te^{4it} + \frac{1}{8}e^{4it} + \frac{C_1}{4t}e^{4it} + \frac{it}{2} + C_2
\]
\[
\implies \quad y(t) = \frac{t}{2i}(e^{2it} - e^{-2it}) + C_1e^{2it} + C_2e^{-2it} = t\sin 2t + C_1e^{2it} + C_2e^{-2it}.
\]
As before, the complex form \(C_1e^{2it} + C_2e^{-2it} \) is equivalent to the real form \(A_1\cos 2t + A_2\sin 2t \).

Remarks: (1) When the nonhomogeneous term, i.e. RHS in (1), is \(\cos \omega t \) or \(\sin \omega t \), the first approach, i.e. complexifying the ODE, is generally faster, but riskier if you are not used to complex numbers. This is the case whether you use the second-order integrating factor approach or the method of undetermined coefficients. Note that if the forcing term is \(\sin \omega t \), you would need to take the imaginary part of the complex solution.

(2) The complex form \(C_1e^{at+ibt} + C_2e^{at-ibt} \) of the general solution of an ODE is always equivalent to the real form \(A_1e^{at}\cos bt + A_2e^{at}\sin bt \).

(b: 10pts) Use the second-order integrating factor method to find the real general solution of
\[
y'' + 5y' + 4y = t \cdot e^{-t}.
\]
In this case, the characteristic polynomial is
\[
\lambda^2 + 5\lambda + 4 = (\lambda + 1)(\lambda + 4).
\]
Thus, the two characteristic roots are \(\lambda_1 = -1 \) and \(\lambda_2 = -4 \), and
\[
(e^{t(-4)-t(-1)})(e^{-4t}y)' = e^{-(-1)t}(y'' + 5y' + 4y).
\]
(5)
Multiplying both sides of (4) by \(e^t \) and using (5), we obtain
\[
y'' + 5y' + 4y = t \cdot e^{-t} \quad \implies \quad e^t(y'' + 5y' + 4y) = t \quad \implies \quad (e^{-3t}(e^{4t}y)') = t.
\]
Integrating twice, we obtain
\[e^{-3t}(e^{4t}y)' = \int t \, dt = \frac{1}{2} t^2 + C_1 \quad \implies \quad (e^{4t}y)' = \frac{1}{2} t^2 e^{3t} + C_1 e^{3t} \]
\[\implies \quad e^{4t}y(t) = \frac{1}{2} \int t^2 e^{3t} \, dt + C_1 \int e^{3t} \, dt = \frac{1}{6} (t^2 e^{3t} - \int 2te^{3t} \, dt) + \frac{C_1}{3} e^{3t} \]
\[= \frac{1}{6} t^2 e^{3t} - \frac{1}{9} (te^{3t} - \int e^{3t} \, dt) + \frac{C_1}{3} e^{3t} = \frac{1}{6} t^2 e^{3t} - \frac{1}{9} te^{3t} + \frac{1}{27} e^{3t} + \frac{C_1}{3} e^{3t} + C_2. \]

Since we can replace $\frac{1}{27} + \frac{C_1}{3}$ with C_1, the general solution of (4) is
\[y(t) = \frac{1}{6} t^2 e^{-t} - \frac{1}{5} te^{-t} + C_1 e^{-t} + C_2 e^{-4t} \]

Remark: In these two cases, the second-order integrating factor approach is not any easier and perhaps a bit harder than the method of undetermined coefficients. In general, the method of undetermined coefficients will be faster whenever it is applicable, i.e. you know what form a solution should have. On the other hand, the integrating factor approach works for all forcing terms.

Section 4.1, Problems 12,14 (18pts)

4.1:12; Spts: Show that $y_1(t) = e^{-t} \cos 2t$ and $y_2(t) = e^{-t} \sin 2t$ form a fundamental set of solutions for
\[y'' + 2y' + 5y = 0. \]
Find a solution satisfying $y(0) = -1$ and $y'(0) = 0$.

