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Review of the Riemann Sum



Review of the Riemann Sum

The Riemann Sum for a function f on the interval [a, b]:

• (Right) Rn :=
∑n

i=1 ∆x · f (xi )

• (Left) Ln :=
∑n−1

i=0 ∆x · f (xi )

where ∆x = b−a
n , and xi = a + i ·∆x = a + i · b−an .
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Review of the Riemann Sum

Definite Integral ←→ Limit of the Riemann Sum∫ b

a

f (x)dx ←→ lim
n→∞

n∑
i=1

∆xf (xi )

• Given the definite integral, we can write down the limit of its

Riemann Sum.

• Conversely, given the limit of a Riemann Sum, we can recover the

corresponding definite integral.
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Limit of a sum → Definite Integral

(Chap 5.2, 53) Express the limit as a definite integral:

lim
n→∞

n∑
i=1

i4

n5
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Limit of a sum → Definite Integral

Solution:

• Step 0: Note that i4

n5 = 1
n ·
(
i
n

)4
, the original limit will be changed

into

lim
n→∞

1

n

n∑
i=1

(
i

n

)4

.

• Step 1: Compare the expression with the Riemann Sum formula

Rn = ∆x
∑n

i=1 f (xi ) and conclude

∆x =
1

n
; f (xi ) =

(
i

n

)4
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Limit of a sum → Definite Integral

• Step 2: From ∆x = 1
n we conclude that a = 0, b = 1.

• Step 3: From a = 0, b = 1 we can deduce xi = a + i · b−an = i
n .

• Step 4: From xi = i
n we see that

f (xi ) =

(
i

n

)4

= (xi )
4.

This implies f (x) = x4.

• Step 5: We can now conclude that the definite integral is∫ 1

0

x4dx .
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Summary of the Steps

• Step 1: Compare the expression with the Riemann Sum formula

Rn = ∆x
∑n

i=1 f (xi ) and get ∆x and f (xi ) (Now the f (xi ) is an

expression WITHOUT the xi ).

• Step 2: From ∆x we can get a, b (Usually we take a = 0, then

b = n ·∆x);

• Step 3: From a, b we can get xi = a + i · (b − a)/n (if we take

a = 0, then xi = ib
n );

• Step 4: From the xi we can get the expression of f (xi ) WITH the

xi , then we can get f (x)

• Step 5: We can now write down
∫ b

a
f (x)dx .
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Limit of a sum → Definite Integral

(Chap 5.2, 54) Express the limit as a definite integral:

lim
n→∞

1

n

n∑
i=1

1

1 + (i/n)2
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Limit of a sum → Definite Integral

• Step 1: Compare the expression

1

n

n∑
i=1

1

1 + (i/n)2

with the Riemann Sum formula Rn = ∆x
∑n

i=1 f (xi ) and get

∆x = 1/n; f (xi ) =
1

1 + (i/n)2

(Now the f (xi ) is an expression WITHOUT the xi ).

• Step 2: From ∆x = 1/n we can get

a = 0, b = 1
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Limit of a sum → Definite Integral

• Step 3: From a = 0, b = 1 we can get xi = 0 + i · 1/n = i/n;

• Step 4: From xi = i/n we can get

f (xi ) =
1

1 + (i/n)2
=

1

1 + x2i

Therefore we have

f (x) =
1

1 + x2

• Step 5: Lastly, we have
∫ b

a
f (x)dx =

∫ 1

0
1

1+x2 dx .
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The Fundamental Theorem of

Calculus (FTC)



The FTC

The first example:

(5.4 E2) Let g(x) =
∫ x

1
t2dt, find a formula for g(x) by evaluation

theorem and calculate g ′(x).
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The FTC

(5.4 E2) Let g(x) =
∫ x

1
t2dt, find a formula for g(x) by evaluation

theorem and calculate g ′(x).

Solution:

• The anti-der of t2 is 1
3 t

3.

• By evaluation theorem: g(x) = 1
3 t

3|t=x
t=1 = 1

3x
3 − 1

3 .

• Take derivative: g ′(x) = x2.
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The FTC

Upshot: g ′(x) = x2 is the same function as the integrant (t2)!
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The FTC

General Case:

Theorem (The Fundamental Theorem of Calculus)

The function g(x) defined by

g(x) =

∫ x

a

f (t)dt

is an antiderivative of f (x). Namely, g ′(x) = f (x).

