Second-Order Linear Differential Equations

A second-order linear differential equation has the form

m PO L+ o) %+ Ry = G

where P, O, R, and G are continuous functions. We saw in Section 7.1 that equations of
this type arise in the study of the motion of a spring. In Additional Topics: Applications of
Second-Order Differential Equations we will further pursue this application as well as the
application to electric circuits.

In this section we study the case where G(x) = 0, for all x, in Equation 1. Such equa-
tions are called homogeneous linear equations. Thus, the form of a second-order linear
homogeneous differential equation is

d?y
dx?

K PO+ 00 5+ Ry = 0

If G(x) # 0 for some x, Equation 1 is nonhomogeneous and is discussed in Additional
Topics: Nonhomogeneous Linear Equations.

Two basic facts enable us to solve homogeneous linear equations. The first of these says
that if we know two solutions y; and y, of such an equation, then the linear combination
y = c1y1 t ¢y, is also a solution.

[3] Theorem If y;(x) and y,(x) are both solutions of the linear homogeneous equa-
tion (2) and ¢, and ¢, are any constants, then the function

y(x) = cyi(x) + caya()

is also a solution of Equation 2.

Proof Since y; and y, are solutions of Equation 2, we have
Pyt + Q(x)yi + R(x)y1 = 0
and P(x)y? + Q(x)y5 + R(x)y, = 0
Therefore, using the basic rules for differentiation, we have
P(x)y" + Q(x)y" + R(x)y
= P(x)(ciyr + c232)" + Q)(ciyr + cayn)” + R(x)(ciyr + cay2)
= P(x)(ciy!" + cayy) + Q(x)(c1yi + covh) + R(x)(ciyr + cayn)
= [Pyl + Q()yi + Ryl + oo[P()ys + Q(x)ys + R(x)y.]
=c1(0) + c2(0) =0
Thus, y = c1y; + ¢2y» is a solution of Equation 2. mE

The other fact we need is given by the following theorem, which is proved in more
advanced courses. It says that the general solution is a linear combination of two linearly
independent solutions y; and y,. This means that neither y;, nor y, is a constant multiple
of the other. For instance, the functions f(x) = x* and g(x) = 5x? are linearly dependent,
but f(x) = e¢*and g(x) = xe* are linearly independent.
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[4] Theorem If y, and y, are linearly independent solutions of Equation 2, and P(x)
is never 0, then the general solution is given by

y(x) = ciy(x) + cayalx)

where ¢, and c; are arbitrary constants.

Theorem 4 is very useful because it says that if we know rwo particular linearly inde-
pendent solutions, then we know every solution.

In general, it is not easy to discover particular solutions to a second-order linear equa-
tion. But it is always possible to do so if the coefficient functions P, Q, and R are constant
functions, that is, if the differential equation has the form

[5] ay" + by +cy=0

where a, b, and ¢ are constants and a # 0.

It’s not hard to think of some likely candidates for particular solutions of Equation 5 if
we state the equation verbally. We are looking for a function y such that a constant times
its second derivative y” plus another constant times y’ plus a third constant times y is equal
to 0. We know that the exponential function y = " (where r is a constant) has the prop-

2,rx

erty that its derivative is a constant multiple of itself: y’ = re’*. Furthermore, y" = re"™.
If we substitute these expressions into Equation 5, we see that y = e is a solution if

ar’e™ + bre™ + ce™ =0
or (ar? + br + c)e’™ =

But ™ is never 0. Thus, y = e'" is a solution of Equation 5 if r is a root of the equation

[6] ar* +br+c¢=0

Equation 6 is called the auxiliary equation (or characteristic equation) of the differen-
tial equation ay” + by' + ¢y = 0. Notice that it is an algebraic equation that is obtained
from the differential equation by replacing y” by r%, y’ by r, and y by 1.

Sometimes the roots r; and r, of the auxiliary equation can be found by factoring. In
other cases they are found by using the quadratic formula:

b+ BT dac b~ BT~ dac

2a 2 2a

A

We distinguish three cases according to the sign of the discriminant b? — 4ac.

(ASEl = b* — d4ac > 0

In this case the roots r; and r, of the auxiliary equation are real and distinct, so y; = e"'*
and y, = e"" are two linearly independent solutions of Equation 5. (Note that ¢"*" is not a
constant multiple of e"'*.) Therefore, by Theorem 4, we have the following fact.