The functions $y_1(t)$ and $y_2(t)$ are linearly independent, since $\tan 2t = y_2(t)/y_1(t)$ is not a constant function. Thus, in order to prove the first statement, we only need to check that $y_1(t)$ and $y_2(t)$ solve the ODE:
\[y_1'(t) = e^{-t} (-2 \sin 2t - \cos 2t) \quad \implies \quad y_1''(t) = e^{-t} (-4 \cos 2t + 2 \sin 2t + 2 \sin 2t + \cos 2t) \]
\[= e^{-t} (4 \sin 2t - 3 \cos 2t); \]
\[y_2'(t) = e^{-t} (2 \cos 2t - \sin 2t) \quad \implies \quad y_2''(t) = e^{-t} (-4 \sin 2t - 2 \cos 2t - 2 \cos 2t + \sin 2t) \]
\[= -e^{-t} (4 \cos 2t + 3 \sin 2t). \]

Plugging these expressions into the ODE, we obtain
\[
\begin{align*}
y_1'' + 2y'_1 + 5y_1 &= e^{-t} (4 \sin 2t - 3 \cos 2t - 4 \sin 2t - 2 \cos 2t + 5 \cos 2t) = 0; \\
y_1'' + 2y'_1 + 5y_1 &= e^{-t} (-4 \cos 2t - 3 \sin 2t + 4 \cos 2t - 2 \sin 2t + 5 \sin 2t) = 0,
\end{align*}
\]
as needed. For the initial-value problem, we need to find C_1 and C_2 such that $y(0) = -1$ and $y'(0) = 0$ if $y = C_1 y_1 + C_2 y_2$. Using the above expressions for y_1' and y_2', we find that
\[
y(0) = C_1 = -1 \quad \text{and} \quad y'(0) = -C_1 + 2C_2 = 0.
\]
Thus, \(C_2 = -\frac{1}{2} \), and the solution to the initial value problem is \(y(t) = -e^{-t} \cos 2t - \frac{1}{2}e^{-t} \sin 2t \).

4.1:14 (a; 2pts) **Show that** \(y_1(t) = t^2 \) **is a solution of**

\[
t^2y'' + ty' - 4y = 0. \tag{6}
\]

We need to plug in \(y_1 \) into (6). Since \(y_1' = 2t \) and \(y_1'' = 2 \),
\[
t^2y_1'' + ty_1' - 4y_1 = t^2 \cdot 2 + t \cdot 2t - 4 \cdot t^2 = 0,
\]
as needed.

(b; 8pts) **Let** \(y_2(t) = v(t)y_1(t) = v(t)t^2 \). **Show that** \(y_2 \) **is a solution of (6) if and only if** \(v \) **satisfies**

\[
5v' + tv'' = 0. \tag{7}
\]

Solve this equation for \(v \) **and describe the general solution of (6).**

We need to plug in \(y_2 \) into (6):

\[
y_2'(t) = t^2v'(t) + 2tv(t) \implies y_2''(t) = t^2v''(t) + 2tv'(t) + 2v(t) = t^2v'' + 4tv' + 2v
\]
\[
\implies 0 = t^2y_2'' + ty_2 - 4y_2 = (t^4v'' + 4t^3v' + 2t^2) + (t^3v' + 2t^2v) - 4t^2v = t^4v'' + 5t^3v'.
\]

Dividing the last expression by \(t^3 \), we obtain (7). In order to solve (7), we first divide this equation by \(t \) and then multiply by the integrating factor \(e^{\int{\frac{5}{t}}dt} = |t|^5 \), or just by \(t^5 \):

\[
5v' + tv'' = 0 \implies t^5v'' + 5t^4v' = 0 \implies (t^5v')' = 0 \implies t^5v'(t) = C_1
\]
\[
\implies v'(t) = C_1t^{-5} \implies v(t) = -\frac{C_1}{4}t^{-4} + C_2.
\]

Since we need to find a single non-constant solution of (7), we can take
\[
v(t) = t^{-4} \quad \text{and} \quad y_2(t) = v(t)y_1(t) = t^{-4}t^2 = t^{-2}.
\]

The general solution of (6) is thus given \(y(t) = C_1t^2 + C_2t^{-2} \).

Section 4.2, Problems 4 (4pts)

Use the substitution \(v = y' \) **to write the second-order ODE**

\[
y'' + 2y' + 2y = \sin 2\pi t
\]
as a system of two first-order equations.