Remark: As long as the lower limit is a constant (a), it doesn’t matter

what the number is!
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The FTC

Let us check this fact with another example:

(5.4, 5) find the derivative of the function g(x) =
∫ x

0
(1 + t2)dt.
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The FTC

(5.4, 5) find the derivative of the function g(x) =
∫ x

0
(1 + t2)dt.

Solution:

• The anti-der of 1 + t2 is t + 1
3 t

3.

• By evaluation theorem: g(x) = (t + 1
3 t

3)|t=x
t=0 = (x + 1

3x
3)− 0.

• Take derivative: g ′(x) = (x + 1
3x

3)′ = x ′ + ( 1
3x

3)′ = 1 + x2.
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The FTC

Direct application of the FTC:

(5.4, E3) find the derivative of the function g(x) =
∫ x

0

√
1 + t2dt.

Solution: By the FTC, we have

g ′(x) =
√

1 + x2.
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The FTC

(5.4, 11) find the derivative of the function g(x) =
∫ π
x

√
1 + sec tdt.
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The FTC

(5.4, 11) find the derivative of the function g(x) =
∫ π
x

√
1 + sec tdt.

Solution:

Firstly note that
∫ π
x

√
1 + sec tdt = −

∫ x

π

√
1 + sec tdt.

Then by the FTC, we have

g ′(x) = −
√

1 + sec x .
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Differentiation and Integration as Inverse Processes

The two forms of the FTC:

Form 1 (First differentiate, then integrate):
∫ b

a
f (t)dt = F (b)− F (a),

where F is any antiderivative of f . Namely:∫ x

a

F ′(t)dt = F (x)− F (a).

(This is the Evaluation Theorem)

Form 2 (First integrate, then differetiate): g(x) =
∫ x

a
f (t)dt, then

g ′(x) = f (x). Namely:

d

dx

∫ x

a

f (t)dt = f (x).
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The FTC combined with the chain rule

(5.4 E5) Find d
dx

∫ x4

1
sec tdt.

Note that instead of x as the upper limit, we have x4 as the upper limit.
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The FTC combined with the chain rule

(5.4 E5) Find d
dx

∫ x4

1
sec tdt.

Solution: We need to use the Chain Rule:

• Step 1: Let u = u(x) = x4 as the inner function; and let

y = y(u) =
∫ u

1
sec tdt as the outer function.

• Step 2: The original question is now to find d
dx y(u(x)), which is a

chain rule problem:

dy

dx
=

dy

du
|u=u(x) ·

du

dx
.
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The FTC combined with the chain rule

Solution: We need to use the Chain Rule:

• Step 3: Now we need to find dy
du and du

dx :

du

dx
= 4 · x3;

dy

du
= sec u.

• Step 4: Plug in the chain rule formula and find

dy

dx
=

dy

du
|u=u(x) ·

du

dx
= sec(x4) · 4 · x3 = 4x3 sec(x4).
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The FTC combined with the chain rule

(5.4, 13) Find the derivative of h(x) =
∫ 1/x

2
arctan tdt.
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The FTC combined with the chain rule

Solution:

• Step 1: Let u = 1/x be the inner function; let y =
∫ u

2
arctan tdt as

the outer function.

• Step 2: Find the derivatives:

du

dx
= − 1

x2
dy

du
= arctan u.

• Step 3: Use the chain rule formula:

dy

dx
=

dy

du
|u=u(x) ·

du

dx
= arctan(1/x) · (− 1

x2
)
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The FTC combined with the chain rule

(5.4, 17) Find the derivative of g(x) =
∫ 3x

2x
t2−1
t2+1dt.
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The FTC combined with the chain rule

(5.4, 17) Find the derivative of g(x) =
∫ 3x

2x
t2−1
t2+1dt.

Solution:

• Step 1: Need to firstly break the integration into two:∫ 3x

2x

t2 − 1

t2 + 1
dt =

∫ 3x

0

t2 − 1

t2 + 1
dt +

∫ 0

2x

t2 − 1

t2 + 1
dt

=

∫ 3x

0

t2 − 1

t2 + 1
dt −

∫ 2x

0

t2 − 1

t2 + 1
dt

=: g1(x)− g2(x)

• Step 2: Apply the FTC + chain Rule to g1(x) and g2(x) separately.
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The FTC combined with the chain rule

For g1(x):

• Let u = 3x be the inner function; let y =
∫ u

0
t2−1
t2+1dt as the outer

function.