If the roots r; and r, of the auxiliary equation ar? + br + ¢ = 0 are real and
unequal, then the general solution of ay” + by" + cy = 01is

y=ce" + ce™*




= = |n Figure 1 the graphs of the basic solutions
f(x) = e*and g(x) = e * of the differential
equation in Example 1 are shown in black and
red, respectively. Some of the other solutions,
linear combinations of f and g, are shown

in blue.

FIGURE 1
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EXAMPLE 1 Solve the equation y” + y" — 6y = 0.
SOLUTION The auxiliary equation is
PHr—6=0rF—-2)(r+3)=0

whose roots are r = 2, —3. Therefore, by (8) the general solution of the given differen-
tial equation is

y=rcie* + ce ™

We could verify that this is indeed a solution by differentiating and substituting into the

differential equation. EEm
d’y dy
EXAMPLE 2 Solve 3 +——y=0.
VT T Y

SOLUTION To solve the auxiliary equation 37> + r — 1 = 0 we use the quadratic
formula:

-1+ 13

6

r =

Since the roots are real and distinct, the general solution is
y= cle(me)x/s + CZe(flfm)x/ﬁ EE

(ASENl o b* — d4ac = 0
In this case r, = r,; that is, the roots of the auxiliary equation are real and equal. Let’s
denote by r the common value of 7, and r,. Then, from Equations 7, we have

[9] r=—-— so 2ar+b=0

We know that y; = e'* is one solution of Equation 5. We now verify that y, = xe™ is also
a solution:

ayy + bys + ¢y, = are’™ + r*xe™) + b(e™ + rxe™) + cxe™
= (2ar + b)e™ + (ar* + br + c)xe’™
=0(e™) + 0(xe™) =0
The first term is 0 by Equations 9; the second term is 0 because r is a root of the auxiliary

equation. Since y; = e™ and y, = xe" are linearly independent solutions, Theorem 4 pro-
vides us with the general solution.

If the auxiliary equation ar® + br + ¢ = 0 has only one real root r, then the
general solution of ay” + by + cy =0 s

y=cie™ + crxe™

EXAMPLE 3 Solve the equation 4y” + 12y" + 9y = 0.

SOLUTION The auxiliary equation 47> + 127 + 9 = 0 can be factored as

Q2r+3°=0
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= = Figure 2 shows the basic solutions
f(x) = e and g(x) = xe >2in
Example 3 and some other members of the
family of solutions. Notice that all of them
approach 0 as x — <o,

frg9 8

FIGURE 2

= = Figure 3 shows the graphs of the solu-
tions in Example 4, f(x) = e** cos 2x and
g(x) = e sin 2x, together with some linear
combinations. All solutions approach 0

asx — —o.

ft+g

FIGURE 3

so the only root is » = —3. By (10) the general solution is

—3x/2

y=ce + cyxe ¥/ mm

(ASENl = b* — d4ac < 0
In this case the roots r, and r of the auxiliary equation are complex numbers. (See Appen-
dix I for information about complex numbers.) We can write

r=at+if rn=a—if

where « and B are real numbers. [In fact, « = —b/(2a), B = v/4ac — b*/(2a).] Then,
using Euler’s equation

0 _

e cos 6 + isin 6

from Appendix I, we write the solution of the differential equation as

y = Clerlx + Czergx — Cle(a+iB)x + Cze(a*iB)x
= Cie“*(cos Bx + isin Bx) + Cre**(cos Bx — isin Bx)

e [(Ci + C3) cos Bx + i(Cy — C) sin Bx]

e**(cy cos Bx + ¢ sin Bx)

where ¢; = C, + Gy, ¢a = i(Cy — C,). This gives all solutions (real or complex) of the dif-
ferential equation. The solutions are real when the constants ¢; and ¢, are real. We sum-
marize the discussion as follows.

[11] If the roots of the auxiliary equation ar® + br + ¢ = 0 are the complex num-
bers r, = a + i, r» = a — if3, then the general solution of ay” + by’ + cy =0
is

y = e*(c1cos Bx + ¢, sin Bx)

EXAMPLE 4 Solve the equation y” — 6y’ + 13y = 0.