Since \(v = y' \),
\[
v' = y'' = -2y' - 2y + \sin 2\pi t = -2v - 2y + \sin 2\pi t.
\]
Thus, the above second-order ODE is equivalent to the system
\[
\begin{cases}
y' = v \\
v' = -2v - 2y + \sin 2\pi t.
\end{cases}
\]
Section 4.3, Problems 4,10,14,26 (26pts)

4.3:4; 5pts: Find the general solution of the ODE
\[2y'' - y' - y = 0. \]
The characteristic polynomial for this equation is
\[2\lambda^2 - \lambda - 1 = (2\lambda + 1)(\lambda - 1). \]
Thus, the two characteristic roots are \(\lambda_1 = -1/2 \) and \(\lambda_2 = 1 \). Since they are real and distinct, and the general solution of the ODE is
\[y(t) = C_1 e^t + C_2 e^{-t/2}. \]

4.3:10; 8pts: Find the general solution of the ODE
\[y'' + 2y' + 17y = 0. \]
The characteristic polynomial for this equation is
\[\lambda^2 + 2\lambda + 17 = (\lambda - \lambda_1)(\lambda - \lambda_2), \quad \lambda_1, \lambda_2 = -1 \pm \sqrt{17} = -1 \pm 4i. \]
Thus, the two characteristic roots are complex, and so is the general solution of the ODE
\[y(t) = C_1 e^{(-1+4i)t} + C_2 e^{(-1-4i)t}. \]
The corresponding general real solution is given by
\[y(t) = C_1 e^{-t} \cos 4t + C_2 e^{-t} \sin 4t. \]

4.3:14; 5pts: Find the general solution of the ODE
\[y'' - 6y' + 9y = 0. \]
The characteristic polynomial for this equation is
\[\lambda^2 - 6\lambda + 9 = (\lambda - 3)^2. \]
Thus, this equation has a repeated root, \(\lambda = 3 \), and the general solution of the ODE is
\[y(t) = C_1 e^{3t} + C_2 te^{3t}. \]

4.3:26; 8pts: Find the solution to the initial value problem
\[4y'' + y = 0, \quad y(1) = 0, \quad y'(1) = -2. \]
The characteristic polynomial for this equation is
\[4\lambda^2 + 1 = (2\lambda + i)(2\lambda - i). \]
Thus, the two roots, \(\lambda_1 = i/2 \) and \(\lambda = -i/2 \) are distinct, and the general (complex) solution is
\[
y(t) = C_1 e^{it/2} + C_2 e^{-it/2}.
\]

The initial conditions \(y(1) = 0 \) and \(y'(1) = -2 \) give
\[
0 = y(1) = C_1 e^{i/2} + C_2 e^{-i/2} \quad \text{and} \quad -2 = y'(1) = C_1 \frac{i}{2} e^{i/2} - C_2 \frac{i}{2} e^{-i/2}.
\]

Thus, \(C_1 = 2ie^{-i/2} \) and \(C_2 = -2ie^{i/2} \), and
\[
y(t) = 2ie^{-i/2} e^{it/2} - 2ie^{i/2} e^{-it/2} = 2i(e^{i(t-1)/2} - e^{-i(t-1/2)})
\]
\[
= 2i \cdot 2i \sin((t-1)/2) = -4 \sin((t-1)/2).
\]

Thus, the solution to the initial value problem is \(y(t) = -4 \sin((t-1)/2) \) Please check that this function indeed satisfies the ODE and the initial conditions.

Section 4.4, Problem 17 (8pts)

Prove that an overdamped solution of \(m\ddot{y} + \mu \dot{y} + ky = 0 \) can cross the time axis no more than once.

Rewrite the given equation as
\[
y'' + \frac{\mu}{m} y' + \frac{k}{m} = 0 \implies y'' + 2cy' + \omega_0^2 y = 0,
\]
where \(2c = \mu/m \) and \(\omega_0^2 = k/m \). The characteristic equation is \(\lambda^2 + 2c\lambda + \omega_0^2 = 0 \). Its roots are
\[
\lambda_1 = -c - \sqrt{c^2 - \omega_0^2} \quad \text{and} \quad \lambda_2 = -c + \sqrt{c^2 - \omega_0^2}
\]

Since the system is overdamped, \(c^2 - \omega_0^2 > 0 \), and we have two distinct real roots \(\lambda_1 \neq \lambda_2 < 0 \). The general solution is of the form
\[
y(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}.
\]

The number of times any such curve crosses the \(t \)-axis is the number of values of \(t \) for which
\[
C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} = e^{\lambda_1 t}(C_1 + C_2 e^{(\lambda_2 - \lambda_1) t}) = 0.
\]

Since \(e^{\lambda_1 t} \) is never zero, the point \((t, y(t)) \) will lie on the \(t \)-axis if and only if
\[
C_1 + C_2 e^{(\lambda_2 - \lambda_1) t} = 0 \implies e^{(\lambda_2 - \lambda_1) t} = -\frac{C_1}{C_2}
\]

