MAT 331 Fall 2023 Project Primality testing

In this project we will investigate two methods to test whether or not a particular whole number is prime, called primality testing. An efficient method to decide whether or not a number is prime is particularly important in cryptography. For instance, the RSA method needs two very large prime numbers. How does one generate these prime numbers?
(1) Recall that a prime number doesn't have any divisors other than 1 and itself. A number is composite if it has at least one additional divisor, say d. Immediately, n / d is also a divisor of n. So, either $d \leq \sqrt{n}$ or $n / d \leq \sqrt{n}$. Using this to check for primality is called trial division. Check every number from 2 to \sqrt{n} if it divides n. If it does, then n is definitely not prime, otherwise it is prime. Implement this trial division method in matlab as a function that takes in as an input a whole number and returns whether or not that number is prime.
(2) Using this method, write code to give a list of all primes up to 100,000 , or some other large number. Do not display this list. How long does this take?
(3) Fermat's little theorem says that for a prime p and some number a relatively prime to p, the following holds

$$
\begin{equation*}
a^{p-1}=1 \quad \bmod p . \tag{FLT}
\end{equation*}
$$

In general, Fermat's little theorem does not hold for composite numbers. We will use this to create a primality test. Given a "suspected" prime p, choose an integer a so that $2 \leq a \leq p-1$. Check if the above equation (FLT) holds (you will want to use the command powermod). If not, $\left(a^{p-1} \neq 1 \bmod p\right)$, then p can not be prime. Implement this Fermat method as a matlab function which takes in as an input a whole number p and the value a and returns whether or not that number is prime.
(4) Using this method, write code to give a list of all primes up to 100,000 , or the same large number in (2), with a random value of a chosen for each number. Do not display this list. How long does this take?
(5) Compare the list in (2) to the list in (4). Are they the same? Display a list of those numbers that appear in (4), but not in (2).

It is possible that (FLT) holds for a composite number. So, just because the equation holds does not mean it is prime, just probably prime. If the number was composite after all, we call a a Fermat liar. Moreover, it is possible for there to exist composite numbers that pass the test for any value a. Such numbers are called Carmichael numbers.
(6) For every value of a between 2 and $p-1$, check whether or not p passes the Fermat method. Do this for all p between 3 and 1,000 that are not prime (composite). Plot your results on a graph with the x -axis representing the value p and the y-axis representing the proportion of the values a that pass the test. Can you tell from the graph which numbers are Carmichael numbers?