SOLUTION The auxiliary equation is 7> — 6r + 13 = 0. By the quadratic formula, the

roots are
6+ 36 —-52 6x.-16 3+ 0
r= = =3 *2
2 2
By (11) the general solution of the differential equation is
y = e*(c; cos 2x + ¢, sin 2x) Em

== Initial-Value and Boundary-Value Problems

An initial-value problem for the second-order Equation 1 or 2 consists of finding a solu-
tion y of the differential equation that also satisfies initial conditions of the form

y(x0) = yo y'(x0) =y

where y, and y; are given constants. If P, O, R, and G are continuous on an interval and
P(x) # 0 there, then a theorem found in more advanced books guarantees the existence
and uniqueness of a solution to this initial-value problem. Examples 5 and 6 illustrate the
technique for solving such a problem.
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EXAMPLE 5 Solve the initial-value problem
Yy —6y=0 y(0) =1 y'(0) =0

= = Figure 4 shows the graph of the solution of SOLUTION From Example 1 we know that the general solution of the differential equa-
the initial-value problem in Example 5. Compare tion is

with Figure 1.
2 y(x) = cre™ + e ™
Differentiating this solution, we get
’ _ 2x __ —3x
y'(x) = 2cie 3cye
To satisfy the initial conditions we require that
= 0 2 1K YO =+ =1
FIGURE 4 [13] y'(0) =2¢; — 3¢, =10
From (13) we have ¢, = %c. and so (12) gives
Cl+%61=1 Cl:% 02:%
Thus, the required solution of the initial-value problem is
y=3er+5e™ LT
= = The solution to Example 6 is graphed in EXAMPLE 6 Solve the initial-value problem
Figure 5. It appears to be a shifted sine curve
and, indeed, you can verify that another way of Yy +y=0 y(()) =2 y'(()) =3
writing the solution is
y=+13sin(x + ¢) where tan ¢ =3 SOLUTION The auxiliary equation is 7> + 1 = 0, or r> = — 1, whose roots are *i. Thus

s a =0, B =1, and since ¢® = 1, the general solution is

h J y(x) = c¢1cos x + ¢a8in x
/\ Since y'(x) = —cysin x + cacos x

=2 2
\/ v the initial conditions become
~s " y(0)=c =2 YO) = =3
FIGURE 5 Therefore, the solution of the initial-value problem is

y(x) =2cosx + 3sinx EEm

A boundary-value problem for Equation 1 consists of finding a solution y of the dif-
ferential equation that also satisfies boundary conditions of the form

y(x0) = yo y(x1) =y

In contrast with the situation for initial-value problems, a boundary-value problem does
not always have a solution.

EXAMPLE 7 Solve the boundary-value problem
Y'+2y +y=0 y(0) =1 y(1) =3
SOLUTION The auxiliary equation is

rP+2r+1=0 or r+12=0
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= = Figure 6 shows the graph of the solution of
the boundary-value problem in Example 7.

5

=5

FIGURE 6

Exercises

whose only root is r = —1. Therefore, the general solution is

X

y(x) = cre™ + crxe”

The boundary conditions are satisfied if

y0)=c =1

y(1)=cie' + e’ =3

The first condition gives ¢; = 1, so the second condition becomes

e+ et =3

Solving this equation for ¢, by first multiplying through by e, we get

1+ c=3e SO ;=3¢ —1

Thus, the solution of the boundary-value problem is

y=e "+ Be — lxe ™™

Summary: Solutions of ay” + by’ +¢ =0

Roots of ar®> + br + ¢ =0 General solution

ry =nrn=r

r1, r> real and distinct y=cie" + ce™*

y=ce™" + cxe’™

r1, r» complex: a * if3 y = e“(cy cos Bx + ¢ sin Bx)

[A] Click here for answers. [s] Click here for solutions.