Now, if \(C_1/C_2 \geq 0 \), the right hand side is negative or zero. It has no logarithm and hence there are no times \(t \) where \(y(t) = 0 \). If \(C_1/C_2 < 0 \), the solution curve intersects the \(t \)-axis only at time
\[
t = \frac{1}{\lambda_2 - \lambda_1} \ln \left(-\frac{C_1}{C_2} \right)
\]

Note that \(\lambda_1 \neq \lambda_2 \) above. Thus, the solution curve never intersects the \(t \)-axis more than once.
Section 4.5, Problems 2, 6, 16, 18, 26, 30, 32, 42 (74pts)

4.5:2; 6pts: Using an exponential forcing term, find a particular solution of the equation
\[y'' + 6y' + 8y = -3e^{-t}. \]
We look for the particular solution of the form \(y_p(t) = Ae^{-t}. \) After making the substitutions:
\[y_p(t) = A^{-t}, \quad y_p'(t) = -Ae^{-t}, \quad y_p''(t) = Ae^{-t}, \]
the equation becomes:
\[Ae^{-t} - 6Ae^{-t} + 8Ae^{-t} = -3e^{-t} \implies 3Ae^{-t} = -3e^{-t} \implies A = -1. \]
Thus, a particular solution is \(y(t) = -e^{-t}. \)

4.5:6; 8pts: Use the form \(y = a \cos \omega t + b \sin \omega t \) to find a particular solution of the equation
\[y'' + 9y = \sin 2t \]
Let \(y_p(t) = a \cos 2t + b \sin 2t. \) After making the substitutions:
\[y_p(t) = a \cos 2t + b \sin 2t, \quad y_p'(t) = -2a \sin 2t + 2b \cos 2t, \quad y_p''(t) = -4a \cos 2t - 4b \sin 2t, \]
the equation \(y'' + 9y = \sin 2t \) becomes:
\[-4a \cos 2t - 4b \sin 2t + 9a \cos 2t + 9b \sin 2t = \sin 2t \]
\[\implies 5a \cos 2t + 5b \sin 2t = \sin 2t \implies a = 0, \quad b = \frac{1}{5} \]
A particular solution is \(y(t) = \frac{1}{5} \sin 2t. \)

4.5:16; 8pts: Find a particular solution of the equation
\[y'' + 5y' + 6y = 4 - t^2 \]
The forcing term is a quadratic polynomial, so we look for a particular solution of the form
\[y_p(t) = at^2 + bt + c, \quad \implies y_p'(t) = 2at + b, \quad \implies y_p''(t) = 2a. \]
The equation becomes:
\[y'' + 5y' + 6y = 4 - t^2 \implies 2a + 5(2at + b) + 6(at^2 + bt + c) = 4 - t^2 \]
\[\implies 6at^2 + (10a + 6b)t + (2a + 5b + 6c) = -t^2 + 4. \]
Thus, \(a, b, c \) must satisfy:
\[6a = -1, \quad 10a + 6b = 0, \quad 2a + 5b + 6c = 4 \implies a = -\frac{1}{6}, \quad b = \frac{5}{18}, \quad c = \frac{53}{108}. \]
So, a particular solution is $y_p(t) = -\frac{1}{6}t^2 + \frac{5}{18}t + \frac{53}{108}$.

4.5:18; 12pts: For the equation $y'' + 3y' + 2y = 3e^{-4t}$, first solve the associated homogeneous equation, then find a particular solution. Using Theorem 5.2, form the general solution, and then find the solution satisfying initial conditions $y(0) = 1$, $y'(0) = 0$.

The homogeneous equation $y'' + 3y' + 2y = 0$ has characteristic equation

$$\lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2) = 0,$$

with zeros $\lambda_1 = -1$ and $\lambda_2 = -2$. Thus, the homogeneous solution is

$$y_h(t) = C_1e^{-t} + C_2e^{-2t}.$$

For $y_p = Ae^{-4t}$, $y'_p = -4Ae^{-4t}$ and $y''_p = 16Ae^{-4t}$. Substituting into the inhomogeneous ODE, we get

$$16Ae^{-4t} + 3(-4Ae^{-4t}) + 2Ae^{-4t} = 3e^{-4t} \implies 6A = 3 \implies A = \frac{1}{2}.$$

Thus, a particular solution is $y_p(t) = \frac{1}{2}e^{-4t}$. By Theorem 5.2, the general solution is

$$y = C_1e^{-t} + C_2e^{-2t} + \frac{1}{2}e^{-4t}.$$

The given initial conditions imply:

$$y(0) = C_1 + C_2 + \frac{1}{2} = 1, \quad y'(0) = -C_1 - 2C_2 - 2 = 0 \implies C_1 = 3, \ C_2 = -\frac{5}{2}.$$

So, the solution to the initial value problem is $y = 3e^{-t} - \frac{5}{2}e^{-2t} + \frac{1}{2}e^{-4t}$.