• Find the derivatives:

du

dx
= 3

dy

du
=

u2 − 1

u2 + 1
.

• Step 4: Use the chain rule formula:

g ′1(x) =
dy

dx
=

dy

du
|u=u(x) ·

du

dx
= 3 · (3x)2 − 1

(3x)2 + 1
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The FTC combined with the chain rule

Similarly for g2 we have

g ′2(x) = 2 · (2x)2 − 1

(2x)2 + 1

.

Together we have:

g ′(x) = g ′1(x)− g ′2(x) = 3 · (3x)2 − 1

(3x)2 + 1
− 2 · (2x)2 − 1

(2x)2 + 1
.
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The FTC combined with the chain rule

(5.4, 22) If f (x) =
∫ sin x

0

√
1 + t2dt and g(y) =

∫ y

3
f (x)dx , find g ′′(π/6)
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The FTC combined with the chain rule

(5.4, 22) If f (x) =
∫ sin x

0

√
1 + t2dt and g(y) =

∫ y

3
f (x)dx , find g ′′(π/6)

Solution:

• Step 1: To find g ′′(π/6) we need first find g ′′(x), then plug in

x = π/6.

• Step 2: First derivative: g ′(x) = f (x) (1st time of the FTC)

• Step 3: Second derivative: g ′′(x) = f ′(x) = d
dx

∫ sin x

0

√
1 + t2dt.

This is the 2nd time of the FTC, we need to use the chain rule in

this step.
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The FTC combined with the chain rule

• Step 4: To find d
dx

∫ sin x

0

√
1 + t2dt, let u = sin x be the inner

function; let y =
∫ u

0

√
1 + t2dt as the outer function.

• Step 5: Find the derivatives:

du

dx
= cos x

dy

du
=
√

1 + u2

• Step 6: Use the chain rule formula:

g ′′(x) = f ′(x) =
dy

dx
=

dy

du
|u=u(x) ·

du

dx
=
√

1 + (sin x)2 · cos x .

• Step 7: Plug in:

g ′′(π/6) =
√

1 + (sin(π/6))2 · cos(π/6) =
√

1 + ( 1
2 )2 ·

√
3
2 =

√
15
4 .
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Substitution



Substitution

Let us now see another version of the FTC + Chain Rule story:

The Chain Rule states:

d

dx
F (g(x)) = F ′(g(x))g ′(x).

By the FTC, taking integration on both side we get:

F (g(x)) =

∫
d

dx
F (g(x)) =

∫
F ′(g(x))g ′(x)dx .

This is called the Substitution Rule.
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Substitution

The Substitution Rule: F (g(x)) =
∫
F ′(g(x))g ′(x)dx .

The key to the substitution rule is to find the part to be substitute, i.e.

u = g(x).

First Example of the Substitution rule:

Find:
∫

2x
√

1 + x2dx . (Hint: use u = 1 + x2.)
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Substitution

Find:
∫

2x
√

1 + x2dx . (Hint: use u = 1 + x2.)

Solution:

• Step 1: Substitute u = 1 + x2 (we choose this not because of the

hint, but because of that this function is in the square root!)

• Step 2: Find du = u′(x)dx = 2xdx .

• Step 3: The original integration:∫
2x
√

1 + x2dx =

∫ √
1 + x2(2xdx) =

∫ √
udu =

2

3
u3/2

• Step 4: Substitute u = 1 + x2 back:∫
2x
√

1 + x2dx =
2

3
(1 + x2)3/2.
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Discussion



Discussion Problems

Use the Fundamental Theorem of Calculus to find the derivatives of the

functions

• (5.4, 7) g(x) =
∫ x

1
1

t3+1dt

• (5.4, 9) g(x) =
∫ x

2
t2 sin tdt

• (5.4 14) h(x) =
∫ x2

0

√
1 + r3dr

• (5.4 15) f (x) =
∫ tan x

0

√
t +
√
tdt

Evaluate the integral by using the given substitute

• (5.5, 1)
∫
e−xdx , (use u = −x).
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