1-13 m Solve the differential equation

1.y" =6y +8y=0 2.y =4y +8y=0
3.y +8y +41y=0 4. 2y" —y' —y=0
5.y =2y +y=0 6. 3y" =5y
7. 4y" +y=0 8. 16y" +24y' +9y =0
9. 4y" +y' =0 10. 9y" +4y =0
d*y dy d’y dy
11. —2——y=0 12. —6—+4y=0
dr? a dr? dt Y
d’y | dy
13. +—+y=0
ar ar

¥ 14-16 m Graph the two basic solutions of the differential equation
and several other solutions. What features do the solutions have in

common?
d’y dy
46— ———-2y=0 15.
dx? dx Y
d? d
16. L2 22 5,9

dx? dx

d’y dy
-8 1 16y=0
dx? dx Y

17-24 m Solve the initial-value problem.

17. 2y" + 59" + 3y =0, y(0) =3, y(0)=—4
18. y +3y=0, y(0) =1, y(0)=3

19. 4y" —4y" +y =0, y(0)=1, y(0)=—-15
20. 2y" + 5y =3y =0, y0) =1, y(0)=4
21. y" + 16y =0, y(w/4) = =3, y'(w/4) =4
22. y" = 2y' +5y=0, y(m) =0, y(m)=2
23. y"+ 2y +2y=0, y0) =2, y(0)=1

4. y' + 12y’ +36y=0, y(1)=0, y(l)=1

25-32 m Solve the boundary-value problem, if possible.
25. 4y"+y=0, y(0)=3, y(m=—-4

26. y" +2y' =0, y0) =1, y(l)=2

27. y" = 3y" +2y=0, y0) =1, y3) =0

28. y" + 100y =0, y(0)=2, y(m) =5

29.y" =6y +25y=0, y(0) =1, y(m =2

30. y" =6y +9y=0, y(0)=1, y(1)=0

3. Y + 4y + 13y =0, y(0) =2, y(w/2)=1



32. 9y" — 18y’ + 10y =0, y(0)=0, y(m =1

33. Let L be a nonzero real number.
(a) Show that the boundary-value problem y” + Ay = 0,
y(0) = 0, y(L) = 0 has only the trivial solution y = 0 for
the cases A = 0 and A < 0.
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(b) For the case A > 0, find the values of A for which this prob-
lem has a nontrivial solution and give the corresponding
solution.

34. If a, b, and c are all positive constants and y(x) is a solution
of the differential equation ay” + by" + cy = 0, show that
lim, .. y(x) = 0.
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Answers

[s] Click here for solutions.

. y=cie™ + ce™ 3. y = ¢ *(c| cos 5x + ¢, sin 5x)
5.y =cie* + caxe* 7. y = ¢ cos(x/2) + ¢, sin(x/2)
9. y=c + ce* 1. y= cre VD 4 oo (1=V2)

13. y = e *[c cos(v/31/2) + ¢, sin(v/31/2)]

15. 40 g

-0.2

—40

All solutions approach 0 as x — —o and approach *% as x — .
17. y =232 + ¢ 19. y = e¥? — 2xe*/?

21. y = 3 cos 4x — sin4x 23. y = e (2 cosx + 3sinx)

ex+3 er
25. y = 3 cos(3x) — 4 sin(3x) 2. y=—F""+ 3
e’ — 1 1—e

29. No solution
31. y = ¢ *(2 cos 3x — " sin 3x)
33. (b) A = n’7%/L? n a positive integer; y = C sin(nmwx/L)
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Solutions: Second-Order Linear Differential Equations

1.

13.

15.

17.

19.

21.

23.

25,

2].

29.

. The auxiliary equationis 7> —6r +8 =0 = (r—4)(r—2)=0 = r = 4,7 = 2. Then by (8) the general

solution is y = ¢;e?® + cye2®.

. The auxiliary equation is 72 4+ 8r +41 =0 = r = —4 4 5i. Then by (11) the general solution is

y= 6_42(61 cos bz + ¢z sin 5x).

. The auxiliary equationis 72 — 2r +1 = (r —1)> =0 = ¢ = 1. Then by (10), the general solution is

y = c1e” + caze”.

. The auxiliary equation is 4?2 +1=0 = r= i%i, SO Yy = €1 COS (%a:) + co sin (%a:)
. The auxiliary equationis 4r* +r =r(4r+1)=0 = r=0,r=—-1soy=c1 + coe™ /4,
The auxiliary equation is P—2r—1=0 = r=1+ \/5, SOy = cle(Hﬁ)t + cze(lfﬁ)t.