4.5:26; 10pts: In the equation $y'' + 4y = 4\cos 2t$, the forcing term is also a solution of the associated homogeneous equation. Use this to find a particular solution.

Our strategy is to look at the equation $z'' + 4z = e^{2it}$, of which the given equation is the real part. The characteristic equation of the homogeneous equation $z'' + 4z = 0$ is $\lambda^2 + 4 = 0$. Its roots are ±2i. So, the homogeneous solution is:

$$z_h = C_1e^{2it} + C_2e^{-2it}.$$

The forcing term of $z'' + 4z = 4e^{2it}$ is also a solution of the homogeneous equation. Thus, we try to find a particular solution of the form $z_p = Ate^{2it}$:

$$z_p = Ate^{2it} \implies z'_p = Ae^{2it}(1 + 2it) \implies z''_p = 4Ae^{2it}(i - t).$$

After substituting these into $z'' + 4z = 4e^{2it}$, we get:

$$4Ae^{2it}(i - t) + 4Ate^{2it} = 4e^{2it} \implies 4iA = 4 \implies A = \frac{1}{i} = -i \implies z_p = -ite^{2it} = -it(\cos 2t + i\sin 2t) = t\sin 2t - it\cos 2t.$$
Its real part is a particular solution we are looking for: $y_p = \text{Re}(z_p) = t \sin 2t$

4.5:30; 10pts: If $y_f(t)$ and $y_g(t)$ are solutions of

$$y'' + py' + qy = f(t) \quad \text{and} \quad y'' + py' + qy = g(t),$$

respectively, show that $z(t) = \alpha y_f(t) + \beta y_g(t)$ is a solution of

$$y'' + py' + qy = \alpha f(t) + \beta g(t),$$

where α and β are any real numbers.

We are given that:

$$y'' + py' + qy = f(t) \quad \text{and} \quad y'' + py' + qy = g(t)$$

We plug in $z(t)$ into $y'' + py' + qy = \alpha f(t) + \beta g(t)$ and use these two properties of y_f and y_g:

$$z'' + pz' + qz = (\alpha y_f + \beta y_g)'' + p(\alpha y_f + \beta y_g)' + q(\alpha y_f + \beta y_g)$$

$$= (\alpha y_f'' + \beta y_g'') + p(\alpha y_f' + \beta y_g') + q(\alpha y_f + \beta y_g)$$

$$= \alpha(y_f'' + py_f' + qy_f) + \beta(y_g'' + py_g' + qy_g)$$

$$= \alpha f(t) + \beta g(t).$$

Thus, $z(t) = \alpha y_f(t) + \beta y_g(t)$ is a solution of $y'' + py' + qy = \alpha f(t) + \beta g(t)$.

4.5:32; 12pts: Use the previous exercise to find a particular solution of the equation

$$y'' - y = t - e^{-t}.$$

The forcing term is the linear combination $t - e^{-t} = 1 \cdot t + (-1)e^{-t}$. We first find a particular solution y_{p_1} of $y'' - y = t$, and then a particular solution y_{p_2} of $y'' - y = -e^{-t}$. By the previous exercise, $y_{p_1} - y_{p_2}$ will be a particular solution to our equation. To find y_{p_1}, substitute $y = at + b$ into

$$y'' - y = t \implies -at - b = t \implies a = -1, \ b = 0, \implies y_{p_1}(t) = -t.$$

To find y_{p_2}, note that the characteristic equation for the homogeneous equation $y'' - y = 0$ is $\lambda^2 - 1 = 0$. Its roots are $\lambda_1 = -1$ and $\lambda_2 = 1$, giving the homogeneous solution

$$y_h = C_1 e^{-t} + C_2 e^t.$$

It follows that the forcing term e^{-t} is a solution of the homogeneous equation. So we try to find y_{p_2} of the form $y_{p_2}(t) = Ate^{-t}$:

$$y_{p_2} = Ate^{-t} \implies y_{p_2}' = Ae^{-t}(1 - t) \implies y_{p_2}'' = Ae^{-t}(t - 2).$$