The auxiliary equation is r? +r+1=0 = r= —% + @z’, soy = e t/? [cl cos(ét) + c2 sin(@tﬂ.

r? —8r+16 = (r —4)?> = 0s0y = c1e*® + coze®. 40
The graphs are all asymptotic to the z-axis as £ — —oo, {
and as x — oo the solutions tend to F-cc.

—3z/2 T

2r2 +5r 4+ 3= (2r+3)(r+1) =0,s0r = —2, 7 = —1 and the general solution is y = cie + cge” "

o
Theny(0) =3 = ci1+c2=3andy’(0)=—-4 = —%cl—czz—él,socl:2and62:1.Thusthe

solution to the initial-value problem is y = 2e~3%/2 4 ¢ 2.

472 —4r+1=(2r—1)>=0 = r = 1 and the general solution is y = c1e™/? + coze™ 2. Then y(0) = 1
= ¢ =1land y’(O) =—-15 = %cl + c2 = —1.5, 50 c2 = —2 and the solution to the initial-value problem is
y = e%/? — 2ze"/2.

r24+16 =0 = r = +4iand the general solution is y = €°®(c1 cos 4z + c2 sindx) = c1 cos 4z + ¢z sin 4z.
Theny(5) =-3 = —ca=-3 = c=3andy'(3)=4 = —4c2=4 = cz=—1s0the

solution to the initial-value problem is y = 3 cos 4z — sin 4.

r>42r+2=0 = 7= —1=iand the general solution is y = e~%(c; cos + ¢z sinx). Then 2 = y(0) = ¢,

and1 =%(0) =c2 —c1 = c2 = 3 and the solution to the initial-value problem is y = e~ *(2 cos z + 3sin ).

4?2 +1=0 = r= i%i and the general solution is y = ¢; cos(%x) + co sin(%x). Then 3 = y(0) = ¢1 and

—4 = y(7) = ¢2, so the solution of the boundary-value problem is y = 3 COS(%.’IJ) —4 sin(%x).

r>—3r+2=(—-2)(r—1)=0 = r=1,r=2and the general solution is y = c1€® + coe**. Then

1=y(0)=ci+coand 0 =y(3) = c1e® + c2e® soco = 1/(1 — €*) and ¢; = €*/(e® — 1). The solution of the
x+3 2z
L€
e3—1 1-—e3

boundary-value problem is y =

r2—6r+25=0 = r =3 4jand the general solution is y = €3 (¢ cos 4z + c2 sin4z). But 1 = y(0) = ¢;

37

and 2 = y(m) = cie = ¢1 = 2/€", so there is no solution.
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N.r2+4r+13=0 = r = —24 3iand the general solution is y = e ™2 (c1 cos 3z + c2 sin 3z). But
2=y(0) =cirand 1 =y(%) = e "(—c2), so the solution to the boundary-value problem is

y= 6721(

2cos 3z — e sin 3x).

33. (@) Case I(A=0): 3"+ y=0 = %" =0 which has an auxiliary equationr> =0 = r=0 =
y = c1 + cox where y(0) = 0and y(L) = 0. Thus,0 = y(0) = c1and 0 =y(L) = 2L = c¢1 =c2=0.
Thus, y = 0.
Case 2 (A < 0): 4" + Ay = 0 has auxiliary equation r> = —\ = 7 = ++/—X (distinct and real since
A<0) = y=cieV 4 eV where y(0) = 0and y(L) = 0. Thus, 0 = y(0) = c1 + c2 (%) and
0=y(L) = c1e¥ ™ + cae ™V ().
Multiplying (x) by eV~ and subtracting (T) gives c2 (e\/__)‘L —e VAL ) =0 = c2 =0and thus
c1 = 0 from (x). Thus, y = 0 for the cases A = 0 and A < 0.

() y"" 4+ Ay = 0 has an auxiliary equation 7> + A =0 = r=+4ivVA = y=cicosVAz+casinvVAz

where y(0) = 0 and (L) = 0. Thus, 0 = y(0) = ¢1 and 0 = y(L) = ca sin v/AL since ¢1 = 0. Since we

cannot have a trivial solution, ¢z # 0 and thus sin \/X L=0 = \/X L = nm where n is an integer
= A =n?7?/L? and y = cz sin(nmx/L) where n is an integer.