The equation now becomes:

$$e^{-t} = y_{p_2}'' - y_{p_2} = Ae^{-t}(t - 2) - Ate^{-t} \implies -2A = 1 \implies A = -\frac{1}{2} \implies y_{p_2}(t) = -\frac{1}{2}te^{-t}.$$
For the first part, plug in $y = t - e^{-t}$ is

$$y_p = y_{p_1} - y_{p_2} = -t + \frac{3}{2}te^{-t}$$

4.5:42: 12pts: Find a particular solution of the equation $y'' + 5y' + 4y = te^{-t}$.

The characteristic equation for the corresponding homogeneous equation $y'' + 5y' + 4y = 0$ is

$$\lambda^2 + 5\lambda + 4 = (\lambda + 1)(\lambda + 4) = 0.$$

Its are roots $\lambda_1 = -1$ and $\lambda_2 = -4$, and the homogeneous solution is

$$y_h = C_1 e^{-t} + C_2 e^{-t}.$$

In particular, e^{-t} is a solution to the homogeneous equation. Thus, we modify the hint in Exercise 39, and look for a particular solution of the form $y_p = t(at + b)e^{-t}$:

$$y_p(t) = t(at + b)e^{-t} \quad \implies \quad y_p'(t) = (-at^2 + (2a - b)t + b)e^{-t} \quad \implies \quad y_p''(t) = (at^2 + (-4a + b)t + (2a - 2b))e^{-t}$$

Substituting, we get:

$$te^{-t} = y'' + 5y' + 4y = (6at + (2a + 3b))e^{-t} \implies 6a = 1, 2a + 3b = 0, \quad a = \frac{1}{6}, \quad b = -\frac{1}{9}.$$

Thus, a solution of $y'' + 5y' + 4y = te^{-t}$ is

$$y_p = \frac{1}{6}t^2e^{-t} - \frac{1}{9}te^{-t}$$

Section 4.6, Problem 13

Verify that $y_1(t) = t$ and $y_2(t) = t^{-3}$ are solutions to the homogeneous equation

$$t^2y'' + 3ty' - 3y = 0.$$

Use variation of parameters to find the general solution to

$$t^2y'' + 3ty' - 3y = t^{-1}.$$

For the first part, plug in $y_1(t) = t$ and $y_2(t) = t^{-3}$ into the homogeneous equation:

$$y_1 = t, \quad y_1' = 1, \quad y_1'' = 0 \implies t^2y'' + 3ty' - 3y = t^2 \cdot 0 + 3t \cdot 1 - 3 \cdot t = 0;$$

$$y_1 = t^{-3}, \quad y_1' = -3t^{-4}, \quad y_1'' = 12t^{-5} \implies t^2y'' + 3ty' - 3y = t^2 \cdot 0 + 3t \cdot 0 - 3 \cdot t^{-3} = 0,$$

as needed. We look for a solution to the inhomogeneous equation of the form $y_p = v_1y_1 + v_2y_2$. Then,

$$y'_p = (v_1' y_1 + y_1v_2') + y_1' v_1 + y_2' v_2 = (tv_1' + t^{-3}v_2') + v_1 - 3t^{-4}v_2.$$

We set the expression in the parenthesis to zero. Thus,

$$y'_p = v_1 - 3t^{-4}v_2 \implies y''_p = v_1' + 12t^{-5}v_2 - 3t^{-4}v_2' = t^2y'' + 3ty' - 3y = t^2v_1' - 3t^{-2}v_2' = t^{-1}.$$

Since we also assumed that $tv_1' + t^{-3}v_2' = 0$, we need to solve the system

\[
\begin{cases}
 v_1' + t^{-4}v_2' = 0 \\
 v_1' - 3t^{-4}v_2' = t^{-3}
\end{cases}
\]

$$\implies v_1' = \frac{1}{4}t^{-3}, \quad v_2' = -\frac{1}{4}t \implies v_1 = -\frac{1}{8}t^{-2}, \quad v_2 = -\frac{1}{8}t^2$$

$$\implies y_p = v_1y_1 + v_2y_2 = -\frac{1}{8}t^{-2} \cdot t - \frac{1}{8}t^2 \cdot t^{-3} = -\frac{1}{4}t^{-1}.$$

Thus, the general solution is

$$y(t) = C_1t + C_2t^{-3} - \frac{1}{4}t^{-1}$$